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ABSTrACT
--.--

Distributed ledgers, and specifically blockchains, have been an immensely pop-
ular investment in the past few years. The heart of their popularity is due to
their novel approach toward financial assets: They replace the need for central,
trusted institutions suchas bankswith cryptography, ensuringnoone entityhas
authority over the system. In the light of record distrust in many established
institutions, this is attractive both as a method to combat institutional control
and to demonstrate transparency. What better way to manage distrust than to
embrace it? While distributed ledgers have achieved great things in removing
the need to trust institutions, most notably the creation of fully decentralised
assets, their practice falls short of the idealistic goals often seen in the field.

One of their greatest shortcomings lies in a fundamental conflict with pri-
vacy. Distributed ledgers and surrounding technologies rely heavily on the
transparent replication of data, a practice which makes keeping anything hid-
den very difficult. This thesis makes use of the powerful cryptography of suc-
cinct non-interactive zero-knowledge proofs to provide a foundation for re-
establishing privacy in the decentralised setting. It discusses the security as-
sumptions and requirements of succinct zero-knowledgeproofs at length, estab-
lishing a new framework for handling security proofs about them, and reducing
the setup required to that alreadypresent in commonly used distributed ledgers.
It further demonstrates the possibility of privacy-preserving proof-of-stake,
removing the need for costly proofs-of-work for a privacy-focused distributed
ledger. Finally, it lays out a solid foundation for a smart contract system sup-
porting privacy – putting into the hands of contract authors the tools necessary
to innovate and introduce new privacy features.
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LAY SUmmArY
--.--

Blockchains have reached great popularity recently, as seen by the high market
price of Bitcoin. There is more than financial speculation here, as they cut out
banks and other trusted institutions. As social tensions rise in our world, and
peopledistrustmany institutionsmore, removing theneed for themisattractive.
An unintended side-effect of the technology behind blockchains is that – con-
trary to commonmisinformation – they have no meaningful privacy, outside a
few specialised exceptions. This thesis uses cryptography to re-establish a basis
for privacy in blockchain systems by ensuring the cryptography can be properly
applied to the problem, and broadening what it can be applied to from previous
results.
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1 InTrODUCTIOn
--.--

MODErn life increasingly relies on online networks and connections. The
benefits to modern communications are clear: Actions previously done

in-person can be done over vast distances. Actionswhichmight take a long time
to resolve in person, such as auctions or matching orders have been vastly sped
up, as the increasednetworkingallowspeople toaccess informationandsystems
directly, rather than throughmiddlemen.

Despite the great advances brought by the internet, as with any industrial
revolution, it has also brought unexpected challenges. Large organisations such
as Google, Microsoft, Facebook, and Apple have amassed an immense effective
power–powerwhich theyareasof the timeofwritingunder legal and legislative
scrutiny for [LH20, KM20]. Regardless of the outcome of such investigations, it
cannotbedenied that these companies eachhaveagreatpotential for censorship
and leverage their power to limit potential competitors.

Prominently, tech giants have been accused of partisan censorship [PW20]
and undue influence on the election process [Fol17], from both sides of the US
political spectrum. This culminated in the ban of US president Donald Trump
from Twitter [WP21] after the Capitol riots of January 2021. Online platforms
such as GitHub, Twitter, and Reddit, moderate content opaquely to ambiguous
termsofuse, andeven services consideredas infrastructure, suchasCloudflare’s
denial of service protection and Amazon’s AWS cloud computing, the likes of
whichare consideredalmost essential for operatingawebsite in today’s internet,
have withdrawn their service for ideological reasons [Pri17, Nov21].

Thepopularity of cryptocurrencies, blockchains, anddistributed ledgers (the
terms often being merely different sides of the same coin), is largely explained
through a disillusionment with centralised systems and a promise that without
central oversight and dictation, a fairer, next generation network can be built.

This ideal of distributed ledgers empowering a more decentralised future is
at odds with the privacy of their users. Somewhat paradoxically, even though
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much of the centralised internet relies on the gathering and selling (either
directly, or through advertising services) of personal data, the alternative pro-
posed by distributed ledgers has, at least naively, an arguably greater cost:
complete transparency.

While technological developments during the past few decades have desen-
sitised many people to the sharing of their personal data, people are prone to
overestimating the extent – major privacy scandals such as Cambridge Analyt-
ica [CGH18] still shock the general public, and in many areas, such as personal
finances, privacy is still verymuch expected. Even in areas where personal data
is frequently gathered and used, such as online purchasing habits and searches,
users often expect this privacy violation to be limited – it is one thing for “the
Google algorithm” to knowwhat you have been searching for, but quite another
for your colleague to.

In their naive form, which overwhelmingly is still their current form, block-
chain-based systems are completely transparent. Their operation is primarily
based on replication – everyone knows everything and can therefore hold ev-
eryone else to account. This is somewhat inherent: To reach agreement onwhat
happened, onemuch knowwhat happened. The challenge lies in the openness of
distributed systems – while with a centralised system, such as a bank, you may
be able to trust the respective entity with confidentiality (or at least to respect
the law on privacy), with a decentralised system any entity could be looking to
sell your data at the first opportunity.

Cryptography presents one of the best tools available to resolve this conflict.
At its most basic form, simply the usage of public-key cryptography in all
cryptocurrencies provides more privacy than their fiat-currency alternatives
in one aspect: A person’s bank account and credit cards are directly linked to
their name and address. A public key is typically linkedmuch less directly; only
through third-parties which have gathered this information, usually because
of legal requirements. Furthermore, the creation of new public keys, new
“identities”, is free and trivial – while bank accounts and cards are often also
free to open, their creation is sufficient hassle to discourage making use of this
fact.

During the early days of cryptocurrencies, the wild-west nature of the field
and the pseudonymity provided by public-key cryptography caused a frequent
misconception of anonymity, rather than pseudonymity. Even users recognising

Chapter 1. Introduction 2



the difference would often feel that pseudonymity was sufficient – nothing was
directly linked to them, after all. Since then, Bitcoin has seen multiple high-
profile deanonymisation attacks [MPJ+13, BKP14], disabusing this notion.

More complex cryptography can provide better anonymity and privacy: The
Monero cryptocurrency [vS13] relies on ring signatureshiding thedetails of each
transaction among a set of possibilities, with external observers not able to tell
whomade it. Evenmore powerful is Zerocash [BCG+14], which hides additional
information of a transaction, except when it was made1, using non-interactive
zero-knowledge proofs of knowledge (NIZKs) as the basic tool. The details of
how this proofworkswill be explained in Chapter 5, andNIZKswill follow us as
a central tool throughout this thesis.

1.1 FromBitcoin to Ethereum and Beyond

The question of consensus was thought largely settled in the literature at the
time Bitcoin [Nak08] was presented. n parties could agree, provided fewer than
n/3 of these behaved adversarially – or in aByzantinemanner, as it is often called
in the context of consensus. Practical protocols achieving this, notably PBFT
(practicalByzantine fault-tolerance) [CL99] existed, and impossibility results for
better thresholds were well-known.

Bitcoin [Nak08] threw a spanner in the academic works of consensus. While
the basic goal was the same, to agree on something, the details were entirely
different and largely novel:

1. The setting was not one of n parties, but the open internet.
2. Parties had influence according to their computational power, rather than

a singular vote.
3. The consensus was a continuous, eventual agreement, rather than being

immediate.
4. A threshold of adversarial power of 1/2 was achieved.

The argument for these security properties was largely informal, but was later
formally proven [GKL15], the details of which wewill recap in Section 2.4.

1There exist privacy attacks [KYMM18] on Zcash, the cryptocurrency based on Zerocash,
however they are more indicative of user behaviour and design decisions than the protocol’s
security: When given an inconvenient option of privacy, users will ignore it.
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2. and 3. are compromises – they are less strict than the traditional require-
ments of Byzantine consensus and come with their own problems. The former
violates a fundamental human desire for fairness, and the latter introduces an
uncertaintyaboutwhenagreementhasactuallybeen formed (a faultwhichgreat
efforthas gone into redressing invarious cryptocurrencies, rebrandedas anovel
feature of “finality” [Vuk15]). These relaxations directly enable 1. and 4., and
while some distributed ledger protocols have compromised on 4., removing the
restriction of a fixed set of parties is crucial for the distributed nature of dis-
tributed ledgers2.

Proof-of-work and stake. Bitcoin’s dependence on computational power
solved the issue of Sybil attacks: In a setting where creating new connections and
identities is effectively free, there must be some way to limit which identities
get a say and which do not. Bitcoin re-purposed the existing tool of proof-of-
work [DGN03]. The basic primitive is the cryptographic hash function (using
the random oracle heuristic [BR93]), the output of which is unpredictable. A
proof-of-work is simply demonstrating a hash preimage for which the output
conforms to some pattern – for instance the first n bits being 0. This demon-
strates having – on average – run the hash function 2n−1 times, demonstrating
either an investmentof computational resources, or luck,with the latter smooth-
ing out due to the law of large numbers.

As Bitcoin grew in popularity, it quickly became apparent that proof-of-
work has a major downside when directly tied to financial incentives: Rather
thanmerely selecting the users which had themost computational power avail-
able, it actively encouraged the development of gigantic server farms with no
other purpose than to generate proofs-of-work. Moreover, the difficulty of the
proof-of-work adjusts automatically – it provides a competitive environment,
but no limits on the competition. As a direct result, the energy consumption and
waste generated by the proof-of-work process is immense. According to [Dig20]
and, at the time of writing, Bitcoin alone has a carbon footprint comparable to
New Zealand, with a yearly energy consumption of 75.50 TWh.

To address this issue, various alternativeshavebeenproposed,with themost
2This restriction too has been lifted, for “federated” ledgers, in which a fixed set of parties

can participate in consensus. This setting is of no interest for this thesis and while it has seen
renewed interest since the development of Bitcoin, the cryptographic foundations of the setting
are well explored.
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prominent being proof-of-stake. As distributed ledgers are typically accompa-
nied by a currency, the amount each user owns of this can be used to determine
their voting power, rather than their computational resources. While proof-of-
stake appears a harder problem to solve, solutions have been created andproven
secure [BGK+18, GHM+17, DPS19]. There are trade-offs with respect to trust in
proof-of-stake – if the initial stakeholders of a proof-of-stake system are not
considered of a majority “honest”, the system is inherently insecure, placing an
unusual amountofpower into theprocess of selecting the initial distribution. By
contrast, proof-of-work is more self-regulating, as it does not require “permis-
sion” to participate in the consensus process. Given a sufficiently liquid asset,
this is no longer a problem, and by contrast the advantages of the immensely
reduced energy consumption are obvious.

“Smart” contracts. Bitcoin itself was designed primarily as a cryptographic
currency: It supports transfers of funds, which are associated with a public
key. In perhaps a surprising level of foresight, Bitcoin came with a limited
programmability, in the form of short scripts which need to be satisfied to
spend each coin (ormore precisely, unspent transaction output, orUTxO).While
the expressiveness of this scripting is limited, it allows for instance requiring
multiple keys to sign off on a transaction, and locking funds for a fixed time.
This expressiveness has been sufficient for somemore innovative systems to be
deployed in the Bitcoin ecosystem, despite it having few fundamental changes.

Bitcoin was nevertheless too restrictive for many applications users wanted
to develop and, evenwhereworkaroundswere possible, theywere cumbersome
and hard to develop. Various applications duplicated the consensus of Bitcoin
and attached their own semantics for specific applications: NameCoin [KCE+15]
providing a distributed alternative to domain names and Bitmessage [War12]
providing a distributed ledger-based communication protocol, for instance.

This practice of separating the consensus of each application was not partic-
ularly sustainable. Not only did it splinter consensus intomany different, small
communities, the smaller of which could be attacked with comparative ease,
but the effort of maintaining the complex consensus system went beyond what
many of these applications offered. Ethereum [Woo14] provided an alternative
approach: It aimed to provide a fully programmable blockchain as a platform,
allowing users to deploy programmatic rules to govern – in a small part – the
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consensus. These small programs have been called “smart contracts” and, as
bad as I believe this name to be3, it has stuck.

Smart contracts have been used for a multitude of applications, from the
comparatively simple, such as auctions and subsidiary currencies (usually re-
ferred to as tokens), to the complex, such as the (now infamous) DAO (de-
centralised autonomous organisation). The increased complexity of smart
contracts has also increased the attack surface, with Ethereumbeing the subject
tomultiple high-profile attacks over the years [CPNX20].

“Layer 2” solutions. After the popularity of distributed ledger exploded in
2017, it became apparent that there was a very real limit to the practical scale of
the technology. Simply put, when everyonehas to knoweverything, the amount
of data processed grows quadratically. At the height of its popularity, fees for
processing transactions soared, as users were forced to compete for the avail-
able bandwidth of the system, and many of the smaller, less financially driven
applications were laid on the wayside – no longer worth the cost of running.

This quadratic growth of processing (or linear if considered per-person) is
a direct result of the setting of mutual distrust, unlike trusted solutions which
decrease in per-person processing. The most common initial naive “solution” is
to split the network into smaller, independent parts (or shards, with the process
beingoftencalledsharding), hasa tremendoushiddencost: It amplifies theeffec-
tive power of an adversary, who can pick and choose which part of the network
to attack.

Recently, so-called “layer 2” solutions have becomemore prominent, includ-
ing state channels [DFH18] and the Lightning network [KL20]. These process
largely independently of the blockchain, falling back to it only as a dispute reso-
lutionmechanism. While this thesis does not concern itself directlywith layer 2
solutions, their existence is important for the goal of privacy, as they exhibit pri-
vacy characteristics both positive and negative: Layer 2 solutions provide inher-
ent privacy, by relying on less public, user-to-user interaction, but often imply
relying on, and interacting with, semi-trusted third-parties, potentially repli-
cating the privacy characteristics of the centralised internet.

3I contend: Smart contracts are neither smart, nor contracts. More accurately, they are
reactive state machines, as we will be discussed in Chapter 6.
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1.2 Disparate Approaches to Privacy

Privacy is one of the fundamental pillars of the field of cryptography. Many
tools, such as secure multi-party computation, fully homomorphic encryption,
and zero-knowledge provide great privacy guarantees. These are not all directly
suitable to the distributed ledger space however and a few tools have seen the
most success in preserving the privacy of distributed ledgers.

Statistical techniques. The first, and the one which we will not focus on, re-
lies on statistical security. Privacy is preserved bymuddying the paths, making
unclear how funds are moving. The earliest conception of this approach lies
in coin mixers, such as CoinJoin [Max13] and CoinShuffle [RMK14]. The idea is
simple: A set of users deposit equal-value coins into a pot and each withdraws
the samevalueagain independently,withall users signingoffon the result. Each
user retains the same value, but (for an external observer) any output could be-
long to any user. TheMonero cryptocurrency (based on [vS13]) bakes thismodel
into its basic transactions: Using ring signatures, each transaction is placed into
an anonymity set obscuring its true origin.

Zero-knowledge. The second prominent direction of privacy has used non-
interactive zero-knowledge proofs-of-knowledge (NIZKs), to prove that a trans-
action is correct, and legally generated some output, while not revealing the
details of the output, instead only cryptographically committing to it. This
is the basic premise of Zerocoin [MGGR13] and its more notable successor
Zerocash [BCG+14], which also relies on a highly efficient class of NIZKs, Suc-
cinct Non-interactive ARguments of Knowledge (SNARKs, or zk-SNARKs to
emphasise their zero-knowledge property). These SNARKs are well-suited to
usage in distributed ledgers: They are fast to verify, meaning it is possible to
utilise them for all transactions, and have small proof sizes, independent of the
complexity of what is being proven. They can be used as a drop-in replacement
for signatures, but being able to authenticate much more complex information
than knowledge of the correct secret key.

Despite this tool being powerful, it is still limited. Zero-knowledge alone
does not let mutually untrusting users to interact arbitrarily, although it does
enable many interactions in the face of adversity. As a result of this limitation
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such approaches to privacy in themore complex setting of smart contracts, such
asHawk [KMS+16], re-introduce trust assumptions, approaching the centralised
model of privacy to cope with the limitations of the setting. This is a good ap-
proach, however makes for a poor foundation for a platform. Had Ethereum
stipulated that each contractmust nominate a trusted party, interactionswithin
it would almost certainly bemuchmore restricted.

SNARKs come with their own drawbacks: First, they rely on non-falsifiable
knowledge assumptions which make using them in larger compositional settings
more difficult, and second, they require a trusted setup: They rely on a randomly
sampled Structured Reference String (or SRS), with the process sampling the
string being able to retain informationwhich could be used to break the security
of the SNARK. These drawbacks are not to be underestimated – a flaw in Zcash’s
initial reference string design couldhave enabled illicit printing of vast amounts
of funds in the corresponding network [SWB19].

Multi-party computation. Beyond these commonly used approaches to
privacy on distributed ledgers, three further approaches are noteworthy. First,
among other cryptographic approaches, secure Multi-Party Computation (or
MPC) is a very powerful candidate. Its use for privacy in smart contracts has
often been proposed, however it is directly opposed to scalability aims: MPC,
while practical, takes orders of magnitude longer to run than “native” compu-
tation. While it is possible to deploy in the fully distributed setting, by electing
representative committees from the participants (as some proof-of-stake proto-
cols, such as Algorand [GHM+17] already do), this committee would either need
to performan infeasible amount of computation, or the ledgerwouldhavemuch
reduced throughput.

Layer 2 solutions. MPC still has good applications combinedwith the second
approach: As already mentioned in Section 1.1, layer 2 solutions are inherently
less open, with higher levels of privacy. As layer 2 solutions generally concern
small sets of semi-trusted parties, running MPC between these can reduce the
trust required further, spreading the cost of the overhead, as each user only
needs to compute what they are interested in4.

4Incidentally, this is the same reason why SNARKs are attractive: Proving is expensive, but
you need prove only what you are interested in.
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Trusted hardware. Finally, it is commonly proposed to utilise trusted hard-
ware to bypass the limitations and computational cost of cryptographic tools.
This is an especially attractive option for the private sector, as it reduces costs,
while being able to offer additional features. Tools such as Intel SGX and AMD
SVE are available for immediate use and require relatively little development
effort when compared to deploying advanced cryptography. Nevertheless, the
implications for privacy are murky: Centralised trust is placed on the design of
the processors’ secure elements, their production, and less obvious things such
asmicrocodeupdates. While it can (and should!) be argued that usersmust trust
their machines already – users typically do not trust the machines of others and,
especially when it comes to privacy, information is leaked at the weakest link.
Givenahistoryof side-channel attacksonsecurehardware [VMW+18,MOG+20],
the real privacy of such systems is questionable and, given the reliance of central
trust, it will not be able to resist nation-state actors5.

1.3 Thesis Outline

This thesis focuses on how to utilise zero-knowledge proofs to provide a better
foundation for privacy in the distributed ledger space. The contributions are
split into four main parts, each following one of the research papers produced
during this thesis, andeachaddressingapertinentproblemtodeployingprivacy
in distributed ledgers. While the privacy and decentralisation discussed here
seemfar fromthepolitics at the start of this section, I believedistributed systems
to be crucial in opposing centralised structures – and the basics of their privacy
are still poorly understood beyond financial transactions. This thesis’ primary
motivation is then to provide a foundation for constructing and reasoning about
distributed and private systems.

• Composition with Knowledge Assumptions. In Chapter 3 the short-
comings of existing compositional security techniques in handling knowl-
edge assumptions (and by extension, zk-SNARKs) are outlined and a new
approach that permits composable security proofs with minimal changes
is presented. This substantiates the folklore belief that the usage of zk-

5Fewthings arewhenpressed. Given risinggeopolitical tensionsbetween theUSAandChina,
who broadly control the software and hardwarewe use respectively, it is worth considering that
both will likely be leveraged in future geopolitical conflicts, however.
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SNARKs in larger protocols is secure, although there is still ground for
caution: The reuse of knowledge assumptions presents a potential danger,
onewith real-world consequences, as the same groups are frequently used
for various systems. This is a crucial prerequisite for using efficient zero-
knowledge proof systems, which the latter part of this thesis relies on.

• SecureReference Strings fromConsensus. Chapter 4 handles the issue
of the trusted setup required for zk-SNARKs and observes amechanism to
perform the setup from the same trust assumptions of Nakamoto-based
blockchains (i.e. honest majority of some resource). The result holds for
bothproof-of-stakeandproof-of-workblockchains, although it is easier to
establish for the latter. To simplify, each creator of a block alsoperformsan
“update” on the reference string, which relies on this being among a class
of “updateable” reference strings. Given existing results on the frequency
of honest blocks, an honest update is eventually guaranteed. Again, this is
done as a prerequisite for using zk-SNARKs in the final two parts of this
thesis.

• Privacy in Proof-of-Stake. The benefits of proof-of-stake are apparent
and, despite some drawbacks, outweigh their downsides, as discussed in
Section 1.1. Proof-of-stake exists in an inherent conflict to privacy on the
underlying currency however, with its operation being influenced by os-
tensibly private data. In Chapter 5 we resolve this conflict as far as pos-
sible, following an adaptation of Zerocash [BCG+14] and Ouroboros Gen-
esis [BGK+18] to derive a provably secure and private proof-of-stake pro-
tocol, with some concessions being made for network leakage. This can
provide assurance that private systems are not inherently more wasteful
thanpublic ones – something increasingly becoming a point of contention
for Bitcoin, for example.

• Privacy in Smart Contracts. The disparate approaches to privacy in
smart contract systems and lack of a unified and foundational approach
is one of the primary challenges to privacy in the distributed ledger space.
Users cannot write a privacy-preserving contract with the same ease as
they can write one in Ethereum. This is party inherent, as privacy is
hard, but is also explained by there being a lack of a good foundational
framework to build from. Chapter 6 presents a foundation of privacy in
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smart contracts, based on zero-knowledge proofs of correct state updates
and argues why this is useful.

Beyond these chapters,whichmakeup thecoreof this thesis, Chapter2 intro-
duces necessary backgroundmaterial and important related work is. Chapter 7
summaries and ties together the core contributions.
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2 BACKGrOUnD
--.--

THIS chapter presents the foundations required tounderstand themainbody
of this thesis, given a general computer science background. We begin in

Section 2.2 by introducing basic fundamentals of cryptographic proofs, such as
hardness assumptions and reductions, as well as how they relate to the more
sophisticated constructions primarily used in this thesis. Notably the introduc-
tion of the universal computation and constructive cryptography frameworks,
as well as knowledge assumptions are central to the work in Chapter 3.

Section 2.4 covers the origins of distributed ledgers, their properties, and
how secure proof-of-stake is constructed and combined with compositional se-
curity frameworks. The properties andmodelling of distributed ledgers is of im-
portance to Chapters 4 to 6, while the design of secure proof-of-stake protocols,
andmore specifically the Ouroboros family of protocols, is central to Chapter 5.

The basics of zero-knowledge and zk-SNARKs are presented in Section 2.5.
Important are the fundamental characteristics of zero-knowledge proofs, the
additional properties of updateability and universality, required for Chapter 4
and Chapter 6, respectively. Section 2.5 also discusses the commonalities of zk-
SNARKs, and why they often rely on knowledge assumptions.

Finally, Section 2.6 discusses the design of smart contract systems, starting
with the archetypical smart contract system of Ethereum. The section also cov-
ers UTxO-based smart contract systems,whichBitcoin’s scripting languagemay
be considered a part of, and a fewof themore notable privacy focused variations
of smart contract systems.

2.1 Mathematical and Programming Notations

This thesis uses common functional programmingexpressions invariousplaces,
including the following for precision:

• Lambda expressions: (λx: 2x)(2) = 4
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• List and tuple literals: [1, 2] and (1, 2).
• List accessors: [1, 2][0] = 1
• List head and tail: head([1, 2]) = 1, tail([1, 2]) = [2]
We consider tail permissive, i.e. tail([]) = []

• Tuple projection: proj1(1, 2) = 1
• List concatenation: [1, 2] ‖ [3, 4] = [1, 2, 3, 4]
• The higher-order function filter: filter(λx: x ≡ 0 mod 2, [1, 2]) = [2]
• The higher-order function foldl: foldl(+, 0, [1, 2, 3]) = 6
• Curried functions: foldl(+) = λs, l: foldl(+, s, l)

Maps are seen as functions from keys to values, allowing map defaults to
be represented by initialising to a constant function, for instance λx: 0. Lists
are freely used to represent the set of their elements. The symbols ⊥ and ∅ are
overloaded, with the former representing both “false” and “error/abort”, while
the latter represents the empty set, empty map, and in some cases, the initial
state. Further, for a map 𝑀 , k ∈ 𝑀 denotes that the map contains the key k. A
key is not in the map if and only if 𝑀(k) ≔ ⊥. For lists, ε denotes the empty list
and ‖ denotes list concatenation. Single non-list items can be interpreted as a
singleton list.

The following functions are used throughout the thesis.

• The function prefix(𝐿, x) returns the shortest prefix of 𝐿 containing x, or 𝐿
itself, if no such prefix exists.

• The function idx(𝐿, x) returns the index of the first occurrence of x in 𝐿, or
⊥ if x ∉ 𝐿.

• The functions take(n, 𝐿) and drop(n, 𝐿) return the first n items in 𝐿, and all
but the first n items in 𝐿 respectively.

• The function last(𝐿) returns the last element in a list.
• The function reverse(𝐿) reverses the order of a list.
• The function dedup(𝐿) returns 𝐿, with only the first occurrence of any ele-
ment retained.

The relation a ≺ b denotes the (reflexive) list prefix, and 𝐿⌈k is used to denote the
prefix of 𝐿missing the last k entries.

Finally, assert and abort are used throughout this thesis. The statement
“assert x” is equivalent to “if ¬x then abort”. Where it occurs, abort is seen to
mean “the current experiment outputs ⊥”. Note that this is different from the
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machine outputting ⊥ itself, and in particular applies to the whole simulation
experiment we will introduce in Subsection 2.2.2.

2.2 Cryptographic Proof Styles

Cryptographic proofs vary greatly in scale and requirements: Fromthe informa-
tion-theoretic proof of the security of the one-time pad, to complex high-level
proofs of interactive systems relying onmany unusual assumptions. This thesis
focusesmoreon the latter, thedetails ofwhichdependoncompositional security
frameworkswhichassumebasicknowledge. The core ideas atplayarepresented
in this section.

2.2.1 Basics of Computational Security

At the base of security proofs are statements about security. Typically these
are expressed through so-called security games, short sequences of interactions
with an adversary. This adversary is typically modelled as a set of potential
algorithms (or sometimes multiple such algorithms, if the adversary operates
in stages). The set most typically has restrictions on the adversary’s execution
time, whichwill be discussed shortly, with other restrictions also being possible.

The adversary in the game has some winning condition – for instance, out-
putting the correct plaintext when it is given a ciphertext. The goal of any secu-
rity proof is to demonstrate that for any adversary, its probability of success in
the game is low. There are different flavours of what “low”means, depending on
the game and the setting. As there is typically a way for the adversary to sim-
ply guess the correct answer, rather than considering the probability of success
directly, often the advantage of the adversary is used instead: how much larger
any adversary’s probability of success is than the probability of a random guess
succeeding.

If the supremum of adversarial advantages is zero, security is perfect. If not,
rather than directly working with concrete probabilities, the success probabil-
ity is usually expressed in terms of a security parameter, for which κ will be used
throughout this thesis1. The usage of a security parameter allows tuning the
level of security required from non-perfect primitives. Typically this is taken

1The security parameter is often supplied in unary, written as 1κ, to make explicit its impact
on algorithmic complexity.
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a step further: Rather than concerning ourselves with the concrete advantage
probabilities, cryptographers consider the asymptotics of these: Denote κ−ω(1)

by negl(κ), typically security proofs demonstrate that the probability of adver-
sarial success is negligible, defined as it lying in negl(κ). We often abuse notation
and write ε ≤ negl(κ) to mean ε ∈ κ−ω(1).

The security parameter often serves a double purpose, also limiting the time
complexity of the set of adversaries permitted to κω(1). This is not necessarily
the case, however is considered the default, withmore powerful adversaries (for
instance unbounded) adversaries usually being explicitly introduced.

While not unique to cryptography, this field has a strong reliance on as-
sumptions – these take many shapes, and we will introduce the more exotic
knowledge assumptions in Subsection 2.2.3, the most common are hardness
assumptions. These are specified as a game themselves, with this game being
secure by assumption. Often this is used though a reduction: The security of an-
othergame isprovedbydemonstratinghowtoconstruct a (victorious) adversary
against the hardness assumption froma (victorious) adversary against the game
subject to the proof.

2.2.2 Simulation-Based Security

To prove the correctness of implementations of software systems, a common
approach is to prove its equivalence to a simpler (perhaps due to it being un-
optimised) specification. A similar approach exists for security properties: A
complex interactive system can be proven secure by demonstrating its equiva-
lence, in terms of execution semantics, to a corresponding specification of ideal
behaviour. Importantly, while real protocols will have as foundational points
leaky network infrastructure andmutually distrusting parties, the ideal specifi-
cation can assume the existence of a trusted third party, with the specification
simply being a description of what this party does, when it receives (perfectly
hidden)messages from the protocol participants. Cryptographers often refer to
the ideal specification as the ideal world and the protocol as the real world.

Both worlds are usually modelled with an adversary2, which can influence
theworld in certainways. For an encrypted channel, itmay be able to eavesdrop
on network communications, and for an authenticated channel, inject its own.

2It is possible to have multiple, independent adversaries as well. This is not a setting consid-
ered in this thesis, which assumes all adversaries are colluding.
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The adversary can also be a participant in the protocol, or control many users
at once (though if the adversary controls everything, there is no user for whom
security should hold). The more power is afforded to the adversary, the larger
class of attacks the protocol can withstand.

The adversary has a curious role in the ideal world. Naively, onemight think
there is nopoint to an adversary in the specification. Theneed to establish equiv-
alence and its existence in the real world mandates it however, and forces con-
cessions into the ideal world. At best, any participant the adversary controls
in the real world, it also will control in the ideal world. The adversary may be
afforded additional powers as well, however. For instance, even in an authenti-
cated, secure channel’s ideal specification, the adversary is informed whenever
amessage is sent, and usually provided with its length.

The secure channel’s leakage of the message length does not match the leak-
age observed in the real world, a full ciphertext. It is here that the “simulation”
part of the security statement comes in: An equivalence proof specifies a new
ideal-world adversary, called the simulator, for every potential adversary in the
real world. This simulator must coerce the ideal world to match the behaviour
of the real world, together with the adversary: It must simulate what the adver-
sary would do in this equivalent situation, for which it needs to simulate what
leakage should happen in the real world. For the secure channel, it may sample
a corresponding random string and hand it to the adversary, pretending it is
a ciphertext. Importantly, the simulator must be able to take any actions the
real-world adversary wants to take, otherwise the two side-by-side executions
will diverge and no longer be equivalent. This is the essence of a simulation
security proof: Any attack which works against the real world can be simulated
against the ideal specification –where by definition, it is no attack, but intended
behaviour.

2.2.3 HybridModels and Knowledge Assumptions

Beyond the hardness assumptions discussed in Subsection 2.2.1, assumptions
are sometimes made about the existence of a cryptographic primitive. These
are often approximated by a construction which cannot be proven secure – its
security is then heuristic, rather than proven. The most prominent instance of
this kind of assumption is one which features in this thesis at multiple points:
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The random oracle. The ideal description of this consists of a third party who
receives arbitrary inputs. If they have seen the input before, they output their
previous response again. If not, they randomly sample a fixed-length bit string,
record it, and output it.

The random oracle is a convenient abstraction of a hash function, although
this abstraction is flawed. For any concrete hash function, the abstraction
demonstrably does not hold [CGH98]. It follows that the usage can only ever be
heuristic. A similar situation occurs with the (comparatively simpler) common
random string (CRS) model. In this model, a fixed number of bits are randomly
sampled at the start of the protocol and made available to all users. Without a
trusted party, it is difficult to do this sampling in practice3. Nevertheless, there
are reasonable approaches to take in the real-world, which work heuristically:
Measurements of the physical world can be used to provide entropy. A hash
function can be used (as a random oracle), and providedwith a distinct input ev-
eryone agrees on – perhaps the name of the protocol, or a recent news headline,
as was done for Bitcoin.

A further assumptionwhich is oftenmade to enable using a rounds structure
of communication is a discrete clock, which advances onlywhen all interested par-
ties give it the go-ahead, and allows all parties to read the current time4. Unlike
withmany other ideal functionalities, this thesis uses the clock globally – i.e. any-
one can access it at any time. Notably this means the environment can talk to it
directly and it is present in both worlds.

Amuch stronger heuristic assumption is made in proof-of-stake5 protocols,
where an assumption over the initial distribution of funds ismade – specifically,
that most funds are distributed to honest users. This is of course impossible to
demonstrate in the real-world, where initial distributions often follow a similar
pattern to initial public offerings of companies – whoever is interested and has
the funds to buy.

Knowledge assumptions. In zk-SNARKs a class of assumptions known as
knowledge assumptions are prominently used. At their most basic, these are

3Although coin-flipping protocols are a possibility, they are also unreasonable in the setting
of a non-fixed set of users, which wewill consider.

4This has plenty of practical uses, however raises both questions of physical limitations and
the reliability of our time-keeping when under active attack.

5Proof-of-work protocols also have to make strong assumptions about the frequency of
hashes performed. These are not central to this thesis.
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implications of the kind “If someone knows x, they must also know y”. Most
often, y encodes information on how to construct x. This allows extracting
information about the intent behind an action, which can be used in the proof,
or by the simulator, to ensure the actionmade sense. For example, a knowledge
assumptionmaystate thatyoumustknowthepreimageof ahash toproduce this
hash (ormore likely, either know this, or demonstrate you sampled it randomly
in some way). A simulator could use this knowledge in the simulation of a
hash-based commitment scheme to retrieve the original input and commit to
this in the ideal world.

We will discuss the details more in Chapter 3, however the basic form of the
knowledgeassumptionstates that for anyalgorithmwhichoutputs x, theremust
exist a corresponding extractor, which outputs the corresponding y. Knowledge
assumptions are powerful and seem necessary for succinctness in many cases,
as the simulator needs to be able to retrieve the original inputs – something it
cannot do information-theoretically without additional help when the output
belongs to a smaller domain. The downside of this approach is that they are non-
falsifiable: To disprove a knowledge assumption, one would have to prove that
for some adversary, no possible extractor exists.

2.2.4 Adaptive Security

Subsection 2.2.1 alreadymentioned it is common for specific parties in a crypto-
graphic protocol to be considered adversarial. This is often also called static cor-
ruption: The adversary effectively begins the Protocol by deciding which parties
it wishes to control, within some limits. Inmany cases, this is a sufficiently pow-
erful model, however for long-running systems it is worth considering some-
thingmore powerful: An adversary which can “corrupt” partieswhile the protocol
is running. Such an adversary is called adaptive, due to its ability to adapt who to
corrupt based on information it gathers during the protocol’s execution.

This is a particularly important consideration for proof-of-stake systems. In
these systems, as funds shift from party to party, it may become easy for an
adaptive adversary to corrupt users which hold only a minority of stake now –
thereforenot violating thehonestmajority assumption–but didholdmost stake
in the past, enabling them to re-write history. We will discuss this conflict in
more detail in Chapter 5. This may appear an unimportant detail, but it comes
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witha real-world analogue,makingadaptive corruptiona considerable threat in
this case: A userwhohas spent their stake in the system, no longer has reason to
protect their secret keys and may be careless with them: Installing malware on
the machine without as much thought, or selling it second-hand. There is little
question that obtaining old secrets is an easier task than obtaining fresh ones.

2.3 Composition

The usage of simpler cryptographic tools in larger constructions is common –
Bitcoin would fall apart without digital signatures, and layer 2 solutions like
Lightning would fall apart without Bitcoin. In the context of simulation secu-
rity, it is desirable to specify each in terms of their idealised abstraction: Bitcoin
should be secure for any signature primitive, not just its current elliptic curve
based solution6, and Lightning should work for any distributed payments sys-
tem.

Despite this concept being natural, it is not immediate, with the devil, as
usual, lying in the details. The exact notion of equivalence used in the simu-
lation proof matters, as it needs to be powerful enough to allow replacing the
ideal primitive with its realisation in the larger system, while still preserving
any security proofs. In practice, this requires two things: First, the equivalence
notion must be one of semantic equivalence, that is, both the real and the ideal
systemwill output the samevalues for the same sequenceof inputs7, and second,
the proof of equivalencemust apply in the presence of the larger protocol and its
environment.

Several frameworks exist to facilitate such composable proofs, by requiring
security proofs to be with respect to an arbitrary environment, which canmake
any sequence of interactions it wishes. They typically define an explicit equiv-
alence relation, usually requiring a negligible advantage to distinguishing be-
tween the real and idealworld for anyof the arbitrary environments. Combined,
these two properties ensure that composition is possible.

This approach is adopted both by the Universal Composition [Can01] frame-
work and the Constructive Cryptography [Mau11] framework (which is based
on Abstract Cryptography [MR11]), although both differ in their details. While

6An especially important point in the face of quantum cryptography.
7Technically, they must output a sufficiently close random distribution – occasional failures

and different samplingmethods can be tolerated.
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many of the results in this thesis were first stated in the Universal Composition
framework, the inclusion of knowledge assumptions, which is discussed in
Subsection 2.2.3, is incompatiblewith either of these frameworks. The results of
Chapter3makeup for this limitation,with the rest of the thesisbeing formalised
in the related UCmodel.

2.3.1 Universal Composability

The most popular compositional framework is Universal Composability [Can01],
commonly referred to as UC. This framework is loosely used throughout this
thesis, making the basis of the results from Chapters 4 to 6. Its use is “loose”, as
these results are transferable to other frameworks, but are expressed in match-
ing language and notation.

InteractiveTuringMachines. UCmakes statements about sets of interactive
Turing machines, or ITMs. These are modelled on traditional Turing machines
with a few extensions for interaction and stochastic operation. They possess ad-
ditional input and backdoor tapes which allow ITMs to communicate with each
other, and a random tape which is provided an infinite sequence of uniformly
sampled bits. ITMs are instantiated with an identifier, with the combination of
an encoding of the ITM’s behaviour and the identifier making up an extended ID.
This can be used in a new external write operation, which can be used to write
to either the input or backdoor tapes of another ITM instance (ITM instances,
or ITIs, are independently executing copies of the same underlying machine).
Formally, an output tape exists which first the extended ID of the indented re-
cipient is written to, then themessage itself. When the external write operation
is executed, this tape is erased, and its content insteadput on the recipient’s tape.

Flow Control. The interaction between ITIs is not free-form, but is formally
restricted by a control function, whichmaydeny or alter externalwrite operations.
In practice, this is used to prevent addressing the internals of a protocol directly.
An exception ismade for the adversary, which is permitted towrite onto anyback-
door tape. This interaction allows each ITI to define their own adversarial influ-
ence. The details of the control function, andwhen calls are permitted andwhen
not are too long for this section, however the general premise is that – aside from
the adversary – all external writes form a tree structure, with protocols being
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able to invoke sub-protocols andreceive informationback fromthem. Execution
is kept serial for simpler analysis – one ITI is active at any time, andwhen it per-
forms an external write, it becomes inactive, with the recipient being activated
instead.

UC-emulation. A statement of security in UC follows from the notion of UC-
emulation. Before defining this, it is first necessary to formally define protocols
in the UC setting, and their idealised equivalents. Roughly speaking, a protocol
consists of a number of different ITIs, each representing one of the parties in the
protocol, running a program dictated by the protocol’s code. Often (especially
in the decentralised setting) the code each party runs is identical. They may
interact with other ITIs, which canmodel assumptions (such as the random ora-
cle, or a shared network), and with the adversary (which is often used as a fully
subvertable network). In the ideal world, parties are still represented as ITIs,
however they simply forward their inputs to a single trusted ITI, the specification
of which is usually called an ideal functionality, and denoted F. These forward-
ing parties are referred to as dummy parties. In both settings, the adversary is
assumed to be addressable – it can be sent messages, and send them in turn as
well. Beyond this, parties get inputs and supply outputs to something external
to them. This can be a larger protocol context, or the end user themselves.

The key to composition in the UC setting is that, in addition to the protocol
and adversary, a third component is considered, called the environment (written
Z). This may be any ITI, which interacts with either the real-world protocol, or
the ideal-world specification,withoutknowingwhich. It instructs thebehaviour
of the adversary8 in bothworlds, andmust attempt to determinewhichworld it
resides in. If the environment cannot succeed, the real protocol is as secure as its
ideal specification.

Simulation-based security (see Subsection 2.2.2) is formally used, with the
ideal-world adversary being a simulator (often written S) which can mimic real-
world attacks on the ideal protocol, rather than the real-world adversary itself.
Additionally there are complexities in ensuring all ITIs run in polytime (in par-
ticular, it is difficult to capture with respect to what execution time should by
polynomial), however these are not of significant importance to this thesis.

8The adversary can be considered as part of the environment without loss of generality.
Indeed, this is part of the proof of composition of UC: the adversary is replaced with a “dummy”
adversary which simply does as instructed.
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Crucial to UC-emulation is the order of quantifiers. Given exec as the distri-
bution of executing a system of ITIs, UC-emulation is given by:

Definition 2.1. A protocol πUC-emulates a protocolϕ if and only if

∀A: ∃S : ∀Z : exec(Z ,A, π) ≈ exec(Z ,S,ϕ),

where A, S, and Z denote the adversary, simulator, and environment respec-
tively.

Universal Composition. Universal composition then states that a part of a
larger protocol can be replaced with a protocol which realises it. For instance,
an authenticated channel protocol ρmayrely onadigital signature functionality
Fsig, which in turn is UC-emulated by a protocol π using elliptic curve cryptog-
raphy. Then ρ with Fsig replaced with π (written ρFsig→π) also UC-emulates ρ.
Intuitively, this result is as the rest of the ITIs in ρ can be seen as part of the
environmentZ . A simplified statement of the UC theorem is:

Theorem2.1. For all protocols ρ,ϕ, π, whereϕ is a part of ρ, and πUC-emulates ϕ, ρϕ→π

UC-emulates ρ.

2.3.2 Constructive Cryptography

Alesspopularbutmathematically simpler compositional framework isConstruc-
tiveCryptography [Mau11]. While this framework is not useddirectly in this thesis,
themodel used in Chapter 3 is closely based on it.

Random Systems. First introduced in [Mau02], a random system is intuitively
a stateful variant of a randomly distributed function. Formally:

Definition 2.2. An (X ,Y)-random system F is an infinite sequence of condi-
tional probability distributions 𝑃F

𝑌i∣𝑋 i𝑌 i−1 for i ≥ 1, where𝑋i and 𝑌i distribute over
X andY respectively.

Specifically, random systems produce outputs in the domain Y when given
an input inX and are stateful – their behaviour can depend on prior inputs and
outputs. [Mau11] itself workswith random systems based on an automatonwith
internal state; such an automaton can then also be constrained to a reasonable
notion of feasibility, such as being limited to a polynomial number of execution
steps with respect to some security parameter.
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Interfaces, Resources, and Converters. Constructive cryptography begins
by defining a set I of interfaces, through which one may interact with a random
system. Typically, these represent protocol parties: Imaybe {𝐴,𝐵, 𝐸} for a point-
to-point channel, for instance, to represent the parties Alice, Bob, and Eve the
eavesdropper. A randomsystemwhichallowseachof these interfaces to interact
with it is called a resource, typically denoted with a capital letter, such as 𝑅. A
converter is a random system operating only on a single interface – it connects to
the interface of someunderlying resource, andprovides a replacement interface
for it. As it is possible to reduce two randomsystems interactingwith each other
to a single random system (wewill touch on this in Subsection 3.2.3), attaching a
converter to a resource on an interface results in another random system. Con-
verters are typically denoted with lowercase Greek letters, for instance α, and
attached to a resource 𝑅 on an interface i ∈ I by writing αi𝑅.

Parallel composition is defined for both resources and converters, written
α ‖ β or 𝑅 ‖ 𝑆, although wewill not cover the details here.

Distinguishers, Simulators, and Security. A distinguisher 𝐷 in Construc-
tiveCryptography isyet another randomsystem,which forms the inverseof a re-
source: It connects to the resource on all available interfaces, and interacts with
it, before externally outputting a single bit. This bit is interpreted as a guess as to
which of two resources the distinguisher is connected with. Let Δ𝐷(𝑅, 𝑆) be the
statistical distancebetween𝐷𝑅 and𝐷𝑆. Then thedistance d(𝑅, 𝑆) is definedas the
supremum over all possible𝐷 (ignoring subtleties such as feasibility notions):

d(𝑅, 𝑆) ≔ sup
𝐷

Δ𝐷(𝑅, 𝑆).

For security statements, we need to distinguish between attacker interfaces
and honest interfaces in I . A converter πi is defined for each of the honest inter-
faces i ∈ I, representing the protocol being executed. Furthermore, a converter
σi is defined for each of the attacker interfaces i ∈ I, representing the simulator.
Their key difference is that the protocol is attached in the real-world, while the
simulator is attached in the ideal world. Wewrite π⃗ for the combination of all πi,
and σ⃗ for the combination of all σi. If:

d(π⃗𝑅, σ⃗𝑆) ≤ ε,

then we can write this as:

𝑅 π⃗,ε 𝑆,
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read as “𝑅 constructs 𝑆”. This constitutes a security proof that 𝑆 can be securely
realised by using 𝑅.

Rules of Composition. The construction notion of [Mau11] is composable in
the sense that security proofs are preserved under parallel and sequential com-
position.

Theorem 2.2. Proofs in the Constructive Cryptography framework are sequentially
composable (2.1), parallelly composable (2.2), and reflexive (2.3).

𝑅 π⃗,ε 𝑆 ∧ 𝑆 π⃗′,ε′ 𝑇 ⟹ 𝑅 π⃗′π⃗,ε1+ε2 𝑇 (2.1)

𝑅 π⃗,ε 𝑆 ∧ 𝑅′ π⃗′,ε′ 𝑆′ ⟹ 𝑅 ‖ 𝑅′ π⃗ ‖ π⃗′,ε1+ε2 𝑆 ‖ 𝑆′ (2.2)

𝑅 1⃗,0 𝑅 (2.3)

2.3.3 Globality, Corruption, andOther Caveats

Globality. A few caveats arise in the practical usage of compositional frame-
works, in UC and other similar frameworks. First, it is frequently useful to have
multiple high-level protocols interact with the same sub-functionality. A great
example of this is the clock sketched in Subsection 2.2.3 –multiple protocolswill
realistically share the same time units, and not operate vastly out-of-sync with
each other. This concept of a functionality being available more broadly is also
called globality. In UC this is not natively available, howevermodifications to the
framework [CDPW07, BCH+20] enable globality. Intuitively, globality equates
to changing the requirement of a tree-structure for internal calls to requiring a
directed acyclic graph structure instead. Looking forward to Chapter 3, this is
also stricter than necessary – any graph structure can be used.

Corruption. A further question is how tomodel corruption – often static cor-
ruption can simply bemodelled as a subset of the parties being controlled by the
adversary, that is, it determines their behaviour, and sendsmessages on their be-
half. Adaptive corruptions, as described in Subsection 2.2.4, are more complex.
Generally, themethodology in UC is to allow dummy parties to receive a special
message COrrUPT, which orders them to switch control from the environment
to the adversary. In either case, care must be taken to ensure that the adversary
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does not violate limits on corruption, and does not corrupt different users at
different levels – for instance, corrupting a user in a signature scheme which
is used in an authenticated channel should also corrupt that user of the authen-
ticated channel. Often ideal functionalities also make use of honesty, and spec-
ify different behaviour for honest and dishonest users. While there is nothing
preventing the same from being done in the real world, there it does not match
reality (rather inconveniently; it wouldmakemany problems far simpler).

Wrappers. It is occasionally useful to separate a core behaviour of the ideal
world or of the real world with a modification that is made to it for practical
purposes. This thesis makes use of wrappers at two points: In Chapter 4, an
idealised reference string functionality is modified to be available only after a
set time, and in Chapter 5, the real-world protocol is modified to deny all ad-
versarial zero-knowledge proofs if it violates the corruption limits. Formally,
this is achieved throughwrapper functionalities, oftendenotedwithW . In practice,
these are simply functions whichmap a (set of) ITIs to a corresponding set with
modified behaviour. An early example of this usage is in [BGK+18], with the
wrapper in Chapter 5 being closelymodelled on this.

Aborts. It is common for cryptographic protocols to abort. In practice this can
mean that a party leaves the protocol unfinished. This interpretationmakes less
sense in thedecentralised setting,where leaving theprotocol is permissible, and
shouldnot affect its execution. Instead, this thesis uses aborts tomarkviolations
of assumptions. This can refer to small violations, such as an input being in the
incorrect format, to large assumptions such as honest majority. Semantically,
throughout this thesis, the keyword abort should be taken tomean that the full
current execution exits immediately, and outputs ⊥. Crucially, in a real/ideal
world experiment, both worlds should abort under the same conditions. In the
real world this is often simpler to achieve – the simulator can abort whenever it
pleases.

“Simple”UC. Thedescription given inSubsection2.3.1 technically limits itself
to a simplified view of UC – in the full framework, ITIs are able to create new ITI
instances simply by addressing them directly. For analysis, it is often easier to
ignore this feature, and instead focus on static interaction graphs. This thesis
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only makes use of such a “static” form of UC, and notably relies on this being
closely related to the framework used for knowledge assumption in Chapter 3.

2.3.4 Notational Conventions in This Thesis

The style of writing UC protocols and functionalities differs greatly from author
to author. As a result potentially important corner cases may be overlooked,
as the exact behaviour of a given functionality is sometimes unclear. This
thesis adopts a more explicit style, while at the same time attempting to avoid
writing unnecessary information in the definition of the functionalities. While
the proofs, protocols and functionalities can be read and understood without
explicit knowledge of the notation described in this section, this section defines
some of the behaviour left implicit in them.

Flowof execution. Session identifiers are formally used in UC to shield a pro-
tocol from external calls, except when allowed by the control function. While
they are effectively a technical detail of the description in UC, they are often
replicated in the description of functionalities and protocols. Session identifiers
are implicit in this thesis. In a similar vein, it is often a convention to replicate
(part of) the input to a functionality when returning the result, to ensure that
it is clear which query is being answered. This is omitted as well, in favour of
simply stating the actual value returned. Both of these are howa protocolwould
be written in a channel-based communications model, such as that of [Mau11],
rather than the tape-basedmodel of UC itself.

When a functionality is processing something, it is always processing on be-
half of some party, which may be the adversary itself, or may be corrupted. Like-
wise when a protocol is processing something, it is processing this on behalf of its
owning party. Whena functionality orprotocol hands offexecution to another en-
tity, by making a query to another functionality, or the adversary, execution for
this party is suspended, and resumes only when the query returns. Attempts by
the environment to make queries to a suspended protocol will be ignored. Like-
wise, if the environment attempts to query a functionality with a party which is
currently suspended, the querywill also be ignored. Crucially, the environment
may still query a functionality with another partywhile one is suspended, ensur-
ing that parties may still act concurrently. This behaves equally in protocols
and functionalities, as the functionality is suspended in the same situation the
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corresponding party’s protocol is suspended. Finally, we assume that queries
will eventually return – this is equivalent to queries which do not return, as we
allow the environment and adversary to hold off indefinitely until returning.
While this is possible, in practice, due to the implicit suspension mechanism
described above, this means disabling a party permanently.

This above mechanism is not a great deviation from UC – it can easily be
implementedbyhavinga functionalityorprotocol record locally the suspension,
and reject new queries from the suspended party until it receives an input of
a specified form. We simply omit this mechanism when writing our protocols.
Responsive environments [CEK+16] are a strictly stronger form of this idea.

We assume the existence of a set of all partiesP , of which there is a subset of
honest partiesH ⊆ P . We assumeH ≠ ∅. Correspondingly, the set of corrupted
parties isP \H. All functionalities are assumed to have knowledge of these sets.
Real world protocols, when they interact with these sets, will assume that, if the
party running them is ψ, P = H = {ψ}, that is, they know of no other parties
except themselves, at least initially.

Notation. As the adversarymay respond arbitrarily to queries, each query in-
cludes a well-formedness condition, and a fallback distribution. In particular,
query A with x and receive the reply y, satisfying 𝑃 , else sampling from 𝐷
means the following: Send x toA, then wait for the response y. If 𝑃(y) does not
hold, instead randomly sample y from 𝐷. This allows us to ensure responses
are well-formed, while avoiding the common technique of aborting in the ideal
world on receiving unexpected input, somethingwe try to avoid, as it effectively
permits denial-of-service in the “ideal”world. Finally, theperiod (“.”) is used as a
membershipaccessoperator, to talk aboutvariablesof simulated functionalities,
or in the proof, to talk about state variables of various functionalities and proto-
col instances. For instance,F.𝑋 means the state variable 𝑋 within the (possibly
simulated) functionalityF.

2.3.5 Commonly Used Functionalities

Subsection 2.2.3 has already introduced some cases where a functionality is as-
sumed. Notably the random oracle FRO, global clock Gclock, and common refer-
ence string functionality F𝐷

CRS are used at multiple points. For this reason, and
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also to familiarise the reader with the notation used for functionalities, they are
introduced here.

FunctionalityFRO

The random oracle functionalityFRO returns a uniform random value in {0, 1}κ for
each input.

State variables and initialisation values:

Variable Description
𝐻 ≔ ∅ Amap from inputs to (fixed) outputs

When receiving amessage (QUErY, x) from a party ψ:

if x ∉ 𝐻 then let𝐻(x) ∗ {0, 1}κ
return𝐻(x)

Functionality Gclock
The global clock allows parties to agree on some discrete notion of time.

State variables and initialisation values:

Variable Description
t ≔ 0 Current time
𝑇 ≔ ∅ Timekeepers
𝐴 ≔ ∅ Agreements to advance

When receiving amessagerEGISTEr from a party ψ:

let 𝑇 ← 𝑇 ∪ {ψ}
When receiving amessageDErEGISTEr from a party ψ:

let 𝑇 ← 𝑇 \ {ψ}
When receiving amessageUPDATE from a party ψ:

let𝐴(ψ) ← ⊤
if ∀ψ ∈ 𝑇 :𝐴(ψ) then

let t ← t + 1;𝐴 ← λψ:⊥
queryAwith TICK-TOCK

When receiving amessagerEAD from a party ψ:

return t
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FunctionalityF𝐷
CRS

The CRS functionality F𝐷
CRS samples random values from 𝐷, until one satisfies the

adversary. This is made publicly available to anyone.

State variables and initialisation values:

Variable Description
s ≔ ⊥ The reference string

When receiving amessageCrS from a party ψ:

if s = ⊥ then
repeat

let s′ ∗ 𝐷
queryAwith (COnFIrm-CrS, s) and receive the reply b

until b ∨ s ≠ ⊥
let s ← s′

return s

2.4 Distributed Ledgers

Distributed ledgerswere conceived inBitcoin [Nak08] to provide a decentralised
mechanism to track ownership of a digital currency. While this is still their pri-
mary purpose, the basic primitive ismore flexible: Bitcoin achieved this tracing
of ownership through a ledger, an ordered record of who sent funds to whom.
Anyone can write to this record and insert a transaction9, with the ledger guar-
anteeing an approximately correct ordering. Two transactions submitted close to
each other (typically meaning within a few hours, depending on assumptions
made on honesty and the security parameter) they may appear in a different
order, while if they are sufficiently far apart, their temporal order is preserved
on the ledger. Ledgers are also typically assumed to be readable by all, although
Chapter 5will discuss apartiallyprivatevariant. In this sectionwewill detail the
exact security provided, and how this has been achieved in both proof-of-work
and proof-of-stake.

9Provided they pay a transaction fee and follow the appropriate format, although these are
not crucial for the primitive itself.
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2.4.1 Bitcoin and Proof-of-Work

Bitcoin [Nak08] was proposed and implementedwithout a formal security anal-
ysis. It builds on the pre-existing tools of peer-to-peer networking, digital sig-
natures, and proof-of-work. Prior to Bitcoin, proof-of-work had been proposed
as amechanism todealwith email spam [DGN03] andused inprior unsuccessful
attempts at digital currencies.

Proof-of-work. The term “proof-of-work” describes a class of primitives con-
sisting of a proving and verifying algorithm. They operatemuch like signatures,
with it being possible to perform a proof-of-work being on any arbitrary mes-
sage and verifying it with respect to the same message. Much like signatures,
proofs-of-workmust be bindingwith respect to themessage – anothermessage
shouldnot be substitutable after the fact. Unlike signatures, nokeys are involved
however. They are substituted with a different, interesting property: The only
way to generate a valid proof-of-work is to run the proving algorithm, which
has a known average-case runtime10. Thus the verifier succeeding attests to the
prover having (on average) devoted this runtime into generating the proof. A
closely related concept are verifiable delay functions [BBBF18], which differ in that
instead of the exponential success distributions involved in the usual proofs of
work, they are distributedmore consistently around themean.

A straightforward implementation of proof-of-work relies on repeated ap-
plication of a random oracle in the random oracle model, or in its heuristic re-
alisation, repeated hashing. To begin, sample a random nonce and concatenate
it to the message. Pass this into the random oracle and interpret the result as a
binarynumber. If this is sufficiently small, for an l-bit output, less than2l−k, for a
kdictating the hardness of the “work”, the nonce serves as a proof ofwork. If not,
repeat until it does. In the case of less than2l−k, it takes on average 2k−1 attempts
before the random oracle outputs a sufficiently small value, therefore attesting
to sufficient “work” having been done. Furthermore, verification is independent
of the difficulty: Only one random oracle invocation is necessary to check that
the work claimed is available. As applying the random oracle with a nonce is a
commitment scheme, the commitment properties are also guaranteed.

10Assuming all parties have the same computational resources. In practice, these are variable,
with the proof-of-work runtime being inversely proportional to the resources available.
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“Nakamoto” consensus. Given the basic tool of proof-of-work and a peer-
to-peer broadcast network which reliably sends information to all other par-
ticipants11, it is possible to construct a distributed ledger given a uniform start-
ing point through the so-called “Nakamoto” consensus algorithm, after the
pseudonymous author of Bitcoin. Specifically, this starting point, called a genesis
block inBitcoin, ensures thatnouserhasbeenpre-computingproofs-of-work, by
requiring all proofs-of-work to sign information which was not known before
the protocol start. This can be modelled as an assumption through a common
random string, although in Bitcoin it was achieved by embedding a headline
from The Times.

From the initial genesis, a difficulty target is chosen– k in the sketch of proof-
of-work above. Any user may create a “block”, a collection of transactions and
somemetadata and append it to the already existing data, provided itsmetadata
includes a cryptographic reference to the previous block, in form of its hash and
it contains a proof-of-work reaching the difficulty target over themessage of the
remainder of the block (including the reference to the prior block).

This createsa treeofblocks,with thegenesisblockas its root, due toblocksbe-
ingverifiedrecursivelyuntil thegenesis is reached. Only if eachblock in thepath
from genesis to leaf block is correctly formatted and contains a correct proof-of-
work is the chain as a whole considered valid. Whenever a new block is created
(and therefore a new, longer chain is), its creator broadcasts it to all other users.
These attempt to create their own blocks, but always start with the currently
longest chain (breaking tieswhenneeded). As honest users keep to this protocol,
it is unlikely that they will create a wide tree, as whenever a new, longer chain
is available they start trying to extend it instead. The only case when honest
userswill work on different branches iswhen ambiguity arises, for instance due
to multiple blocks being created in short succession, before the users found out
about the other through the network. As the next block after this is likely to dis-
ambiguatewhich chain is longer, Bitcoin’s original proposal reasons that chains
will reconverge.

While the basic form of the Nakamoto consensus functions with a fixed dif-
ficulty for its proof-of-work, Bitcoin rightly anticipated that the work available
for the systemwould fluctuate. As this would lead to an inconsistent frequency

11What “reliably” means is a point of great contention. This thesis assumes the semi-
synchronous setting, which will be discussed inmore detail in Subsection 2.4.5.
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of blocks, Bitcoin instead varies the difficult of the proof-of-work at regular
(spaced in terms of block, rather than time) intervals, adjusting it up or down
depending on self-reported timestamps within these blocks. Bitcoin targets
approximately 10minutesbetweenblocksandthismechanismhasbeenadopted
bymost12 proof-of-work based cryptocurrencies.

Informally, the security of Nakamoto consensus relies on a larger amount of
honest proofs-of-work being performed. An adversary attempting to break con-
sensus will want to create uncertainty about the true state of the ledger, which
can be done if multiple chains of equal length are competing. The further back
the last common ancestor is in these chains, the less about the ledger is certain.
This situation of competing chains of equal length is called a fork, with the dis-
tance to the common ancestor being the fork’s depth. While an adversary can
easilybe lucky in theproof-of-workprocess andcreatea shallowfork, adeepone
is exponentially unlikely, as, if honest users have more mining power, they will
eventually break any artificial tie and extend only the longer remaining branch,
with the adversary being unable to maintain the other branch as a viable alter-
native.

Digital money. The usage of the ledger is mostly independent from the con-
sensus mechanism itself in proof-of-work currencies. “Mostly”, as the winner
of the proof-of-work lottery is typically rewarded with funds in the digital cur-
rency built on top of the ledger, to incentivise participation in the consensus
mechanism. Incentives are not the focus of this thesis (although they briefly
feature inChapter 4, due to aflaw in the incentives for the naive approach), how-
ever it is worth stating that rewarding block creation broadly achieves its goal
or encouraging rational miners to behave honestly, provided no great financial
interests lie in censorship, or reordering transactions13. The basic foundations
of building a digital currency on a ledger is simple: A mapping of public keys
to funds is maintained, with users being able to create transactions when they
spend funds associated with their public key. These transactions indicate a new
recipient public key and a fee they are willing to pay for the transaction, which
is retrieved by the block creator. Each transaction is digitally signed, therefore
ensuring only the owner of funds can spend them.

12All tomy knowledge, although it would be a full-time occupation to survey the entire field.
13This is, of course, a strong assumption, although still weaker than the traditional “honest

majority”.
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2.4.2 Security Properties

Bitcoin, being proposed and implemented without a formal security analysis
and not falling into the existing notions of consensus, clearly achieved some-
thing. It took a while for cryptographers to catch up and articulate clearly the
properties achieved in the Bitcoin ledger. Themost notable of these formalisms
is [GKL15], which defines three properties of Nakamoto consensus: chain growth,
chain quality, and common prefix. While the analysis of [GKL15] was of a simplified
version of Bitcoin, assuming fixed difficulty and a synchronous network, these
results have since been extended [GKL17].

Definition 2.3 (Chain Growth). For parameters s, γ ∈ ℕ, if at time t the honest
party ψ has selected a chain of length c, then at time t + s, ψ will have selected a
chain of length at least c + γ.

Definition 2.4 (ChainQuality). For parameters l, μ ∈ ℕ and anyhonest party’s
selected chain, any consecutive sequence of l blocks in the chain will include at
least μ blocks created by an honest party.

Definition 2.5 (Common Prefix). For the parameter k ∈ ℕ: Given the current
chainsC1 andC2 of twohonestpartiesψ1 andψ2 at the samepoint in time, remov-
ing the last k blocks from one chain ensures it is a prefix of the other: C⌈k

1 ≺ C2,
where C⌈k denotes the chain C without the k last blocks.

Combined, these properties achieve the broader goals of persistence and live-
ness, essentially stating that a confirmed transactionwill remain confirmed and
that all new transactions will become confirmed eventually.

Definition 2.6 (Persistence). For the parameter k ∈ ℕ, any transaction more
than k blocks from the end of the chain of an honest party will be found at the
same location in all honest parties ledgers and will remain there in future.

Definition2.7 (Liveness). Forparametersu, k ∈ ℕ, anyvalid transactionbroad-
cast to all honest parties will, after u units of time, be reported as k blocks deep
in their local chain by all honest parties.

Combined, persistence and liveness are sufficient to construct a digital cur-
rency, and [GKL17] demonstrated that the (simplified) Bitcoin ledger achieves
these notions for reasonable parameters (although k may be much longer than
most users expect for typical security parameters).
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2.4.3 Composability

As distributed ledgers are used as a basis for larger systems, such as currency
systems and smart contracts, it is crucial that their security proofs still hold in
the context of their greater environment. Initial attempts at simulation-based
models of distributed ledgers [CGJ+17] were too powerful, as they provided in-
stantaneous consensus, more akin to the traditional byzantine fault-tolerance
notions than the “Nakamoto-style” distributed setting.

AcomprehensivemodellingofBitcoin in theuniversal composability setting
was later achieved by [BMTZ17], although themodel hadmany complex parame-
terisations: A functiondescribinghowblocks are constructed from transactions,
a function restrictinghow the adversary is permitted to behave and complexma-
chinery to track the passage of time, to name a few. It is because of this complex-
ity that the work in this thesis is based on a series of smaller, simpler ideal de-
scriptions of ledgers – unlike [BMTZ17], this thesis proposes new constructions,
rather than modelling existing ones, so a simpler model is more appropriate.
These simplified ledgers are presented here, as their modelling is not a primary
contribution to the thesis and they are used throughout the rest of the document.
The distributed ledger can bemodelled to differing levels of granularity, depend-
ing on the amount of information needed.

2.4.3.1 The Simplified Ledger

The simplified ledger captures the essence of the traditional persistence prop-
erty of ledgers, although it does not capture liveness. Any user may post trans-
actions, which are deemed unconfirmed. The adversary may decide when and
which unconfirmed transactions tomove to an append-only ledger andmay de-
cide how long a prefix of this ledger honest parties see – provided it does not
remove anything previously revealed to them.

While the liveness property is not captured by this ledger, due to the large
amount of adversarial control, it is straightforward to see – although we will
not demonstrate it here – that more complex ledgers, such as those defined in
[BMTZ17, BGK+18], UC-emulate GSimpleLedger, as defined next. In particular, this
means that if replaced in the ideal world with such a ledger, which does have the
liveness property, we also in practice have liveness for our protocol.
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Functionality GSimpleLedger

The simplified interface to GLedger is strictly less powerful than actual ledger imple-
mentations, allowing reasoning about a less complex ledger functionality.

State variables and initialisation values:

Variable Description
Σ ≔ ε Authoritative ledger state

𝑀 ≔ λψ.ε Mapping of parties to ledger states

When receiving amessage (SUBmIT, tx) from a party ψ:

// The adversary is not required to ever put

// transactions on the ledger.

// Where it doesn't, the execution is unlikely

// to be interesting, however.

queryAwith (TrAnSACTIOn, tx)
When receiving amessagerEAD from a party ψ:

if ψ = A then return Σ
else return𝑀(ψ)

When receiving amessage (EXTEnD, Σ′) fromA:

let Σ ← Σ ‖ Σ′

When receiving amessage (ADVAnCE,ψ, Σ′) fromA:

if 𝑀(ψ) ≺ Σ′ ≺ Σ then let𝑀(ψ) ← Σ′.

2.4.3.2 The Delay Ledger

While the simplified ledgerGSimpleLedger is nice for theanalysis ofprotocols build-
ing on it as a global functionality, in practice users would like to take advantage
of some liveness guarantees. Gδ

DelayLedger annotates transactions with a time at
which they were received. This time is never returned to parties, however it
asserts that every party can see a transaction, once it is δ time slots in the past.
This ledger operates under the assumption of a global clock Gclock, described ear-
lier in Subsection 2.3.5. We posit without proof that Gδ

DelayLedger UC-emulates
GSimpleLedger, by virtue of the latter having far greater adversarial power. This
ledger canalso be constructedusing existingUC-secure ledgers such as [BMTZ17,
BGK+18], as these aim to provide the same guarantees.
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Functionality Gδ
DelayLedger

Theδ-delay ledgeradds livenessguarantees toGSimpleLedger, ensuring that sufficiently
old transactions are always visible to honest parties.

State variables and initialisation values:

Variable Description
Σ ≔ ε Authoritative ledger state

𝑀 ≔ λψ.ε Mapping of parties to ledger states
𝑈 ≔ ∅ Multiset of unconfirmed transactions

When receiving amessage (SUBmIT, tx) from a party ψ:

send rEAD to Gclock and receive the reply t
let 𝑈 ← 𝑈 ∪ {(tx, t)}
queryAwith (TrAnSACTIOn, tx, t)

When receiving amessagerEAD from a party ψ:

assert liveness
returnmap(proj1,𝑀(ψ))

When receiving amessage (EXTEnD, Σ′) fromA:

if Σ′ ⊆ 𝑈 then
let 𝑈 ← 𝑈 \ Σ′

let Σ ← Σ ‖ Σ′

When receiving amessage (ADVAnCE,ψ, Σ′) fromA:

if 𝑀(ψ) ≺ Σ′ ≺ Σ then
let𝑀(ψ) ← Σ′.

Helper procedures:

procedure liveness
send rEAD to Gclock and receive the reply t
if ∃(tx, t′) ∈ 𝑈 : |t − t′| > δ then return ⊥
else if ∃(tx, t′) ∈ Σ: |t − t′| > δ ∧ ∃ψ ∈ H: (tx, t′) ∉ 𝑀(ψ) then return ⊥
else return ⊤

2.4.3.3 The Nakamoto Ledger

The basic functionality of this ledger allows the submission of transactions and
retrieving each of the following:
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• A confirmed prefix of the ledger state.

• A “projection” of the ledger state – that is, what the local state will ap-
proach, if there is no chain reorganisation.

• The confirmed “leader state”, which models the mechanism used for the
SRS generation.

When any of these values is queried, the functionality ensures that liveness
and chain quality properties still hold. The adversary further has the power to
instruct the creation of a new block, on behalf of any party, and to instruct any
party to adopt a different chain. In both cases, the functionality ensures that the
common prefix property is preserved. The adversary has full control over the
contents of both honest and adversarial blocks, as well as their order.

FunctionalityFNakLedger

A ledger following a Nakamoto-style consensus, with each party having a projected
chain, a prefix ofwhich is common to all parties. Commonprefix, chain quality and
chain growth are guaranteed.

State variables and initialisation values:

Variable Description
Π ≔ ψ ↦ ε Mapping of parties to projected ledger states

𝑇 ≔ ∅ Multiset of submitted transactions
hon ≔ ∅ Mapping of block ids 1 if they are honest, or 0

When receiving amessage (SUBmIT, tx) from a party ψ:

send rEAD to Gclock and receive the reply t
let 𝑇 ← 𝑇 ∪ {(tx, t)}
queryAwith (TrAnSACTIOn, tx, t)

When receiving amessagerEAD from a party ψ:

assert liveness(ψ) ∧ chainQuality(ψ)
returnmap(proj1, txs(Π(ψ)⌈k))

When receiving amessage PrOJECTIOn from a party ψ:

assert liveness(ψ) ∧ chainQuality(ψ)
returnmap(proj1, txs(Π(ψ)))

When receiving amessage LEADEr-STATE from a party ψ:

assert liveness(ψ) ∧ chainQuality(ψ)
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let a⃗ ← map(λ(⋅, a, ⋅, t): (a, t), Π(ψ)⌈k)
return foldl(Apply, ∅, a⃗)

When receiving amessage (EXTEnD,ψ,𝐵, t, a) fromA:

send rEAD to Gclock and receive the reply t′

let id ∗ {0, 1}κ
if ψ ∈ H then

let a⃗ ← map(λ(⋅, a, ⋅, t): (a, t), Π(ψ))
let σ ← foldl(Apply, ∅, a⃗)
let a ∗ Gen(σ, t′)
let t ← t′ let hon(id) ← 1

else
let hon(id) ← 0
if t′ < t then let t ← t′

else if ∃t″: (⋅, ⋅, ⋅, t″) = last(Π(ψ)) ∧ t″ > t then let t ← t″

letΠ(ψ) ← Π(ψ) ‖ (𝐵, a, id, t)
assert∀ψ′ ∈ P : Π(ψ)⌈k ≺ Π(ψ′)
return (𝐵, a, id, t)

When receiving amessage (ADVAnCE,ψ, Σ′) fromA:

assert ∃ψ′ ∈ P : Σ′ ≺ Π(ψ′)
assert∀ψ′ ∈ P : Σ′⌈k ≺ Π(ψ′) ∧ Π(ψ′)⌈k ≺ Σ′

letΠ(ψ) ← Σ′

Helper procedures:

function txs(Πψ)
let 𝐵 ← map(proj1, Πψ)
return concat(𝐵)

procedure liveness(ψ)
send rEAD to Gclock and receive the reply t
if ∃t0 < t: |[ tb ∣ (⋅, ⋅, ⋅, tb) ∈ Π(ψ), t0 − s ≤ tb < t0 ]| < γ ∧ t0 − s ≥ 0 then

return ⊥
return∀(tx, t′) ∈ 𝑇 : t′ + ⌈(l + k)γ−1⌉s > t ∨ (tx, t′) ∈ txs(Π(ψ)⌈k)

procedure chainQuality(ψ)
let i⃗d ← map(proj3, Π(ψ)⌈k)
return∀i ∈ ℤ|a⃗|−l: (∑j∈ℤl

ids(i⃗di+j)) ≥ μl
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2.4.3.4 Commutativity of Ledger Realisations

It is of note that since the ledger exists in both the ideal and realworld,wewould
ideally wish to be able to utilise the stronger δ-delay ledger (and others) in the
ideal world as well. This is not trivial, however – the UC proof presented in this
paper holds for the simple ledger, and while the transitivity and composability
ofUCproofs implies that the simple ledger canbe replacedby the stronger ledger
in the real world, this is not the only goal.

In order to enable ideal-world replacement, we consider when UC replace-
ments are commutative. Specifically, consider we have four functionalities, A,
B, C, and D, such that: a) A and B both have C as a global functionality, b) A is
UC-emulated byBwith the simulator SB, and c) C is UC-emulated byDwith the
simulator SD. Observe that this is a generalisation of our situation, whereA is
FΔ,Λ
SC , B is KACHInA, C is GSimpleLedger, andD is some other ledger GL.
When can we conclude that A is still UC-emulated by B even if the global

functionality is replaced by D in both worlds? That is, when can we perform
the inner UC-replacement first and still be able to perform the outer one?

Theorem 2.3. GivenA, B, C ,D, SB , SC as defined above, if SB forwards all adversarial
queries to C unchanged and makes no queries to C , then A is UC-emulated by B with the
global functionalityD in place of C .

Proof. We will provide this proof largely visually. The environment has a num-
ber of actions it can perform in any given world, in tandem with the dummy
adversary. Wewill represent these as unconnectedwires in a circuit representa-
tion of the differentUC functionalities. Eachwire is coloured in accordancewith
its purpose; these colours serve only to differentiate the wires. We visualise the
preconditions of Theorem2.3 inFigure 2.1 andFigure 2.2. This crucially includes
the precondition thatSB forwards adversarial queries to C, which is represented
equivalently by these queries beingmade directly instead.

SB A C B C≈

Figure 2.1: The first part of the precondition: B UC-emulatesA.

By theUCemulation theorem, for all environments, executionswith the sim-
ulator and the ideal-world protocol are equivalent to executions with the real-
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SD C D≈

Figure 2.2: The second part of the precondition: D UC-emulates C.

world protocol. Due to the all-quantification of the environment, we can replace
any part of a circuit diagram which matches exactly one of the two sides of the
equivalencewith the other – this is the foundationof the compositionality inUC.

We first make use of this in the non-standard direction, of making our
ideal-world protocol more abstract. Specifically, replace the right-hand side of
Figure 2.2 with the left. We start similarly to the left-hand side of Figure 2.1,
however using D instead of C. Visually, Figure 2.3 demonstrates the result,
which includes two independent simulators.

SB A D SB A C SD≈

Figure 2.3: Visual equivalence for idealising the sub-protocolD.

Fromhere, we can realise both the ideal-world functionalities, provided it is
in the correct order: Wemust first realiseA, as it relies on the presence of C. We
can directly apply the equivalence of Figure 2.1, as can be seen in Figure 2.4.

SB A C SD B C SD≈

Figure 2.4: Visual equivalence for substituting themain protocol B.

Finally, nothingstands in thewayof realisingCwithD, using theequivalence
of Figure 2.2 again, this time in themore typical direction. As a result, we get in
Figure 2.5 the final step, leading us to the intended equivalence and proving the
related UC-emulation statement.

B C SD B D≈

Figure 2.5: Visual equivalence for re-substitutingD.
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2.4.4 Ouroboros and Proof-of-Stake

As the theory of proof-of-work quickly gave rise to a practice of expensive, pur-
pose built machines dedicated only to “useless” work (not fully useless, but with
the purpose only to establish a distribution of power), the question quickly be-
came apparent as to whether this wastefulness was necessary. Proof-of-stake
was initially proposed as PPCoin [KN12], which later evolved into the Peercoin
cryptocurrency. As with Bitcoin, the early designs’ implications were poorly
understood, and initially therewasagreatdeal of skepticismthatproof-of-stake
was possible to do securely.

In the years since, a great deal of research on proof-of-stake has been car-
riedout. Twomainstreamsof securelyperformingproof-of-stakehaveemerged
from this: First, “Nakamoto-style” proofs of stake, where a randomised process
determineswhichuserwill be able to create blocks andallows this user to extend
a chain, and second, Byzantine fault-tolerant (BFT)-style ledgers, where a ran-
domisedprocesselectsa representative committeeofusers,whoperformatradi-
tional BFT consensus protocol to decide on the order of transactions. Examples
of the former are “ad-hoc” constructions such as Peercoin and the Ouroboros
family of protocols, and examples of the latter are Snow White [DPS19] and Al-
gorand [GHM+17]. This thesis will focus on the Ouroboros family specifically, as
Chapter 5 focuses on implementing a privacy-preserving variant of Ouroboros.

TheOuroboros familyofproof-of-stake. TheOuroboros family of proof-of-
stake protocols consists of the original proof-of-stake design, named just Ouro-
boros [KRDO17], and various incremental improvements, of which Ouroboros
Praos [DGKR18] andOuroborosGenesis [BGK+18] are relevant to this thesis. This
basic design of Ouroboros divides time into lengthy periods across which stake
is considered (mostly) stable, called epochs, which is subdivided into short peri-
ods representing network synchronisation time, called slots. At the start of each
epoch, the distribution of users’ stake at a predefinedpoint during (but not at the
end of!) the previous epoch is taken as the distribution according to which new
block creators are to be selected.

Choosing a point not at the end of the epoch mitigates an attack known as
grinding, where an adversary repeatedly sends funds to themselves, or regen-
erates a public key, until they get one which is eligible to create a block [Jut12].
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Separately, during the epoch a randomness generation process takes place, pro-
ducing the randomness used to sample from this distribution. While the details
of the randomness generation and selectionprocess differ, the result is that each
slot is assigned a user who is permitted to create a block at this time in the origi-
nal Ouroboros protocol, with Praos andGenesis differing only in that a slotmay
havemultiple or no eligible block creators (or “leaders”).

The original Ouroboros [KRDO17] design used secure multi-party computa-
tion [GMW87, CLOS02] to compute randomness at the end of each epoch. This
randomness was completely unbiased and is then used to sample one leader
for each slot in the next epoch. The cost of the multi-party computation was
a limiting factor in this design and the main motivation behind the changes in
OuroborosPraos [DGKR18]. Instead, this reliedoneachblockcreator embedding
in the block a predetermined random value, dependant on their secret key, the
slot number, and the epoch randomness. This is achieved using the primitive
of Verifiable Random Functions (VRFs), which allow other users to verify that the
randomness is indeed associated with the correct input and secret key.

At the end of the epoch, randomness provided by the blocks of this epoch is
aggregated, up to a point before end of the epoch to again protect from grinding.
Aprobability analysis shows that this is equivalent toa “clean” sourceof random-
ness as in Ouroboros, which the adversary has the opportunity to reset a fixed
number of times: The adversary can roll the dice again a few times, for instance
by withholding its own contribution to the randomness. This influence gives it
negligible impact over the distribution of blocks in the next epoch however, not
compromising overall security.

In addition to the changes to randomness selection, Praoshas amodifiedpro-
cess for selecting slot leaders: Instead of publicly sampling a leader for each slot,
Praos relies on a process more similar to the probabilistic self-election of proof-
of-work. The VRF primitive is also used (in a separate instance) to determine if
a user is eligible for creating a block in a specific slot. Each slot, a user evaluates
the VRF given the epoch randomness and slot number. If the output value is
lower than a threshold which depends on both a difficulty parameter and the
proportion of stake the user holds, they are eligible to create the block, with the
VRFoutputauthenticating their right to this. Inparticular this approachenables
moving the networkmodel froma synchronous one to being semi-synchronous,
the difference of which will be discussed in Subsection 2.4.5.
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Ouroboros Genesis [BGK+18] moves from the property-based results of the
original Ouroboros and Praos to simulation-based results in the UC framework.
In addition to this change, it addresses an issue inproof-of-stake for users newly
joining the protocol: Given only the initial distribution of stake, it is possible to
create believable, yet false histories, by including only transactions in an alter-
nate history which transfer funds to the adversary. This attack, known as stake
bleeding [GKR18], or a long range attack, requires that participants are fixed and
active in many proof-of-stake protocols, including Ouroboros and Ouroboros
Praos. Ouroboros Genesis addresses this deficit by changing the conditions un-
derwhich new chains are adopted: Rather than only adopting the longest chain,
OuroborosGenesis requires theadopted chain tobe sufficiently active throughout
its history. Specifically, a chain which grows faster at the point of divergence is pre-
ferred over a slower growing chain. Thismakes stake bleeding attacks infeasible,
as the fork necessarily takes place at a point where the adversary has aminority
of stake.

Forkable strings. The core of the security proof of each of the Ouroboros pro-
tocols is a stochastic analysis of randomly distributed strings of selected leaders:
In Ouroboros, these strings are binary, with ones representing adversarial slots
and zeros honest slots, sampled from independant Bernoulli distributions, bi-
ased towards honest parties. In Ouroboros Praos and Genesis, asmultiple or no
user may be elected to any slot, the additional symbol ⊥ is introduced to denote
slots without a leader, and slots withmultiple leaders are treated as adversarial.
The forkable strings theorem is restatedhere,with the following caveats: div0(w)
is not formally presented, though it can informally be thought of as the distance
to the latest common ancestor of the longest possible fork. Further, the notation
is asymptotic, using exp and Ω notations. Informally, it becomes exponentially
unlikely for a fork longer than k to be possible, as the length of the string grows.

Lemma 2.1 (Theorem 3 of [DGKR18]). Let ℓ, k ∈ ℕ, and ε ∈ (0, 1). Let w ∈ {0, 1}ℓ
be sampled from ℓ independant Bernoulli trials, where Pr[wi = 1] = (1 − ε)/2. The
Pr[div0(w) ≥ k] ≤ exp(ln ℓ −Ω(k)).

Lemma 2.1 is combined with a proof that the asynchronous strings (i.e. in
{0, 1,⊥}∗) can be safely reduced to synchronous ones, accounting for a maximal
network delay Δ.
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2.4.5 Assumptions: Network andHonesty

Some of the cryptographic assumptions required for distributed ledgers were
alreadybrieflycovered inSection2.2. Twoadditional assumptionsarenecessary
however: First, a broadcast network is needed, both to broadcast transactions
and to broadcast blocks in order to perform consensus (this is assuming a
Nakamoto-style consensus mechanism – BFT-style algorithms may addition-
ally require point-to-point channels between the committeemembers). Second,
the assumption of honest majority of either computational power, or stake
needs tobemade formally. Inparticular in the composable settingwith adaptive
security, this restricts how the adversary can corrupt. This is primarily relevant
in the proof-of-stake case, as in proof-of-work corrupting a party does not
necessarily inherit their computational power.

Modelling the network. The most basic form of broadcast network delivers
any message to all participants immediately. This is clearly too strong a notion:
Real networks have delays, and anetwork this powerful already almost achieves
consensus: Everyone simply observes the messages in order, and treats this as
final (this assumes no messages are sent simultaneously, a possibility often de-
liberately unsupported by cryptographic frameworks to forcemodelling tempo-
ral uncertainty as adversarial influence). The next relaxation of broadcast is to
assume delivery after some fixed time, or after a round. Cryptography tends to
discretise time, with the (assumed) delay of communication often dictating the
units. This setting is often referred to as synchronous, as every user still receives a
message at the same time, although there is not necessarily a guarantee of order
for messages submitted in the same round. Ouroboros [KRDO17] was initially
proven in the synchronous setting.

The synchronous setting has the disadvantage of relying on the delay to be
an upper bound. If at any point a message takes longer than this delay to deliver,
the security proof is invalidated. This is in contentionwith a desire for protocols,
and consensus in particular, to be as responsive as possible, and therefore for the
network delay to be set as low as possible. In the real world, network delays are
likely tobedistributedaccording toanexponential distribution–packetshaving
aprobabilityof successful transmissiononeachattempt,with repeatedattempts
on timeout. It is tempting to set the network delay to the median latency and
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throughput, which often assumes no retransmissions.
While a network-level adversary could do worse, even simple network-level

attacks such as denial-of-service can vastly increase network delays, making it
paramount that they are considered. A fully asynchronous network is not an
option either, as the delay cannot be arbitrary for consensus to be achieved. In-
stead, the semi-synchronous setting used in Ouroboros Praos [DGKR18] does have
a maximum network delay, but also divides time into smaller units than this,
and allows messages to be delivered in a time window between when they are
sent and the maximum delay. This allows protocols which operate optimisti-
cally, moving faster under good network conditions, but which still have a hard
fallback when network delays are increased.

A further power which can be afforded to the adversary is selectively broad-
castingmessages, or delayingmessages partially. Also referred to asmulticasting,
this allows the adversary to present different chains to different users, an attack
which assumes a fair amount of network control or good timing. Further, as
privacy is the focus of this thesis it is important to stress that anything broadcast
over a network will be seen by a powerful adversary immediately. Although it
makes no difference for some of the results of this thesis, Chapter 6 assumes
sender anonymity of the transaction broadcast, that is, that a transaction cannot
be linked to the user that posted it. This is a powerful requirement, however
anonymity is unachievable without it on distributed ledgers. In practice, it can
be approximated through techniques such as onion routing [CL05], or mix net-
works [JJR02], although the former is vulnerable to powerful adversaries and
the latter is costly to operate at scale. Formally, we use the following UC hybrid
functionality:

FunctionalityFNet

Thesender-anonymousmulticastnetworkFNet permits anyparty tobroadcastmes-
sages to any other. These messages will be delivered within a maximum delay of δ,
measured through Gclock. The adversary can deliver messages faster, and can send
messages to individual parties. Messages are erased after they are read.

State variables and initialisation values:

Variable Description
𝑀 ≔ λψ.ε Mapping of parties tomessages
𝑃 ≔ λψ.∅ Mapping of parties tomessages pending delivery
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When receiving amessage (BCAST,m) from a party ψ:

queryAwith (BCAST,m)
send rEAD to Gclock and receive the reply t
let 𝑃(ψ) ← 𝑃(ψ) ∪ {(m, t)}
return ⊤

When receiving amessagerEAD from a party ψ:

send rEAD to Gclock and receive the reply t
for (m, t′) in 𝑃(ψ) do

if t′ + δ ≤ t then abort
let res ← 𝑀(ψ);𝑀(ψ) ← ε
return res

When receiving amessage (TArGET,ψ,m) fromA:

if ∃t: (m, t) ∈ 𝑃(ψ) then
let 𝑃(ψ) ← 𝑃(ψ) \ {(m, t)}

let𝑀(ψ) ← 𝑀(ψ) ‖ m
return ⊤

Requiring honestmajority. How to formally require honestmajority differs
between proof-of-stake and proof-of-work protocols. In (random oracle based)
proof-of-work, a comparatively straightforward approachmay be adopted: The
randomoracle is specified to restrict the number of queries each party canmake
in a single round, and further limits the adversary to performing fewer queries
than honest parties. Proof-of-stake is more complex, as it is related to the cor-
ruptionmodel. Once the adversary adaptively corrupts any party, it obtains this
parties funds (more precisely, it obtains the parties state and identity, which is
sufficient to control the funds). The adversary can attempt to corrupt a party
even if this results in it violating the honest majority assumption.

The simplest attempt to circumvent thiswould be to forbid such corruptions,
however as corruptions are a part of the fundamental securitymodel in the uni-
versal composition framework14, Ouroboros Genesis [BGK+18] instead permit-
ted them, but ensured that the security statement is trivial if honest majority is
violated. Specifically, the assumption is encoded as a wrapper around the VRF
functionality and the network. The wrapper observes network traffic to con-

14Rather: Theywereat the timeOuroborosGenesiswaswritten. NewerversionofUCaremore
flexible in their corruptionmodels.
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clude if honestmajority is violated, and if it is, refuses to carry out any adversar-
ial evaluations of theVRF.While theVRF functionality itself can be constructed,
using thewrapped variant instead is done by assumption – the assumption that
this violation never occurs. If it does, the adversary effectively shoots them-
selves in the foot, as its ability to create block at all is revoked. A similar ap-
proach is taken in Chapter 5, although the wrapper applies to performing zero-
knowledge proofs and retrieves the stake distribution by observing the inputs to
these proofs.

2.4.6 Limitations

When discussing distributed ledgers and their usage, it is important to bear in
mind that they are not a universal solution. Two major issues limit their ap-
plication, the first of which being a lack of privacy. As the topic of this thesis,
this should come as little surprise, but it is important to note that the lack of
privacy is (to some level) inherent in the idea of a distributed ledger as a form of
consensus among parties. Users must know the data they are agreeing on, even
if they need not know its meaning. This enables some usage of cryptography to
hidemeaning, but only in so far as it is isolated and does not affect the rest of the
system. The trade-offsherearediscussed indetail inChapter6,which focuseson
providing a reasonable basis for privacy in the general case of smart contracts.

The second limitation is not the focus of this thesis, but is important to
understand as it indicates the direction of this field of study: Distributed ledgers
are limited in their scalability. Because of the setting of mutual distrust, greater
participation in the consensus mechanism does not lead to less computational
burden on each participant, but if anything to more, as each user must in-
teract with more people. Given more users means more information flow-
ing into a distributed ledger, the effort required to maintain this ledger rises
linearly for each participant as it grows. During its peak of interest in late
2017, costs of transactions rose dramatically, and the latency of using many
blockchains slowed to a crawl due to limited transaction throughput. A lot
of research has been done over the years to increase throughput, including
Bitcoin-NG [EGSvR16] and a variant of Ouroboros [FGKR20]. Proposals were
made to split networks [WSNH19], although this dramatically weakens the
security of each part.
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To bypass this limitation, layer 2 solutions [DFH18, KL20] optimistically
carry out computation off-chain. This must be something which can safely
be detached from the primary, on-chain consensus, such as exchanging funds
between each other. Typically this involves locking the on-chain state in some
way, for instance setting aside a fixed amount of funds for trading off-chain in a
payments channel. Only in the case that the userswish to end their relationship,
either agreeably or in a dispute, is the distributed ledger invoked again and
provided with evidence of what happened.

If distributed ledgers become a commonly used tool, their fate is likely
to become a decentralised court – mediating disputes, rather than managing
micropayments. In this context privacy becomes of even greater importance:
What happens off-chain is often protected by partial trust, and can more easily
be subjected to powerful cryptography, such as securemulti-party computation.
The on-chain resolution is the place where care needs to be taken, and in order
for this to be possible in the broadest cases, a good foundation for privacy is
needed.

2.5 Zero-Knowledge

Zero-knowledge proofs15 are an advanced and powerful cryptographic primi-
tivewithmanyapplications, specifically to ensuringprivacy. The core idea is dif-
ficult to convey to a layperson without it sounding like magic: Zero-knowledge
proofs allow one person to convince another that a statement is true, without
revealing any further information than the fact that it is true. This is counter-
intuitive as humans have grown used to demonstrating truth through trans-
parency: We give the tax-man our records and their consistency confirms our
workings. This is epitomised in the infamous argument “If you have nothing to
hide, you have nothing to fear”, a statementwhich presupposes a proof of innocence
cannot coexist with privacy.

The idea of zero-knowledge also sounds like magic as its limitations are not
well-defined. Can a zero-knowledge proof convince someone of a person’s trust-
worthiness, ordesire todogood? Clearlynot, as the terms themselvesare subjec-

15Or zero-knowledge arguments, as they are sometimes referred to. The term argument is
used for proofs whose soundness relies on computational assumptions, distinguishing them
frommathematical, or perfectly correct, proofs.
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tive, but ina similarvein theycannotprovewho is the legitimateownerofapiece
of land, or that a parcel is within its weight limits. Zero-knowledge proofs are
mathematical objects and can reason only aboutmathematics. Specifically, they
can make statements about the properties of information. A zero-knowledge
proof may prove that a prime exists between 15 and 20 (in this case, it should
not be too hard to find), or that a message, when decrypted, contains a specific
phrase.

A proof of knowledge additionally demonstrates that the person doing the
proving knows the information which a property is asserted about. They should
know of the primality of either 17 or 19. They should know the decrypted mes-
sage – and the key, to demonstrate how it relates to the ciphertext.

Subsection 2.5.1 introduces themathematics behind zero-knowledge proofs,
and the common properties they satisfy. The main theoretical object used in
this thesis, the non-interactive zero-knowledge proof (or NIZK), is introduced
in Subsection 2.5.2, with theirmost interesting instantiation, the SNARK, being
introduced in Subsection 2.5.3. Finally, the universality and updateability fea-
tures of a select set of SNARKs are discussed in Subsection 2.5.4.

2.5.1 Definition and Sigma Protocols

The basis of a zero-knowledge proof is a relationR, which encodes the informa-
tion the proof wishes to convey. For instance, in our bounded prime example,
the following relation formally describes the problem:

((a, b), p) ∈ R ⟺ a < p < b ∧ p is prime

The left-hand side of zero-knowledge relations can be considered public, while
the right-hand side shouldhaveno information revealed about it. IfAlice proves
to Bob that ∃p: ((15, 20), p) ∈ R, Bob should not be able to determine if Alice was
using p = 17 or p = 19, and for other problems, should not be able to determine
any satisfying value.

The left-hand side of a relation is often denoted by x and referred to as the
statement. Correspondingly, the right-hand side is denoted by w and referred
to as the witness. A specific protocol for zero-knowledge proofs applies only for
specific types of relationsR, althoughprotocols forNP-complete relations allow
proving solutions to all problems expressible in NP. Given efficient primality
tests, the simplistic primality relation above can also be realised.
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Prover Verifier

r ∗ 𝔽∗q (commitment)
t ≔ gr

c ∗ 𝔽∗q

(challenge)
c

(response)
s ≔ r + cx output gs = thc

Figure 2.6: TheSchnorrproof of knowledgeof discrete logarithmsigmaprotocol.

Many zero-knowledge proofs rely on an interactive proof approach of com-
mitment challenge and response. In the first step, the prover commits to an
input, either the witness, or randomness, and transmits this to the verifier. The
verifier selects a randomchallenge and sends this to theprover. Theprovermust
then generate a response depending on both the challenge and thewitness – one
which must convince the verifier that the response could not have been gener-
ated without it satisfying the relation.

The most well-known such protocol (the structure of which is also collec-
tively called a Σ-protocol, or sigma protocol, due to its three-round structure
matching the strokes of the Greek letter), is a proof of knowledge of a discrete
logarithm from Schnorr [Sch90], which serves as a good example. In this case,
for a group𝔾 of prime order qwith generator g, the relation is:

(h, x) ∈ R ⟺ h = gx.

Using 𝔽∗q for the multiplicative field modulo q, i.e. ℤq \ {0}, Schnorr’s protocol is
described in Figure 2.6. This protocol achieves three properties crucial for zero-
knowledge proofs: Correctness, soundness, and zero-knowledge, which are
sketched informally here (as this thesiswill rely on composable zero-knowledge
definitions, rather than these properties directly).

Anoteonrewinding. Schnorr’s security is commonly expressedusing rewind-
ing –where the proof itself involves (as the name suggests) rewinding the proto-
col execution and observing an alternate execution with different randomness
from the same point on. Although this approach is common for formalising
sigma protocols, we explicitly avoid it in this thesis, in favour of white-box,
straightline extraction. This requires additional assumptions, suchas theAlgebraic
Group Model [FKL18], a powerful knowledge assumption. The primary reason
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for this is this thesis’ use of compositional security, which does not work well
with rewinding proof techniques.

• Correctness. The correctness property states that with overwhelming
probability, an honest prover will convince an honest verifier. Note that
as gr+cx = gr(gx)c = grhc, Schnorr’s protocol is perfectly correct.

• Soundness16. The soundness property requires that a prover who does
not know the witness cannot convince the verifier. In Schnorr’s proof, for
gs = grhc to hold, s = r + cx must also hold. A prover able to generate such
an s can also solve for x, thereby “knowing” it.

• Zero-knowledge. The zero-knowledge property states that the verifier
learns no information about the witness, except that it satisfies the rela-
tion. In the case of sigma protocols, the more relaxed honest-verifier zero-
knowledge property is often used, which requires that the verifier adheres
to the protocol (in the case of Schnorr, c must be distributed according to
𝔽∗q). In practice, this is demonstratedusing a simulator,whichmust be able
to generate a transcript of interactions indistinguishable from a real one,
given the statement x. Given that the simulator can sample c honestly, it
can sample s ∗ 𝔽∗q, and compute t ≔ gsh−c. This produces a matching
transcript without knowing the discrete logarithm of h.

2.5.2 Non-Interactive Zero-Knowledge

The interactive nature of sigma protocols does not suit the nature of distributed-
ledger protocols, in which transactions are typically considered fire-and-forget.
If the validity ofAlice’s transaction required an interactive querywithAlice, not
only does she need to remain online in case further people attempt to verify
it, but worse she will need to repeat proving to each of them. As distributed
ledgers rely on many verifiers for their security, this is impractical, even if one
ignores the question of how to handle the potential disagreement if some users
succeed in verification, but others fail to verify, for instance due to the prover
being unavailable.

16In a rewinding based setting, special soundness typically states that the transcripts of two
accepting runs, sharing the same initial message, can be combined to extract a witness.
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To solve this issue, the interactive protocol can be constrained to a single
round: The prover sends a single message to the verifier, who then either
accepts this proof, or rejects it. Impossibility results [GO94] show that this
type of protocol requires hybrid assumptions – either a common reference
string, or a random oracle. Given these, constructing a non-interactive form
of zero-knowledge is possible. This non-interactive zero-knowledge (or NIZK)
no longer benefits from a distinction between prover and verifier – key is
the content of the message that is sent, which is often referred to as a proof
(although argument is more appropriate) and is denoted by π throughout this
document. A NIZK consists of two algorithms, which have access to the same
hybrid assumption:

• π ∗ NIZKR.Prove(x,w) – Produces a valid proof π if and only if (x,w) ∈ R.

• b ← NIZKR.Verify(x, π) –Outputs 1 if π is honestly generated andmay addi-
tionally do so only if knowledge of w can be extracted from the adversary
such that (x,w) ∈ R. In all other cases, output 0.

A fairly simple trick, known as the Fiat-Shamir transform (or heuristic17), trans-
forms a sigma protocol into a non-interactive proof: Instead of asking the ver-
ifier for a random challenge, the random oracle is queried. As this challenge is
equallyunpredictable toa challengecoming fromtheverifier, it ispossible to roll
all three phases into one. Even outside of sigma protocols, the general approach
of transforming an interactive, challenge-based protocol into a non-interactive
one through use of random oracles is commonly used, forming one of the basis
of SNARKs, which will be discussed in Subsection 2.5.3.

Black-box vs white-box extraction. The Fiat-Shamir transform is secure,
however it often relies on white-box extraction assumptions or rewinding.
Consider the example Schnorr protocol: The extraction is not black-box, as to
compute x, it is necessary not only to know the parts s and c directly embedded
in the proof, but it is also necessary to know r, which is internal to the prover
and never broadcast.

The primary issue with this is that, in order to retrieve the witness for an ad-
versary’s proof, it is necessary to know everything about the adversary. In compo-

17It is heuristic when used with a hash function, while being statistically secure using a ran-
dom oracle.

Chapter 2. Background 52



sition frameworks, this is too powerful a statement, as the “adversary” is the dis-
tinguishing environment, which also controls honest users’ inputs. Chapter 3
discusses how this issue with white-box extraction can be resolved, however it
is worth discussing the alternative.

Instead of white-box extraction, composition is possible when the extrac-
tion is black-box, that is, when it does not require knowledge of the internals of
the prover. Fischlin’s transform [Fis05] provides a generic replacement for the
Fiat-Shamir transform, which in the random oracle model allows for black-box
extraction. It cleverly shifts extraction toward the random oracle, by requiring
n multiple independent proofs, and for each of these m multiple challenges to
be answered. Of the answered challenges, the full sigma protocol transcript is
again passed into the random oracle, and the smallest response’s transcript is
chosen to represent this one of the n proofs. This must fall under a threshold –
practically requiring at least some of them queries are actuallymade, with the n
independent proofs preventing luck being the reason for passing the threshold
in all of them. The upshot is that at least two transcripts for the same initial
commitment will have been queried on the random oracle. These transcripts
can be extracted and correlated to find the witness.

Composable Definition. Throughout this thesis, the below composable def-
inition for non-interactive zero-knowledge will be used. It permits proof-
malleability, that is, for a valid proof to be changed into a different proof of the
same statement, and for ease of extraction, trackswitnesses. Proof-malleability
is required for several real-world constructions, and does not impede the proto-
cols presented in this thesis. It also tracks disproven statements – when it marks
a proof as false, it will not later change this assessment.

FunctionalityFR
NIZK

The (proof-malleable) non-interactive zero-knowledge functionality FR
NIZK allows

proving of statements in an NP relationR.
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State variables and initialisation values:

Variable Description
𝑊 ≔ ∅ Mapping of statement/proof pairs to witnesses
Π ≔ ∅ Set of statement/proof pairs
Π ≔ ∅ Set of known invalid statement/proof pairs

When receiving amessage (PrOVE, x,w) from a party ψ:

if (x,w) ∉ R then
return ⊥

queryAwith (PrOVE, x) and receive the reply π,
satisfying π ≠ ⊥ ∧ (x, π) ∉ Π ∧ (⋅, π) ∉ Π, else sampling from {0, 1}κ

letΠ ← Π ∪ {(x, π)};𝑊(x, π) ← w
return π

When receiving amessage (VErIFY, x, π) from a party ψ:

if (x, π) ∉ Π ∪ Π ∧ π ≠ ⊥ then
queryAwith (VErIFY, x, π) and receive the reply 𝑅
if (x, π) ∉ Π ∪ Π then

if ∃w.𝑅 = (WITnESS,w) ∧ (x,w) ∈ R then
letΠ ← Π ∪ (x, π);𝑊(x, π) ← w

else
letΠ ← Π ∪ (x, π)

return (x, π) ∈ Π

When receiving amessage (mAUL, x, π) fromA:

if ∃π′: (x, π′) ∈ Π ∧ (x, π) ∉ Π then
letΠ ← Π ∪ {(x, π)}

2.5.3 SNARKs

Traditionally, both interactive and non-interactive zero-knowledge protocols
are quite costly on both the prover and verifier side, when compared with the
cost of a membership test in the relation R. This is especially true as most
problems of interest first need to be massaged into an appropriate, typically
NP-complete, relation. For distributed ledgers, verification cost dictates the
efficiency of the entire chain, making it a far more limiting factor than in other
applications.

Furthermore, non-interactive proofs need to be stored in distributed pro-
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tocols, making their brevity paramount – a 100MiB proof may be acceptable
in many cases, but attached to each transaction on a distributed ledger, will
cause the system to fail. Within the last decade, a new wave of research into
succinct zero-knowledge [Gro10, Lip12,GGPR13,PHGR13,Gro16,GM17,GKM+18,
MBKM19, CHM+19, GWC19, CHM+20] brought the technology into the realm of
feasibility for distributed ledgers. zk-SNARKs, standing for zero-knowledge
Succinct Non-interactive ARguments of Knowledge, typically have proof sizes
of at most a few kilobytes and verify in a few milliseconds (for typical circuits).
This isveryclose to theperformancecharacteristicsofdigital signatures,making
them an effective drop-in replacement.

The structure of a SNARK. SNARKs often share many of the same compo-
nents, although each part has seen optimisation in subsequent works. This
section gives a loose intuition for the Sonic [MBKM19] zk-SNARK, although
the same ideas apply more broadly. Firstly, the zero-knowledge relation is one
of arithmetic circuit satisfiability. A fixed number of variables are constrained
through addition and multiplication gates with each other. Some of these
variables are declared as public inputs. The arithmetic circuit (and notably,
the values assigned to it) is then transformed into a corresponding constraint
between polynomials. One of these polynomials is publicly computable, and
represents the public inputs and (potentially) the structure of the constraints
itself.

Many SNARKs begin as interactive protocols, to which the Fiat-Shamir-like
transform is applied. First, the prover commits to each of the relevant polyno-
mials, using a specialised cryptographic primitive. After the verifier provides
a random challenge, the polynomials are opened at this point. The verifier can
test that the public (also called target) polynomial relates to the openings in an
expected way – for instance, demonstrating that a polynomial is divisible by
it, if it can be multiplied with a third polynomial’s opening to reach the same
value. This relies on the Schwartz-Zippel lemma, which states evaluating any
two polynomials at randompoints over a domainmuch larger than their degree
dwill have a very small probability of resulting in equal outputs.

Circuit satisfiability and polynomials. Various zk-SNARKs differ slightly
in their circuit representation, depending on the details of the relation enforced
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between polynomials. As a point of commonality, they tend to be easily re-
ducible to the problem of arithmetic circuit satisfiability. An arithmetic circuit
over theprimefield𝔽p consists of anumberof variables v1,… , vn, andarithmetic
constraintsmodulo p between these, taking the form of va + vb = vc or va ⋅ vb = vc.
SNARKs differ in regard to how efficiently some of these constraints can be
represented – Pinocchio [PHGR13] can make use of linear combinations in mul-
tiplication constraints, effectivelymakingadditions “free”,whilePlonk [GWC19]
limits the number of constraints each variable can be used in.

An assignment satisfies the circuit if each of the addition and multiplication
constraints holds for the assignment. A subset of variables are usually marked
as public inputs; part of the statement in the relation. The circuit is then trans-
formed into an equivalent statement about relationships between polynomials.
For instance, to express a vector of constraints a ∘ b = c (i.e. ai ⋅ bi = ci for i ∈
1,… ,m), each of a, b, and c is expressed as a polynomial, with different powers
representing separate variables, such as:

A(x) ≔
m
∑
i=1

aixi

Then the constraint becomes A ∘ B = C, which by the Schwartz-Zippel lemma
can be efficiently checked by testing x ∗ 𝔽p;A(x) ⋅ B(x) = C(x). In order to hide
the structure of the polynomial, an additional random masking polynomial is
added, ensuring that all values appearing in the proof are uniformly distributed.

Polynomial commitments and reference strings. A key part of applying
the Schartz-Zippel lemma is the sequence of committing to the polynomial and
then having to reveal a randompoint of it. If the point is known beforehand, the
polynomial can be selected to give whichever value one wishes. This order of
messages is not always necessary: In Pinocchio [PHGR13], it is possible to send
the challenge first, provided it is not sent in cleartext. Instead of sending a chal-
lenge s ∈ 𝔽p, evaluations depending on s are sent, such as gs, gs2 etc. These evalua-
tionsare sufficient to construct anevaluationof apolynomial at s, however insuf-
ficient to determine s. Pinocchio evaluates a polynomial “in the exponent” of the
group generator at s (i.e., evaluates gp(s)). It then relies on a knowledge assump-
tion known as the Knowledge of Exponent Assumption (KEA) [Dam92, HT98] to
guarantee that this exponentially evaluated polynomial actually implies knowl-
edge – it could not have been created without knowing the polynomial itself.
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Sonic [MBKM19] has an adjusted form of this, based on [KZG10], which al-
lows it to evaluate polynomials not only on the challenge point s, but on any
point, which it later uses to evaluate at a Fiat-Shamir-style chosen point. The
general idea remains the same however – an evaluation of the polynomial at a
pre-determined (and secret!) point acts as a commitment to it. This crucially
means that the reference string, which provides different bases of s must be se-
curely generated, or the commitments do not possess their crucial property of
being binding.

2.5.4 Universality and Updateability

A recent family of zk-SNARKs, notably Sonic [MBKM19], and themore efficient
Marlin [CHM+20] andPlonk [GWC19]derived fromit, achieve twoverydesirable
propertieswhich this thesismakes direct use of: The universality and updatabil-
ity of their reference string. Although very different properties, they are related,
both being properties of the reference string. Universality roughly states that the
same SNARK can be efficiently adapted for anyNP relationR (within some size
bounds). This notablymeans that the reference stringmust be sharable between
different relations, a feature not present inmany zk-SNARKs.

Updatability is more straightforwardly attributable to the reference string,
although it also requires the proof system to be secure despite it. The idea is sim-
ply that any user can transform a reference string, producing a new one which
is “more secure”: The updated reference stringmust be secure if either the prior
one was, or the user updating it did so honestly.

Universal relations. Consider the Sonic relation as an example of a univer-
sal SNARK. The trick of it lies in the relation itself encoding information about
constraints, with the constrain information being embedded in the statement x.
While Sonic removes some of the overhead due to the increased statement size
through a “helped” mode, this is not of particular interest in this thesis. Ignor-
ing this aspect, the proof effectively permits constraining which variables are
subject to addition constraints and which are not.

Sonic has variables ai, bi, ci ∈ 𝔽p for i ∈ {1,… , n}, representedwith the vectors
a,b, c ∈ 𝔽np . The circuit is constrained through additional vectors uq,vq,wq ∈ 𝔽np ,
and the scalars kq ∈ 𝔽p for q ∈ {1,… ,𝑄}. 𝑄 represents the number of addition
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constraints,whichare typically sparse and compressed into a single polynomial.
The NP relationship Sonic produces proofs over is

a ∘ b = c

a ⋅ uq + b ⋅ vq + c ⋅wq = kq,

where ∘ denotes element-wise multiplication and ⋅ the dot-product. By using
values in {−1, 0, 1} for uq,i, vq,i, and wq,i values it is possible to control whether
they are constrained in addition or not. It also permits constraining individual
variables to be equal to others and equal to specific constants, allowing the state-
ment to be determined entirely through the choice of uq, vq,wq, and kq.

Updateable reference stings. A polynomial commitment scheme, used in
Sonic to commit to monomials, is the primary usage of the reference string.
While this thesis does not discuss polynomial commitments in depth, it relies
primarily on evaluating gp(x) and gαp(x) for a polynomial of degree d (potentially
including negative exponents) where α and x are (secret) trapdoor values of
the reference string. This is possible to construct from the coefficients given
values gxi and gαxi for all necessary values of d. Specifically, given the trapdoor
(α, x) ∗ 𝔽2p , the structure function

𝑆((α, x)) = ({gxi , hxi , hαxi}
d

i=−d , {g
αxi}

d

i=−d,i≠0)

is sufficient to construct the “in exponent” evaluations necessary for Sonic.
This reference string is universal, in the sense that it is possible to “multiply”

the trapdoor by a randomly sampledfield element, by exponentiating each com-
ponent of the reference string:

𝑆((αβ, xy)) = ({(gxi)
yi
, (hxi)

yi
, (hαxi)

βyi
}
d

i=−d
, {(gαxi)

βyi
}
d

i=−d,i≠0
)

This does not permit an adversary to remove entropy from the reference string,
as the adversary cannot find (α, x), but permits honest users to inject more en-
tropy. This is the focus of Chapter 4, where it is described more formally and
applied in practice.
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2.6 Smart Contracts

The basic premises of a distributed ledger is merely to agree on a sequence of
transactions, not to assign any meaning to these transactions. This is a useful
theoretical view, however in practice transactions are taxing on the network:
they must be replicated, distributed and stored (potentially forever!). This sug-
gests an immediate and very real danger of denial-of-service attacks. What is to
prevent a malicious user from flooding the network with useless transactions,
preventing it from processing anything useful?

To combat this, the practice of blockchains is different from the idealised
transaction-orderer, requiring not only transactions to adhere to specific for-
mats, but imposing a toll on network usage: Each transactionmust pay a fee for
inclusion. Denial-of-service is much less feasible as a result, however it relies
on being able to accurately asses howmuch strain each transaction takes on the
network. As the same currency which the transactions define operations over
pays for fees, testing if they are satisfied requires taking a step further and as-
signing meaning to each transaction, eventually boiling down to the following,
ostensibly simple, question: “Does the user making this transaction have the funds to
pay for its fees?”

Ensuring that transactions which cannot pay for their fees are rapidly dis-
missed is paramount to resisting denial of service attacks. Bitcoin [Nak08] relies
on short, quickly verifiable scripts as a result, written in a language so basic as to
lack loops or jump statements. As a result, the time it takes to run these scripts
is predictable ahead of time – at most as long as their size.

As different people began attempting to use Bitcoin for purposes which
did not fit into the limited expressiveness, new custom-built protocols, such
as NameCoin [KCE+15], a distributed domain name registration protocol, and
Bitmessage [War12], a ledger-based communications protocol, arose. These
used their own separate blockchain with modified semantics for transactions,
better suited for their purpose. An obvious problem with this approach is
that, even though the Bitcoin source code can be copied arbitrarily often, the
Bitcoin community of software developers and miners cannot, and hence such
systems are typically not sustainable. Smart contracts, originally posited as a
form of reactive computation [Sza97], were popularised by Ethereum [Woo14],
solving these problems by providing a uniform and standardised approach for
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deploying decentralised computation over the same back-end infrastructure.

2.6.1 Ethereum

Ethereum [Woo14] envisioned arbitrarily programmable semantics for transac-
tions. This bringswith it a few immediatequestions: Whogets to set the rules for
which interactions? How is it possible to prevent denial-of-service when each
individual transaction may invoke a large amount of computation (and due to
the halting problem, there is no way to determine if it is finite, let alone how
expensive the computation is). These problems were solved quite elegantly, a
testament to which is the continuing popularity and usage of Ethereum (this is
not to say Ethereumdoes not have flaws – considering off-chain computation as
“out-of-scope” being potentially the most serious of these, which will feature in
depth in Chapter 6).

The basic semantics of Ethereum. Ethereum has a basic currency transfer
system, not unlike Bitcoin as its basis. It differs slightly in that unlike Bitcoin,
Ethereum encourages the reuse of public keys, facilitating this and protecting
against replay attacks, by associating eachpublic keywith anonce. Transactions
must include the current nonce, ensuring a new transaction needs to be signed
every time. Although it is often cited as a major difference between Ethereum
and Bitcoin, the difference is rather subtle and the designs are in fact isomor-
phic [Zah18]. Morenotable isEthereumpermitting twoadditional typesof trans-
actions: Smart contract creations and smart contract invocations. In a smart
contract creation, a user submits a program, written in Ethereum’s native byte-
code language, which gets assigned a unique address. The submitting user pays
storage fees for the program and can submit any program they wish, without
restriction18. This contract can hold its own funds and in addition to its code,
can store additional data (the storage of which also requires payment).

The contract’s code only governs interactions users directly make with the
contract –when a user invokes it (with a transaction specifically for this purpose,
as mentioned above), they provide an input to the contract’s program, as well
as optionally providing it with funds. The contract’s program executes on this
input, as well as auxiliary information including information about the current

18In practice, contracts are restricted in size, although this can also be bypassed if necessary
by splitting a contract intomultiple parts.
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block, the address (public key) of the caller, and the funds provided to it. The con-
tract may also invoke other contracts and initiate funds transfers on its own be-
half (butnotonbehalf of its caller!). In someways the contract is anautonomous,
trusted third party, although it is limited in its agency.

Preventing denial-of-service through “gas”. The question remains how to
limit the impact of denial-of-service attacks. The first part of the solution lies
in Ethereum’s support for a basic transfer protocol – it is possible to, just as in
Bitcoin, quickly test that a userhas the funds topay for a transaction in this basic
system, even though managing funds of contracts can require more complex
computations. This leaves the question of how to accurately judge how much
a transaction should cost. As the halting problem hints at the impossibility of
this problem, Ethereum instead bypasses it: Instead of attempting to calculate
what a transaction should cost, it asks the creator of each transaction to give
theirownestimate. If auser cannot estimate it (for instance, due to it running too
long), the transaction would almost certainly be too expensive for the network
to execute as well. Further, there is no need to trust a user on their estimate: If
they claim a computation takes five steps to compute and it is not finished after
these, Ethereum simplymarks the transaction as failed. Crucially however, it is
still valid, in the sense that it is included in the blockchain – and its fees are taken.

The Ethereum Virtual Machine (EVM). Achieving consensus about the
execution of contracts is a subtle matter – and slight difference in the execution
semantics between different users can lead to disagreement and the divergence
of their state, breaking consensus. Seemingly minor differences, such as bugs
in the implementation of floating-point arithmetic, or undefined behaviour of
operations, can lead to a collapse of distributed consensus. It is primarily for
this reason that Ethereum adopted a virtual machine, designed specifically to
be well-defined in all corner cases (although it also benefited from providing
application-specific primitives, such as signature verification). Subsequent
smart contract systems have largely followed this approach, designing their
own atomic “virtual machine” languages with well-defined execution.

A high-level language, Solidity, was also designed to allow developers to
write smart contracts in a simpler manner (there are a few other languages tar-
geting theEVM,howeverSolidity is by far themostpopular). This is reminiscent
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of object-oriented programming, although it is more akin to amessage-passing
language, as “objects” represent actual semi-autonomous entities, rather than
being a tool for abstraction.

Off-chain execution and Web3. Ethereum’s vision involves a distributed
“evolution” of the world-wide web. As ameans toward this, its primarymode of
interactingwith smart contracts is via JavaScript, which is assumed to be able to
interact with a low-level Inter-Process Communication (IPC) socket to talk with
a local (or remote) Ethereum client. This JavaScript interface is called “Web3” as
a result of its ambitions – either optimistically, or arrogantly – depending on
your point of view.

While ideally this API would be limited to tying together HTML front-end
user interfaces with the underlying smart contract, in practice the JavaScript
portion of the programalso performspre-computations, and actsmore as a part
of the overall smart contract, rather than a front-end to it. A more holistic ap-
proach to on- and off-chain computation is part of some competing smart con-
tract designs, such as Plutus [CKM+19]. It mars the modular, interactive nature
of on-chain smart contracts, and aswill be discussed in Chapter 6, does not lend
itself for privacy-focused smart contract design as a result.

2.6.2 UTxO-Based

Ethereum’s approach to smart contracts takes onewhich is consistentwith their
interpretation in this thesis, modelling smart contracts as state machines, their
state being replicated and reproduced via a distributed ledger. For complete-
ness, it is worth sketching the main alternative approach to modelling smart
contracts, which embraces the transactional nature of the distributed ledger.

Rather than smart contracts being their own entities, as in Ethereum, the
approach of UTxO-based smart contract system says that assets are their own
entities, with code dictating who can use them. This is the design underlying
Bitcoin–BitcoinScript controlswhocan spendaparticular transaction’s output,
and although it is typically simply a public key test, more complex logic can be
applied. Another example of this is Plutus [CKM+19], which also extends the
model of unspent transaction outputs to allow them to carry data, enabling
more complex behaviours including state evolution. The privacy-preserving
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Zexe [BCG+20] also falls into a similar category, with the caveat of the UTxO
structure itself being hidden.

Ethereum’s approach is largely isomorphic to the extended UTxO model of
Plutus, although without state-passing it is clearly more powerful. Even state-
passing gives a slight advantage to Ethereum’s modelling, in that it supports
concurrent interactionsbetter, adistinctiondescribed indetail inChapter 6. The
increased expressiveness comes at a cost to clarity however – numerous bugs
in Ethereum have lead to great financial losses, making the case for a simpler
model.

2.6.3 Privacy Focused Variations

A body of research has looked into addressing the privacy shortcomings of
smart contracts. These take a variety of different approaches, the most notable
ofwhich are brieflydiscussedhere. Thiswork is especially relevant toChapter 6,
which presents as alternative approach tomodelling privacy in smart contracts.

Zexe. Zerocash [BCG+14] is a well-known privacy-preserving payment sys-
tem, allowingdirect privatepaymentsonapublic ledger. Zexe [BCG+20] extends
its expressiveness by allowing arbitrary scripts, reminiscent of Bitcoin-scripts,
to be evaluated in zero-knowledge in order to spend coin outputs. It is a major
improvement in expressiveness over Zerocash, which only permits a few types
of transactions. Combined with the extended UTxO approach mentioned in
Subsection 2.6.2 of carrying state over from transaction output to transaction
output, Zexe would form a very expressive smart contract systems, although its
limitations remain uncertain.

zkay. zkay [SBG+19] extends Ethereum smart-contracts with types for private
data. It allows users to share encrypted data on-chain, and prove that data is
correctly encrypted and correctly used in subsequent interactions. These proofs
aremanaged through theZoKrates [ET18] framework,whichcompilesEthereum
contracts into NIZK-friendly circuits. Its usage is limited to fixed size pieces of
private data.

Hawk. Oneof theearliestworksonprivacy insmart contracts,Hawk [KMS+16]
is also one of the most general. It describes how to compile private variants of
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smart contracts, given that all participants of the contract trust the same party
with its privacy. This party, the “manager”, canbreak the contract’s privacyguar-
antees if they are corrupt, however they cannot break the correctness of the con-
tract’s rules. The construction used in Hawk for the manager party relies on
zero-knowledge proofs of correct contract execution.

Zether. Alotofworkonprivacy in smart contractshas focusedonretro-fitting
privacy into existing systems. Zether [BAZB19], for instance, constructs a
privacy-preserving currency within Ethereum, which can be utilised for a
number of more private applications, such as hidden auctions. As with most
retro-fitted systems, Zether is constrained by the system it is built for and does
not generalise tomany applications.

Enigma. There are two forms of Enigma: A paper discussing running secure
multi-party computation for smart contracts [ZNP15], and a system of the same
name designed to use Intel’s SGX enclave to guarantee privacy [EPT19]. The for-
mer has a lot of potential advantages, but is severely limited by the efficiency
of general-purpose MPC protocols. The latter is a practical construction and
can claimmuch better performance than any cryptography-based protocol. The
most obvious drawbacks are the reliance on an external trust assumption and
the poor track record of secure enclaves against side-channel attacks [BMW+18].

Arbitrum. Using a committee-based approach, Arbitrum [KGC+18] describes
how to perform and agree on off-chain executions of smart contracts. A com-
mittee of managers is charged with execution, and, in the optimistic case, sim-
ply posts commitments to state updates on-chain. In the case of a dispute, an
on-chain protocol can resolve the dispute with a complexity logarithmic in the
number of computation steps taken. Arbitrum provides correctness guarantees
even in the case of n − 1 out of n corrupt committeemembers, however relies on
a fully honest committee for privacy.

State channels. State channels, such as those discussed in [DFH18], occupy
a similar space to Arbitrum, due to their reliance on off-chain computation
and on-chain dispute resolution. The dispute resolution process is different,
more aggressively terminating the channel, and typically it considers only
participants on the channel that interact with each other. The privacy given
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is almost co-incidental, due to the interaction being local and off-chain in the
optimistic case.

Piperine. Piperine [LNS20] uses a similar model and approach as presented
in Chapter 6, relying on zero-knowledge proofs of correct state transitions, and
modelling smart contracts as replicated state machines. Piperine focuses on ef-
ficiency gains from this approach, rather than privacy gains, which it does not
capture, while ourwork does not account for the benefit of transaction batching.
Thenotion of state oracles presented inChapter 6 can be seen as a generalisation
of the state interactions presented in [LNS20].
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3 COmPOSITIOnWITH
KnOWLEDGEASSUmPTIOnS

--.--
This chapter is basedon“CompositionwithKnowledgeAssumptions” [KKK21a],
first published at the Crypto 2021 conference, primarily authored by Thomas
Kerber, and co-authored by Aggelos Kiayias andMarkulf Kohlweiss.

KnOWLEDGE assumptions, discussed briefly in Subsection 2.2.3, are espe-
cially useful in cases where both succinctness and extractability are re-

quired. This is notably the case for zk-SNARKs, as discussed in Subsection 2.5.3,
which typically rely on either a knowledge-of-exponent assumption [Dam92],
the Algebraic GroupModel (AGM) [FKL18], or the even stronger Generic Group
Model (GGM) [Sho97]. Their importance for zk-SNARKs makes them partic-
ularly relevant for this thesis, as Chapter 5 and Chapter 6 rely on a compos-
able non-interactive zero-knowledge functionality, which would ideally be
implemented using zk-SNARKs. Nevertheless, the composition of knowledge
assumptions has applications outside of zk-SNARKs, for instance in extractable
functions [CD08, CD09, BCCT12], and the modelling in this chapter even lends
itself to a novel interpretation of random oracles.

Proving the security of SNARKs under composition would typically involve
using a compositional framework (see Section 2.3), such as Universal Com-
posability [Can01] or Constructive Cryptography [Mau11], specifying an ideal
behaviour for theprimitive and constructing a simulatorwhich coerces the ideal
behaviour to mimic that of the actual protocol. This simulator will naturally
need tomakeuse of the extractionproperties, often to infer the exact ideal intent
behind adversarial actions. It is in this that the conflict between extraction and
compositional frameworks arises: As the extraction is white-box, the simulator
requires the input of its counter-party – the environment, or distinguisher, of
the simulation experiment. This cannot be allowedhowever, as itwould give the
simulator access to all information in the system1, not just that of the adversary.

1Recall that the simulator is the ideal-world adversary and should by definition not have
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This conflict has been observed before, for instance in [KZM+15]. Often, the
remedy is to extend the original protocol with additional components to enable
the simulator to extract “black-box”, i.e.without theoriginal inputs. For example,
the Fischlin transform [Fis05] uses multiple queries to a random oracle to by-
pass the inability to extract from the commitment phase of anunderlying Sigma
protocol, whichwould allow using the simpler Fiat-Shamir transform [FS87] in-
stead. C∅C∅ [KZM+15] extends zk-SNARKs with an encryption of the witness
and a proof of correctness of this encryption to a public key the simulator can
control.

A theme of these approaches is that succinctness is usually lost – size being
limited by the information-theoretic reality of black-box extraction. Thus C∅C∅
proofs are longer than their witnesses and UC-secure commitments [CF01] are
longer than themessage domain.

This limitation can often be bypassed by using a local random oracle, as this
does permit extraction. Restricting the model to allow the adversary to perform
only specific computations on knowledge-implying objects, could be oneway to
generalise this approach. Just as a random oracle functionality would abstract
over extractable hash functions, a generic group functionality would abstract
over knowledge of exponent type assumptions. This would constitute a far
stronger assumption however, running counter to recent developments to relax
assumptions, such as the Algebraic GroupModel [FKL18], which aim for amore
faithful representation of knowledge assumptions.

In this chapter, a different approach is taken by defining the concept of
knowledge-respecting distinguishing environments, or distinguishers (to be
consistent with the terminology of Constructive Cryptography). The Construc-
tive Cryptography framework [Mau11] serves as an orientation point for this
work, due to its relative simplicity compared to the many moving parts of
UC [Can01], making it easier to re-establish composition aftermaking sweeping
changes to themodel.

Similar to an algebraic algorithm, distinguishers in our model need to ex-
plain how they computed each knowledge-implying object they output. The
compositional framework is extended by giving the simulator access to these
explanations.

Furthermore, this chapter discusses the conditions under which it is rea-

access to secrets the distinguisher holds.
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sonable to assume knowledge-respecting distinguishers. To this end, stronger
versions of knowledge assumptions are defined that depend on auxiliary and
knowledge-implying inputs. These assumptions suffice to extend a distin-
guisher with an extractor providing said explanations.

Within this settingweareable to establishnotonlyan impossibility result on
full general composition, but more interestingly a positive result on the compo-
sition of systems relying on different knowledge assumptions. Intuitively: You
can use a knowledge assumption only once, or you need to ensure the various
uses do not interfere with each other (specifically, the simulators of both invoca-
tions cannot provide any advantage due to extraction, as shown in the example
in Section 3.4). This result has the immediate effect of enabling the usage of
primitives relying on knowledge assumptions in larger protocols – provided the
underlying assumption is not used inmultiple composing proofs.

3.1 Modelling Knowledge Assumptions

We formally define knowledge assumptions over a type of knowledge-implying ob-
jects 𝑋 . When an object of the type 𝑋 is produced, the assumption states that
whoever produced it must know a corresponding witness of the type 𝑊 . The
knowledge of exponent assumption is an example of this, where 𝑋 corresponds to
pairs of group elements and 𝑊 is an exponent. A relation R ⊆ 𝑋 × 𝑊 defines
which witnesses are valid for which knowledge-implying objects.

In the case of the knowledge of exponent assumption, it roughly states
that given a generator and a random power s of the generator, the only way
to produce a pair of group elements, where one is the sth power of the other,
is to exponentiate the original pair and in so doing implying knowledge of
this exponent. There is one extra item needed: The initial exponent s needs
to be sampled randomly. Indeed, this is true for any knowledge assumption:
The all-quantification over potential distinguishers implies the existence of
distinguishers which “know” objects in𝑋 without knowing their corresponding
witness. To avoid this pre-knowledge, we assume 𝑋 itself is randomly selected
at the start of the protocol. For this purpose, we will assume a distribution
init, which given a source of public randomness (such as a global common
random string), produces public parameters pp, which parameterise the knowl-
edge assumption. In the case of knowledge of exponent, this needs to sample
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an exponent s and output the pair (g, gs). For this particular setup, public
randomness is insufficient.

Beyond this, users do not operate in isolation: If Alice produces the pair
(gx, gxs), knowing x and transmits this to Bob, he can produce (gxy, gxys) without
knowing xy. This does not mean that the knowledge assumption does not hold,
however it is more complex than one might originally imagine: One party
can use knowledge-implying objects from another user as (part of) their own
witnesses. Crucially this needs to be limited to objects the user actually received:
Bob cannot produce (gsy, gs2y) for instance, as he never received (gs, gs2) and
does not know s. This setting also lends itself more to some interpretations
of knowledge assumptions than others. For instance, the classical knowledge-
of-exponent assumption [Dam92] does not allow linear combinations of inputs,
while the t-knowledge-of-exponent assumption [HT98] does. When used com-
posably, the latter is more “natural”, in much the same way that IND-CCA def-
initions of encryption fit better into compositional frameworks than IND-CPA
ones, due to them already accounting for part of the composable interaction.

Definition 3.1 (Knowledge Assumption). A knowledge assumption 𝔎 is de-
fined by a tuple (init,𝑋 ,𝑊 ,R) consisting of:

1. init, a private-coin distribution to sample public parameters pp from,
which the others are parameterised by.

2. 𝑋pp, the set of all objects which imply knowledge.

3. 𝑊pp, the set of witnesses, where ∀x ∈ 𝑋pp: (InPUT, x) ∈ 𝑊pp.

4. Rpp: (𝐼 ⊆ 𝑋pp) → (𝑌 ⊆ (𝑋pp×𝑊pp)), the relationnewknowledgemust satisfy,
parameterised by input objects, where

∀x, y ∈ 𝑋pp, 𝐼 ⊆ 𝑋pp: (x, (InPUT, y)) ∈ Rpp(𝐼 ) ⟺ x = y ∧ x ∈ 𝐼 .

Furthermore,Rpp must bemonotonically increasing:

∀𝐼 ⊆ 𝐽 ⊆ 𝑋pp:Rpp(𝐼 ) ⊆ Rpp(𝐽 ).

The inclusion of (InPUT, x) in𝑊pp andRpp for all x ∈ 𝑋pp ensures that parties are
permitted toknowobjects theyhave receivedas inputs,withoutneeding toknow
correspondingwitnesses. Importantly, this is possible only for inputs andnot for

Chapter 3. Composition with Knowledge Assumptions 69



other objects. For each knowledge assumption 𝔎, the assumption it describes
is in a setting of computational security, with a We state the assumption itself
in a setting of computational security, with a security parameter κ. Broadly,
the assumption states that, for a restricted class of “𝔎-respecting” adversaries,
it is possible to compute witnesses for each adversarial output, given the same
inputs.

Assumption 3.1 (𝔎-Knowledge). The assumption corresponding to the tuple 𝔎 =
(init,𝑋 ,𝑊 ,R) is associated with a set of probabilistic polynomial time (PPT) algorithms,
Resp𝔎. We will say an algorithm is𝔎-respecting if it is in Resp𝔎. This set should contain
all adversaries and protocols of interest. The𝔎-knowledge assumption itself is then that, for
allA ∈ Resp𝔎, there exists a PPT extractorX , such that:

Pr
⎡⎢⎢⎢
⎣

pp ∗ init;

∃𝐼 ⊆ 𝑋pp, aux ∈ {0, 1}∗:
Game 3.1(Ar,Xr, pp, 𝐼 , aux)

⎤⎥⎥⎥
⎦

≤ negl(κ),

whereAr andXr areA andX supplied with the same random coins r (as such, they behave
deterministically within Game 3.1).

While it is trivial to construct adversaries which are not 𝔎-respecting by
encoding knowledge-implying objects within the auxiliary input, these trivial
cases are isomorphic to an adversary which is𝔎-respecting and which receives
such encoded objects directly. We therefore limit ourselves to considering
adversaries which communicate through the “proper” channel, rather than
covertly. In this way, we also bypass existing impossibility results employing
obfuscation [BP15]: We exclude by assumption adversaries which would use
obfuscation.

Game 3.1 (Knowledge Extraction). The adversaryAr wins the knowledge extraction
game if and only if it outputs a series of objects in 𝑋pp, for which the extractor Xr fails to
output the corresponding witness:

let x⃗ ← Ar(𝐼 , aux), w⃗ ← Xr(𝐼 , aux) in x⃗ ∈ 𝑋 ∗
pp ∧

|x⃗|
⋁
i=1

(xi,wi) ∉ Rpp(𝐼 ).

Crucial for composition are the existential quantifications, which combined
state that we assume extraction for all of the following:
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• Algorithms in Resp𝔎
• Input objects 𝐼
• Auxiliary inputs aux

This makes knowledge assumptions following Assumption 3.1 stronger than
their typical property-based definitions. It is also non-standard as a result, as
it relies on quantifiers within a probability experiment. While the adversarial
win condition is well-defined, it is not necessarily computable. Nevertheless,
quantifications are required for their usage in composable proofs.

3.1.1 Examples of Knowledge Assumptions

Tomotivate this definition,wedemonstrate that it canbeapplied tovarious com-
monly used knowledge assumptions, including the knowledge of exponent as-
sumption, theAlgebraic GroupModel and variants, and even to randomoracles.
Wedetail ourflavourof thesehere. Witnessesnaturally seemto formarestricted
expression language describing how to construct a knowledge-implying object.
Amorenaturalway to express the relationR is oftenanevaluation functionover
witnesses, returning a knowledge-implying object.

Knowledge of Exponent Assumption. The t-knowledge-of-exponent as-
sumption [Dam92, HT98] depends on a (possibility pre-selected) group 𝔾 of
order p and generator g ∈ 𝔾. It selects a random exponent s and provides the
pair (g, gs) as public parameters. Any pair of group elements where the second
is the sth power of the first must provide an exponent tomatch.

A curiosity of this knowledge assumption is that there is no simple mem-
bership test to apply. As a result, we permit pairs not related in this way to be
members of 𝑋pp, which do not require witnessing, capturing the possibility of
transmitting unrelated group elements.

𝔎KEA ≔ (init,𝑋 ,𝑊 ,R)
init ≔ s ∗ 𝔽∗p; (g, gs)
𝑋 ≔ 𝔾2

𝑊 ≔ {BASE} ∪

{ (InPUT, i) ∣ i ∈ 𝑋 } ∪
{ (EXP, b, e) ∣ b ∈ 𝑊 , e ∈ 𝔽∗p } ∪
{ (mUL, b, c) ∣ b, c ∈ 𝑊 } ∪
{ (FrEE, g, h) ∣ g, h ∈ 𝔾 }
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eval(𝐼 ,w) ≔

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

(g, gs) ifw = BASE

i ifw = (InPUT, i) ∧ i ∈ 𝐼
(ae, be) ifw = (EXP, c, e) ∧ (a, b) = eval(𝐼 , c)
(a ∘ c, b ∘ d) ifw = (mUL, e, f) ∧ (a, b) = eval(𝐼 , e)

∧ (c, d) = eval(𝐼 , f)
(g, h) ifw = (FrEE, g, h) ∧ gs ≠ h

(x,w) ∈ R(𝐼 ) ⟺ x = eval(𝐼 ,w)

The Algebraic GroupModel. Assuming a distribution groupSetup providing
a group𝔾 and a generator g, we can recreate the Algebraic GroupModel [FKL18]
as a knowledge assumption fitting Definition 3.1:

𝔎AGM ≔ (init,𝑋 ,𝑊 ,R)
init ≔ groupSetup

𝑋 ≔ 𝔾

𝑊 ≔ { (OP, a, b) ∣ a, b ∈ 𝑊 } ∪
{ (InPUT, i) ∣ i ∈ 𝑋 } ∪
{ GEnErATOr }

eval(𝐼 ,w) ≔
⎧⎪
⎨⎪
⎩

eval(g) ∘ eval(h) ifw = (OP, g, h)
i ifw = (InPUT, i) ∧ i ∈ 𝐼
g ifw = GEnErATOr

(x,w) ∈ R(𝐼 ) ⟺ x = eval(𝐼 ,w)

The Bilinear Algebraic Group Model with Random Sampling. Assuming
a distribution groupSetup providing groups 𝔾1,𝔾2,𝔾𝑇 , a bilinear pairing opera-
tion e:𝔾1 × 𝔾2 → 𝔾𝑇 , and generators g ∈ 𝔾1 and h ∈ 𝔾2, we define the corre-
sponding knowledge assumptions of a bilinear Algebraic Group Model below.
Random sampling of group elements in 𝔾1 and 𝔾2 is permitted by providing
random permutations2 𝔾1 of 𝔾1 and 𝔾2 of 𝔾2 as part of the public parameters
– we assume machines have random memory access and can therefore easily
query randomelements in these vectors, but cannot search for specific elements,

2Wewrite 𝑆𝑋 for the set of permutations of 𝑋 and the corresponding uniform distribution.
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due to theexponential sizeof thegroup. Note that this assumespublicparameter
selection is free from computational feasibility constraints.

𝔎bAGM ≔ (init,𝑋 ,𝑊 ,R)
init ≔ let (𝔾1,𝔾2,𝔾𝑇 , e, g, h) ∗ groupSetup;𝔾1

∗ 𝑆𝔾1 ;𝔾2
∗ 𝑆𝔾2

in (𝔾1,𝔾2,𝔾𝑇 , e, g, h,𝔾1,𝔾2)
𝑋 ≔ 𝔾1 ⊎ 𝔾2 ⊎ 𝔾𝑇

𝑊 ≔ { (OP, a, b) ∣ a, b ∈ 𝑊 } ∪
{ (PAIrInG, a, b) ∣ a, b ∈ 𝑊 } ∪
{ (InPUT, i) ∣ i ∈ 𝑋 } ∪
{ (InDEX, i, x) ∣ x ∈ {1, 2}}, i ∈ ℤ|𝔾i| } ∪
{ (GEnErATOr, x) ∣ x ∈ {1, 2} }

eval(𝐼 ,w) ≔

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪
⎩

eval(a) ∘ eval(b) ifw = (OP, a, b)
e(eval(a), eval(b)) ifw = (PAIrInG, a, b)
i ifw = (InPUT, i) ∧ i ∈ 𝐼
(𝔾x)i ifw = (InDEX, i, x)
g ifw = (GEnErATOr, 1)
h ifw = (GEnErATOr, 2)
(x,w) ∈ R(𝐼 ) ⟺ x = eval(𝐼 ,w)

Notably ∘ and emay be undefined – g ∘ h is not defined, for instance. In this case
eval is also not defined: eval(𝐼 , (OP, g, h)) is undefined.

Random Oracles. Somewhat surprisingly, (global, non-programmable) ran-
dom oracles can be seen as a somewhat unique knowledge assumption, using a
similar technique for randomness as is used to sample random group elements
above. Unlike the above, the public parameters need to encode an infinite se-
quence of random values – effectively publicly describing the entire random
oracle. Again an assumption of random access to these public parameters
implies a limited number of possible “queries” to this random oracle, with
each query simply reading the nth random value in the sequence, where n is
a numerical encoding of the query.

In practice, this assumption has similarities to that of an extractable hash
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function [KLT16] and global random oracles [CJS14, CDG+18]. It fits the former
in that for every “hash” produced by an algorithm, an extractor must be able to
output itspreimage, and the latter if thisoperation isviewedasablack-boxquery
to a global random oracle functionality.

𝔎RO ≔ (init,𝑋 ,𝑊 ,R)
init ≔ ({0, 1}κ)∞

𝑋 ≔ {0, 1}κ
(x,w) ∈ R(𝐼 ) ⟺ x = eval(𝐼 ,w)

𝑊 ≔ { (InPUT, i) ∣ i ∈ 𝑋 } ∪
{ (InDEX, i) ∣ i ∈ ℕ }

eval(𝐼 ,w) ≔
⎧⎪
⎨⎪
⎩

i ifw = (InPUT, i)
∧ i ∈ 𝐼

ppi ifw = (InDEX, i, x)

3.2 Typed Networks of RandomSystems

While it is not our goal to pioneer a new composable security framework, ex-
isting frameworks do not quite fit the needs of this chapter. Notably, Universal
Composability [Can01]hasmanymovingparts, suchas session IDs, control func-
tions and different tapes which make the core issues harder to grasp. Construc-
tive Cryptography [Mau11] does not have a well-established notion of globality
and fixes the number of interfaces available, which makes the transformations
we will later performmore tricky.

Furthermore, the analysis of knowledge assumptions benefits from a clear
type system imposed on messages being passed – knowing which parts of mes-
sages encode objects of interest to knowledge assumptions (and which do not)
makes the analysis more straightforward. Due to both of these reasons, we con-
struct a compositional framework sharing many similarities with Constructive
Cryptography (see Subsection 2.3.2), however using graphs (networks) of typed
random systems as the basic unit instead of random systems themselves. Cru-
cially, when we establish composition within this framework, we do so with
respect to sets of valid distinguishers. This will allow us to permit only distin-
guishers which respect the knowledge assumption.

Our definitions can embed existing security proofs in Constructive Cryptog-
raphyand, due to the close relationbetween composable frameworks, likely also
those in other frameworks, such as UC. In particular, our results directly imply
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that primitives provenusing knowledge assumptions under this framework can
be directly used in place of hybrids in systems proven in Constructive Cryptog-
raphy.

We will not go into depth on modelling computational security, as it is not
the primary focus of this chapter, however we will assume the existence of a
feasibility notion of this type. We follow the approach of [LM20] and consider
random systems as equivalence classes over probabilistic systems. We make a
minor tweak to the setting of [Mau11] as well and use random-access machines
instead of automata3, to enable the use of super-polynomial parameters as laid
out in Subsection 3.1.1.

3.2.1 Type Definition

We introduce a rudimentary type system for messages passed through the net-
work. It consists of a unit type 𝟙, empty type 𝟘, sumandproduct types τ1+ τ2/τ1×
τ2, and the Kleene star τ∗. This type systemwas chosen to beminimal while still:

1. Allowing existing protocols to be fit within it. As most of cryptography
operates onarbitrary length strings, (𝟙+𝟙)∗, orfinitemathematical objects,
𝟙 + … + 𝟙, these can be embedded in the type system.

2. Allowing new types to be embedded in larger message spaces. The inclu-
sion of sum types enables optional inclusion, while product types enables
inclusion of multiple instances of a type alongside auxiliary information.

We stress that this type system may be (and will!) extended and that a richer
systemmaymake sense in practice. Types follow the grammar:

τ ≡ 𝟘 ∣ 𝟙 ∣ τ1 + τ2 ∣ τ1 × τ2 ∣ τ∗,

and the corresponding expression language follows the grammar

𝐸 ≡ ⊤ ∣ inj1(𝐸) ∣ inj2(𝐸) ∣ (𝐸1, 𝐸2) ∣ ε ∣ 𝐸1: : 𝐸2.
3Specifically, we assume each of the following to be of time complexity Θ(1): 1. receiving and

sendingmessages of any length, 2. (de)constructing sum and product types, 3. accessing a given
index in a bit string for reading orwriting, 4. copying objects of any size, which is assumed to be
done through copy-on-write references.
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Wewill alsouse𝟚 to represent𝟙+𝟙, and0and1 for inj1(⊤)and inj2(⊤) respectively.
Formally, the typing rules are:

⊢ ⊤: 𝟙
⊢ x: τ1

⊢ inj1(x): τ1 + τ2

⊢ x: τ2

⊢ inj2(x): τ1 + τ2

⊢ x: τ1 ⊢ y: τ2

⊢ (x, y): τ1 × τ2
⊢ ε: τ∗

⊢ x: τ ⊢ x⃗: τ∗

⊢ x: : x⃗: τ∗

Note that there is nomeans to construct the empty type 𝟘.

Knowledge assumptions. We expand this basic type system by allowing ob-
jects to be annotated with a knowledge assumption. Specifically, given a knowl-
edge assumption𝔎 = (init,𝑋 ,𝑊 ,R), where init returns pp: τ, and for all pp in the
domain of init, both 𝑋pp and𝑊pp are valid types, there are two additional types
present:

1. The type of knowledge-implying objects in𝔎: [𝔎pp] (equivalent to 𝑋pp)

2. The typeofwitnessedobjects in𝔎withrespect toan input setofknowledge
𝐼 : ∀𝐼 ⊆ 𝑋pp: ⟨𝔎pp, 𝐼 ⟩ (equivalent to 𝑋pp ×𝑊pp)

Formally then, we define𝔎 types through the grammar

τ ≡ 𝟘 ∣ 𝟙 ∣ τ1 + τ2 ∣ τ1 × τ2 ∣ τ∗ ∣ [𝔎pp] ∣ ⟨𝔎pp, 𝐼 ⟩,
with the corresponding expression grammer being

𝐸 ≡ ⊤ ∣ inj1(𝐸) ∣ inj2(𝐸) ∣ (𝐸1, 𝐸2) ∣ ε ∣ 𝐸1: : 𝐸2 ∣ [𝐸]𝔎pp
∣ ⟨𝐸⟩𝐼𝔎pp

.

Crucially, the types of messages may depend on prior interactions. This is
particularly obvious with the set of input knowledge 𝐼 , which will be defined
as the set of all previously received x: [𝔎pp], however it also applies to pp itself,
which may be provided from another component of the system. This allows for
the secure sampling of public parameters, or delegating this to a common ref-
erence string (CRS). The typing rules are extended with the following two rules,
where 𝑋pp and𝑊pp are type variable:

⊢ x:𝑋pp ⊢ w:𝑊pp (x,w) ∈ Rpp(𝐼 )
⊢ ⟨x,w⟩𝐼𝔎pp

: ⟨𝔎pp, 𝐼 ⟩
⊢ x:𝑋pp

⊢ [x]𝔎pp
: [𝔎pp]
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3.2.2 Efficiently Indexable Sums and Products

In order to allow representing infinite randomness in public parameters, such
as for the random oracle, infinite products with efficient indexing are required.
We define the sum and product operator here to divide the domain into sets of
increasingly large powers of two, which can be arranged as a binary tree. The
final construction links these in a basic sequence, ensuring that any index i can
be accessed in Θ(log(i)) operations.

∑
x∈𝑋

f(x) ≔ effAgg(𝑋 , f, +, 𝟘, 0)

∏
x∈𝑋

f(x) ≔ effAgg(𝑋 , f, ×, 𝟙, 0)

effAgg( ε, ⋅, ⋅,τ, ⋅) ≔ τ

effAgg( 𝑋 ,f,◇,τ, i) ≔ aggTree(take(2i,𝑋), f, ◇, τ, i) ◇
effAgg(drop(2i,𝑋), f, ◇, τ, i + 1)

aggTree([x],f, ⋅, ⋅,0) ≔ f(x)
aggTree( ε, ⋅, ⋅,τ, ⋅) ≔ τ

aggTree( 𝑋 ,f,◇,τ, i) ≔ aggTree(take(2i−1,𝑋), f, ◇, τ, i − 1) ◇
aggTree(drop(2i−1,𝑋), f, ◇, τ, i − 1),

where take(i,𝑋) returns the sequence containing only thefirst i elements of𝑋 (or
𝑋 itself, if |𝑋 | ≤ i), drop(i,𝑋) returns the sequence containing all other elements
of 𝑋 , such that take(i,𝑋) ‖ drop(i,𝑋) = 𝑋 , and ◇ stands in for one of + and ×.

3.2.3 Typed Networks

We will consider networks of random systems (which can be considered as la-
belled graphs) as our basic object to define composition over.

Definition 3.2 (Cryptographic Networks). A typed cryptographic network is
a set of nodes𝑁 , satisfying the following conditions:

1. Each node n ∈ 𝑁 is a tuple n = (𝐼n,𝑂n, τn,𝑅n,𝐴n) representing:

• 𝐼n a set of available input interfaces.

• 𝑂n a set of available output interfaces.
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• τn: 𝐼n ∪ 𝑂n → 𝑇 , a mapping from interfaces to their types.

• 𝑅n, a (∑i∈𝐼n τn(i),∑o∈𝑂n
τn(o)) random system.

(see Subsection 3.2.2 for a detailed description of sums over types)

• 𝐴n ⊆ 𝐼n ∪ 𝑂n, the subset of interfaces which behave adversarially.

2. Both input and output interfaces are unique within the network:

∀a, b ∈ 𝑁 : a ≠ b ⟹ 𝐼a ∩ 𝐼b = ∅ ∧ 𝑂a ∩ 𝑂b = ∅.

3. Matching input and output interfaces define directed channels in the im-
plied network graph. Therefore, where a, b ∈ 𝑁 , i ∈ 𝑂a ∩ 𝐼b:

• The interface typesmatch: τa(i) = τb(i).
• The edges have a consistent adversariality: i ∈ 𝐴a ⟺ i ∈ 𝐴b.

We denote the set of all valid cryptographic networks by ∗.
This corresponds to a directed network graph whose vertices are nodes and

whose edges connect output interfaces to their corresponding input interface.
Composingmultiple such networks is a straightforward operation, achieved

through set union. While the resulting network is not necessarily valid, as it
may lead to uniqueness of interfaces being violated, it can be used to construct
any valid network out of its components. We also make use of a disjoint union,
𝐴 ⊎ 𝐵, by which we mean the union of 𝐴 and 𝐵, while asserting that 𝐴 and 𝐵 are
disjoint. Due to the frequencyof its use,wewill allowomitting thedisjointunion
operator, that is, we write𝐴𝐵 to denote𝐴 ⊎ 𝐵.
Definition3.3 (Unbound Interfaces). In a typed cryptographic network𝑁 , the
sets of unbound input andoutput interfaces,written 𝐼 (𝑁 ) and𝑂(𝑁 ), respectively,
are defined as the set of all tuples (i, τ) for which there exists a ∈ 𝑁 and i ∈ 𝐼a
(resp. i ∈ 𝑂a), where for all b ∈ 𝑁 , i ∉ 𝑂b (resp. i ∉ 𝐼b), with τ being defined as its
type, τa(i). Furthermore, 𝐼𝑂H(𝑁 ) is defined as the unboundhonest interfaces: all
(i, ⋅) ∈ 𝐼 (𝑁 ) ∪ 𝑂(𝑁 ), where i is honest, that is, where ∀a ∈ 𝑁 : i ∉ 𝐴a.

We can define a straightforward token-passing execution mechanism over
typed cryptographic networks, which demonstrates how each network behaves
as a single random system4. We primarily operate with networks instead of

4Termination is an issue here, in so far as the network may loop infinitely using message
passing. We consider a non-terminating network to return the symbol ⊥, although this might
render the output uncomputable.
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reducing them to a single random system to preserve their structure: It allows
easily applying knowledge assumptions to each part and enables sharing com-
ponents in parallel composition, a requirement for globality.

Definition 3.4 (Execution). A typed cryptographic network 𝑁 , together with
an ordering of 𝐼 (𝑁 ) and 𝑂(𝑁 ) defines a random system through token-passing
execution, with the input and output domains ∑(⋅,τ)∈𝐼 (𝑁 ) τ/∑(⋅,τ)∈𝑂(𝑁 ) τ, respec-
tively. Execution is defined through a stateful passing of messages – any input
to 𝑁 will be targeted to some (i, ⋅) ∈ 𝐼 (𝑁 ). The input is provided to the random
system 𝑅a, for which i ∈ 𝐼a. Its output will be associated with an o ∈ 𝑂a. If there
exists a b ∈ 𝑁 such that o ∈ 𝐼b, it is forwarded to 𝑅b, continuing in a loop until no
such node exists. At this point, the output is associated with (o, ⋅) ∈ 𝑂(𝑁 ) (note
that, if 𝑂(𝑁 ) = ∅, the corresponding random system cannot be defined, as it has
an empty output domain) and is encoded to the appropriate part of the output
domain.

In order to help with preventing interface clashes, we introduce a renaming op-
eration.

Definition 3.5 (Renaming). For a cryptographic network 𝑁 , renaming inter-
faces a1,… , an to b1,… , bn, is denoted by:

𝑁[a1/b1,… , an/bn] ≔ { m ∈ 𝑁 | m[a1/b1,… , an/bn] } .

Where, form = (𝐼m,𝑂m, τm, ⋅,𝐴m),m[a1/b1,… , an/bn] is defined by replacing each
occurrence of ai in the sets 𝐼m, 𝑂m and 𝐴m with the corresponding bi, as well as
changing the domain of τm to accept bi instead of ai, with the same effect.

To ensure renaming does not introduce unexpected effects, we leave it unde-
fined when any of the output names bi are present in the network𝑁 and are not
themselves renamed (i.e. no aj exists such that aj = bi). Likewise, we prohibit
renaming where multiple output names are equal. For a set of cryptographic
networks, the same notation denotes renaming on each of its elements.

When talking about valid distinguishers, these are sets of cryptographic net-
works closed under internal renaming.

Definition 3.6 (Distinguisher Set). A set of distinguishers𝔇 ⊆ ∗ is any subset
of ∗which is closed under internal renaming: For any𝐷 ∈ 𝔇, n⃗ = a1/b1,… , an/bn,
where no ai or bi are in 𝐼 (𝐷) or 𝑂(𝐷),𝐷[n⃗] ∈ ∗ ⟹ 𝐷[n⃗] ∈ 𝔇.
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Composition is also defined for distinguisher sets. Given a set of networks
𝔇 and a network 𝐴, 𝔇𝐴 is defined as the closure under internal renaming of
{ 𝐷𝐴 | 𝐷 ∈ 𝔇:𝐷𝐴 ∈ ∗ }. Observe that ∗ is closed under composition and therefore
∗𝐴 ⊆ ∗ for any 𝐴 ∈ ∗. Renaming for distinguisher sets is defined similarly,
allowing distinguisher sets to give special meaning to some external interfaces,
but not to internal ones.

3.2.4 Observational Indistinguishability

Now that we have established the semantics of cryptographic networks, we can
reason about their observational indistinguishability, defined through the sta-
tistical distances of their induced random systems combinedwith arbitrary dis-
tinguishers. The indistinguishability experiment is visualised in Figure 3.1.

Definition 3.7 (Observational Indistinguishability). Two cryptographic net-
works 𝐴 and 𝐵 are observationally indistinguishable with advantage ε with re-
spect to the set of valid distinguishers𝔇, written𝐴 ε,𝔇∼ 𝐵, if and only if:

• Their unbound inputs and outputs match: 𝐼 (𝐴) = 𝐼 (𝐵) ∧ 𝑂(𝐴) = 𝑂(𝐵).

• For any network 𝐷 ∈ 𝔇 for which 𝐷𝐴 and 𝐷𝐵 are both in ∗, with 𝐼 (𝐷𝐴) =
𝐼 (𝐷𝐵) = (⋅, 𝟙) and 𝑂(𝐷𝐴) = 𝑂(𝐷𝐵) = (⋅, 𝟚), the statistical distance δ𝔇(𝐴,𝐵) is
at most ε, where

δ𝔇(𝐴,𝐵) ≔ sup
𝐷∈𝔇

Δ𝐷(𝐴,𝐵)

Δ𝐷(𝐴,𝐵) ≔ |Pr(𝐷𝐴 = 1) − Pr(𝐷𝐵 = 1)|.

To simplify some corner cases, where ∀𝐷 ∈ 𝔇:𝐷𝐴 ∉ ∗ ∨ 𝐷𝐵 ∉ ∗, we con-
sider δ𝔇(𝐴,𝐵) to be 0 – in other words, we consider undefined behaviours
indistinguishable.

The𝔇 term is omitted if it is clear from the context.

Observe that observational indistinguishability claims can be weakened:

𝐴 ε,𝔇1∼ 𝐵 ∧𝔇2 ⊆ 𝔇1 ⟹ 𝐴 ε,𝔇2∼ 𝐵 (3.1)

Lemma3.1 (ObservationalRenaming). Observational indistinguishability isclosed
under interface renaming:

∀𝐴,𝐵 ∈ ∗,𝔇 ⊆ ∗, ε, n⃗:𝐴[n⃗],𝐵[n⃗] ∈ ∗ ∧ 𝐴 ε,𝔇∼ 𝐵 ⟹ 𝐴[n⃗] ε,𝔇[n⃗]∼ 𝐵[n⃗]
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𝐴

𝐷 ∈ 𝔇
≈

𝐷 ∈ 𝔇
𝐵

Figure 3.1: A visual representation of an example 𝐴 𝔇∼ 𝐵 experiment, with solid
lines representing honest interfaces and dashed representing adversarial inter-
faces.

Proof. By precondition, we know that 𝐼 (𝐴) = 𝐼 (𝐵) ∧𝑂(𝐴) = 𝑂(𝐵), that δ𝔇(𝐴,𝐵) ≤ ε
and that𝔇 is closed under renaming. As renaming is restricted by definition to
not create any new connections, 𝐼 (𝐴[n⃗]) = 𝐼 (𝐴)[n⃗] = 𝐼 (𝐵)[n⃗] = 𝐼 (𝐵[n⃗]) and like-
wise for𝑂. As𝔇 remainsunchanged, it remains to showthat sup𝐷∈𝔇 |Pr(𝐷𝐴[n⃗] =
1) − Pr(𝐷𝐵[n⃗] = 1)| ≤ ε.

Consider how, for 𝐷 ∈ 𝔇, (𝐷𝐴)[n⃗] and (𝐷𝐵)[n⃗], are related to 𝐷′(𝐴[n⃗]) and
𝐷′(𝐵[n⃗]). If (𝐷𝐴)[n⃗] is well-defined, then for 𝐷′ = 𝐷[n⃗], then (𝐷𝐴)[n⃗] = 𝐷′(𝐴[n⃗).
Moreover, for any 𝐷′ ∈ 𝔇, there exists some internal renaming m⃗ such that
(𝐷′[m⃗]𝐴)[n⃗] and (𝐷′[m⃗]𝐵)[n⃗] arewell-defined, as the renaming m⃗ can remove the
potential name clashes introduced by n⃗. As 𝔇 is closed under renaming, it is
therefore sufficient to show that sup𝐷∈𝔇 |Pr((𝐷𝐴)[n⃗] = 1) − Pr((𝐷𝐵)[n⃗] = 1)| ≤ ε.
As the execution semantics of (𝐷𝐴)[n⃗] and (𝐷𝐵)[n⃗] does not use interface names,
this is equivalent to sup𝐷∈𝔇 |Pr(𝐷𝐴 = 1) − Pr(𝐷𝐵 = 1)| = δ𝔇(𝐴,𝐵) ≤ ε.

Lemma 3.2 (Observational Equivalence). Observational indistinguishability is an
equivalence relation: It is transitive5 (3.2), reflexive (3.3), and symmetric (3.4). For all
𝐴,𝐵, 𝐶 ∈ ∗,𝔇 ⊆ ∗, ε1, ε2 ∈ ℝ:

𝐴 ε1,𝔇∼ 𝐵 ∧ 𝐵 ε2,𝔇∼ 𝐶 ⟹ 𝐴 ε1+ε2,𝔇∼ 𝐶 (3.2)

𝐴 0,𝔇∼ 𝐴 (3.3)

𝐴 ε1,𝔇∼ 𝐵 ⟺ 𝐵 ε1,𝔇∼ 𝐴 (3.4)

Proof. We prove each part independently, given the well-known fact that statis-
tical distance forms a pseudo-metric [Mau11].

5Technically, due to the error terms, the relation is not transitive, but obeys a triangle inequal-
ityandasa result it is alsonotanequivalence relation. Weviewthisasaweak transitivity instead,
as in practice, for negligible error terms, it behaves as such.
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Transitivity. The equality of the input and output interfaces can be estab-
lished by the transitivity of equality. The statistical distance is established
through the triangle equality. Specifically, for all 𝐷 ∈ 𝔇, Δ𝐷(𝐴, 𝐶) ≤ Δ𝐷(𝐴,𝐵) +
Δ𝐷(𝐵, 𝐶) ≤ ε1 + ε2. The only case where this is not immediate is if 𝐷𝐵 ∉ ∗,
which occurs in the case of an internal interface name collision – resolvable
with renaming and use of Lemma 3.1.

Reflexivity. By the reflexivity of equality for input and output interfaces and
δ𝔇(𝐴,𝐴) = 0 being established for pseudo-metrics.

Symmetry. By the symmetry of equality and pseudo-metrics.

Lemma 3.3 (Observational Subgraph Substitution). Observational indistin-
guishability is closed under subgraph substitution.

∀𝐴,𝐵, 𝐶 ∈ ∗,𝔇 ⊆ ∗, ε ∈ ℝ:𝐴 ε,𝔇𝐶∼ 𝐵 ⟺ 𝐶𝐴 ε,𝔇∼ 𝐶𝐵

Proof. The equality of outgoing interfaces is trivially preserved under substitu-
tion, as the outgoing interfaces of𝐴 and 𝐵 are the same by assumption.

We know that ∀𝐷 ∈ 𝔇𝐶 : Δ𝐷(𝐴,𝐵) ≤ ε. Suppose there existed a distinguisher
𝐷 ∈ 𝔇 such that Δ𝐷(𝐶𝐴, 𝐶𝐵) ≥ ε. Then, we can define 𝐷′ ∈ 𝔇𝐶 as 𝐷𝐶, redraw-
ing the boundary between distinguisher and network. By definition, 𝐷′ ∈ 𝔇𝐶,
allowing us to conclude ∃𝐷′ ∈ 𝔇𝐶 : Δ𝐷′(𝐴,𝐵) ≥ ε, arriving at a contradiction. The
proof runs analogously in the opposite direction.

Corollary 3.1. For 𝔇 = ∗, observational indistinguishability has the following, simpler
statement for closure under subgraph substitution:

∀𝐴,𝐵, 𝐶 ∈ ∗, ε:𝐴 ε,∗∼ 𝐵 ⟹ 𝐶𝐴 ε,∗∼ 𝐶𝐵

3.2.5 Composably Secure Construction of Networks

(Composable) simulation-based security proofs are then proofs that there exists
anextension toonenetwork connectingonlyonadversarial interfaces, such that
it is observationally indistinguishable to another. We visualise and provide an
example of construction in Figure 3.2.

Definition 3.8 (Network Construction). A network 𝐴 ∈ ∗ constructs another
network 𝐵 ∈ ∗ with respect to a distinguisher class 𝔇 with simulator α ∈ ∗ and
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𝐴

𝐷 ∈ 𝔇
≈

α𝐷 ∈ 𝔇

𝐵

Figure 3.2: A visual representation of the𝐴 α,𝔇 𝐵 experiment.

error ε ∈ ℝ, written 𝐴 ε,α,𝔇 𝐵, if and only if 𝐴 ε,𝔇∼ α𝐵 and α and 𝐵 have disjoint
honest interfaces: 𝐼𝑂H(α) ∩ 𝐼𝑂H(𝐵) = ∅. The 𝔇 term may be omitted when it is
clear from the context, the α termmay be omitted when it is of no interest, and
the ε termmay be omitted when it is negligible.

Aswithobservational indistinguishability, networkconstructionstatements
can be arbitrarily weakened. Furthermore, it is directly implied by indistin-
guishability:

𝐴 ε,α,𝔇1 𝐵 ∧𝔇2 ⊆ 𝔇1 ⟹ 𝐴 ε,α,𝔇2 𝐵 (3.5)

𝐴 ε,𝔇∼ 𝐵 ⟹ 𝐴 ε,∅,𝔇 𝐵 (3.6)

Theorem 3.1 (Generalised Composition). Network construction is composable, in
that is satisfies transitivity (3.7), subgraph substitutability (3.8), and renameability
(3.9). For all𝐴,𝐵, 𝐶, α, β ∈ ∗,𝔇 ⊆ ∗, ε1, ε2 ∈ ℝ, n⃗:

𝐴 ε1,α,𝔇 𝐵 ∧ 𝐵 ε2,β,𝔇α 𝐶 ∧ αβ𝐶 ∈ ∗ ⟹ 𝐴 ε1+ε2,αβ,𝔇 𝐶 (3.7)

𝐴 ε1,α,𝔇𝐶 𝐵 ∧ 𝐼𝑂H(𝐶) ∩ 𝐼𝑂H(α𝐵) = ∅ ⟹ 𝐶𝐴 ε1,α,𝔇 𝐶𝐵 (3.8)

𝐴[n⃗], α[n⃗]𝐵[n⃗] ∈ ∗ ∧ 𝐴 ε1,α,𝔇 𝐵 ⟹ 𝐴[n⃗] ε1,α[n⃗],𝔇[n⃗] 𝐵[n⃗] (3.9)

Proof. Wewill prove each of the three properties separately.

Transitivity. By assumption, we know that 𝐴 ε1,𝔇∼ α𝐵 and 𝐵 ε2,𝔇α∼ β𝐶 . By

Lemma 3.3, we can conclude that α𝐵 ε2,𝔇∼ αβ𝐶 . By transitivity (Lemma 3.2), we

conclude that𝐴 ε1+ε2,𝔇∼ αβ𝐶 .
Observe that β and 𝐶, as well as α and 𝐵 have disjoint honest interfaces by

assumption. As 𝐵 ε2,𝔇∼ β𝐶, they have the same public-facing interfaces. As αβ𝐶
is well-defined and as α and 𝐵 have disjoint honest interfaces, so does α and β𝐶 .
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From each of α, β, and 𝐶 ’s honest interfaces being disjoint, we conclude that so
are αβ and 𝐶 ’s.

Closure under subgraph substitution. By assumption, we know 𝐴 ε1,𝔇𝐶∼ α𝐵.
By Lemma 3.3, we can conclude that 𝐶𝐴 ε1,𝔇∼ 𝐶α𝐵. As composition is a disjoint
union, it is commutative and therefore 𝐶α𝐵 = α𝐶𝐵. The interface disjointness
requirement is satisfied by the precondition.

Closure under renaming. By assumption, we know𝐴 ε1,𝔇∼ α𝐵. By Lemma 3.1,

we conclude that 𝐴[n⃗] ε1,𝔇[n⃗]∼ (α𝐵)[n⃗] = α[n⃗]𝐵[n⃗]. As α[n⃗]𝐵[n⃗] ∈ ∗, both α[n⃗] and
𝐵[n⃗] are in ∗. As the honesty of edges remains unaffected by subgraph substitu-
tion, namecollisions arenot introduced, thedisjointness requirement is also sat-
isfied. Combined, this implies network construction in the renamed setting.

From the generalised composition theorem, which notably relies onmodify-
ing the distinguisher set (e.g. from𝔇 to𝔇α in (3.7)), we can infer operations sim-
ilar to sequential and parallel composition in Constructive Cryptography, given
𝔇 = ∗. For any𝔇, identity also holds, due to the identity of indistinguishability,
and indistinguishability lifting to construction.

Corollary 3.2 (Traditional Composition). For𝔇 = ∗, honest network construction
has the following, simpler statements for universal transitivity (3.10) and universal
closure under subgraph substitution (3.11). Identity (3.12) holds regardless of𝔇. For
all𝐴,𝐵, 𝐶, α, β ∈ ∗, ε1, ε2 ∈ ℝ,𝔇 ⊆ ∗:

𝐴 ε1,α,∗ 𝐵 ∧ 𝐵 ε2,β,∗ 𝐶 ∧ αβ𝐶 ∈ ∗ ⟹ 𝐴 ε1+ε2,αβ,∗ 𝐶 (3.10)

𝐴 ε1,α,∗ 𝐵 ∧ 𝐼𝑂H(𝐶) ∩ 𝐼𝑂H(α𝐵) = ∅ ⟹ 𝐶𝐴 ε1,α,∗ 𝐶𝐵 (3.11)

𝐴 0,∅,𝔇 𝐴 (3.12)

3.3 The Limited Composition of𝔎-Networks

Havingestablisheda composition systemwhichallows restricting thedomainof
permissible distinguishers and, having formalised the general notion of knowl-
edge assumptions, we can now establish the main contribution in this chapter:
Permitting extraction from knowledge assumptions within a composable set-
ting.
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Weusea similar idea to that of “algebraic adversaries” in theAlgebraicGroup
Model [FKL18], requiring random systems (recall Subsection 2.3.2) to output not
only knowledge-implying objects, but also their corresponding witness. We
then add new nodes to the network which gather all data extracted in this way
in a central repository of knowledge for each knowledge assumption. Crucially,
while the distinguisher supplieswitnesses for all knowledge-implying objects it
outputs, it is not capable of retrieving witnesses from other parts of the system.

Simulators are provided with read access to this repository, allowing the
simulator to extract the knowledge it requires, but not any more about the
behaviour of honest parties. The composition of constructions using knowledge
assumptions is proven, provided the parts being composed do not both utilise
the same knowledge assumption. In such a case, Theorem 3.1 provides a fall-
back for what needs to be proven, namely that the simulator of one system does
notpermitdistinguishing in theother system. Ata technical level,modifications
to Definition 3.2 are needed to allow types to depend on previously transmitted
values. We note the formal differences in Subsection 3.3.2. Furthermore, many
of the statements in this section technically require some renaming to avoid
internal name clashes and connect to the correct interfaces. These detract from
the legibility of statements; wewill therefore describe them less formally in this
section, leaving the details to Subsection 3.3.6.

3.3.1 Knowledge Respecting Systems

The Algebraic Group Model [FKL18] popularised the idea of “algebraic” adver-
saries, which must adhere to outputting group elements through a representa-
tion describing how they may be constructed from input group elements. Secu-
rity proofs in the AGM assume that all adversaries are algebraic and therefore
the representation of group elements can be directly accessed in the reduction –
by assumption it is provided by the adversary itself.

While this is equivalent to an extractor-based approach, for compositionwe
will follow a similar “algebraic” approach. The premise is that for any random
system 𝑅 outputting (among other things) knowledge-implying objects in 𝔎, it
is possible to construct an equivalent random system 𝔎(𝑅), which outputs the
corresponding witnesses as well, provided each step of the random system is
governed by a𝔎-respecting algorithm.
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Recall that a random system is an infinite sequence of probability distribu-
tions. As this is not in itself useful for applying Definition 3.1, we instead in-
terpret them as an equivalence class over stateful, interactive, and probabilistic
algorithms [LM20], with associated input and output types. For any such typed
algorithm𝐴 and knowledge assumption𝔎pp,𝐴 can be separated into𝐴1 and𝐴2,
where𝐴1 outputs only a series of [𝑋pp] values and𝐴2 all the remaining informa-
tion, such that 𝐴’s output can be trivially reconstructed by inserting the [𝑋pp]
values of 𝐴1 into the gaps in 𝐴2’s outputs. Likewise, inputs can be split into the
𝐼 and aux inputs used in Game 3.1. Given this, we can define when a random
systemis𝔎-respecting. Eachsuchsystemhasa corresponding “𝔎-lifted” system,
which behaves “algebraically”, in that it also output witnesses.

Definition 3.9 (𝔎-Respecting Systems). A typed random system 𝑅 is said to
be 𝔎-respecting (or 𝑅 ∈ RespSys𝔎), if and only if its equivalence class of state-
ful probabilistic algorithms contains a stateful algorithm 𝐴 that when split as
described in Subsection 3.3.1 into 𝐴1 and 𝐴2, satisfies 𝐴1 ∈ Resp𝔎. For a set �⃗�,
RespSys�⃗� ≔ ⋂𝔎∈�⃗� RespSys𝔎.

Definition 3.10 (�⃗�-Lifted Systems). A typed random system 𝑅 induces a set of
�⃗�-lifted random systems. This is defined by replacing, for any𝔎 = (⋅,𝑋 ,𝑊 ,R) ∈
�⃗�, any (part of) an output from 𝑅with type [𝔎pp]with (a part of) the outputwith
type ⟨𝔎pp, 𝐼𝔎pp

⟩, where 𝐼𝔎pp
is constructed as the set of all prior inputs to 𝑅 of

type [𝔎pp]. The output (part) ⟨x,w⟩
𝐼𝔎pp
𝔎pp

of the lifted systemmust be such that the
equivalent output (part) on the unlifted system is [x]𝔎pp

and (x,w) ∈ R𝔎pp
(𝐼𝔎pp

)
with overwhelming probability.

Theorem 3.2 (�⃗�-Lifting is Possible). For random systems 𝑅 ∈ RespSys�⃗�, at least
one �⃗�-lifting of 𝑅, denoted �⃗�(𝑅), exists.

Proof. Split 𝑅 into algorithms 𝐴𝔎 for each𝔎 ∈ �⃗� and 𝐴∗ for the remaining com-
putation, such that each 𝐴𝔎 outputs only [𝔎] and 𝐴∗ outputs no such values, as
described above. Then, by Assumption 3.1, there exist corresponding extractors
X𝔎 for each𝔎 ∈ �⃗�, such that given the same inputsX𝔎 outputs witnesses to the
knowledge-implying objects output by𝐴𝔎.

Replace𝐴𝔎with𝐴′𝔎, which runs both𝐴𝔎 andX𝔎, and outputs ⟨x,w⟩𝔎, where
[x]𝔎 is the output of 𝐴𝔎 and w is the output of X𝔎. When reassembled into a
random system, this modification satisfies Definition 3.10.
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3.3.2 Basic Type Dependencies

Up to this point we have glossed over an inconsistency in the framework we
presented: It relies on typesdependingon sets of input knowledge andpublic pa-
rameters, however types are staticallydefined, andset frominitialisation. To cir-
cumvent this, we extend the definition of cryptographic networkswith a limited
support for typedependencies, just sufficient for thepurposes of this chapter. To
reason about the origin of public parameters, we first classify which interfaces
can be used as a basis for other types. This definition and that of the network
public parameters arise fromaremutually recursive – they are nevertheless pre-
sented separately for clarity.

Definition 3.11 (Public-read Interface). A countably infinite set 𝐴 = {(i1, o1),
(i2, o2),…} is a public-read interface in a cryptographic network 𝑁 if each of the
following conditions hold:

1. All interfaces names are valid: ∀j ∈ ℕ: ∃n1, n2 ∈ 𝑁 : ij ∈ 𝐼n1 ∧ oj ∈ 𝑂n2 .

2. The types of all input interfaces are 𝟙.

3. The types of all output interfaces are equal.

4. Passing ⊤ to each input interface will:

(a) Cause the corresponding output interface to output a valuematching
all others output by this public-read interface in the past, indepen-
dent of which interface is queried.

(b) Not impact any subsequent execution (that is, not change the system
state).

Anexampleof a commonpublic-read interface is a commonreference string,
provided it has an explicit setup step, that is, the CRS is not selected on the first
query. Wemake use of public-read interfaces by allowing them to parameterise
types of other interfaces in the system, for instance to be used as public param-
eters in knowledge assumption types. We are primarily interested in infinite
sets to ensure that arbitrarily many additional interfaces can be created, a fact
exploited to ensure the uniqueness of interface names in𝔎-lifting.

These changes cumulate in a fairly minor change in the definition of cryp-
tographic networks and their execution, which does not affect the subsequent
proofs and definitions presented in Section 3.2.
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Definition 3.12 (Simply Dependently Typed Cryptographic Networks). A
simply dependently typed cryptographic network 𝑁 (over a set of knowledge
assumptions �⃗�) is defined as in Definition 3.2, with the followingmodifications:

1. Let 𝑅 be a set of public read interfaces associated with𝑁 , and 𝐼 be all inter-
faces in 𝑁 . Then there exists a partial order ≺ ⊂ 𝑅 × (𝑅 ⊎ 𝐼 ) indicating type
dependencies.

2. If𝐴,𝐵 ∈ 𝑅 and𝐴 ≺ 𝐵, then for all (⋅, o) ∈ 𝐵,𝐴 ≺ o.

3. Nodes depending on a public-read interface must have access to it: ∀n ∈
𝑁 , a ∈ 𝐼n ∪ 𝑂n,𝐴:𝐴 ≺ a ⟹ ∃(i, o) ∈ 𝐴: o ∈ 𝐼n ∧ i ∈ 𝑂n.

4. For each node n ∈ 𝑁 and knowledge assumption𝔎 ∈ �⃗�, during execution,
eachmessage received on an interface in 𝐼n is statefully recorded in 𝐼 n𝔎.

5. For all n ∈ 𝑁 , a ∈ 𝐼n ∪ 𝑂n, τn(a) returns a function taking the following
inputs:

• For each𝔎 ∈ �⃗�, 𝐼 n𝔎.
• For all𝐴 ∈ 𝑅:𝐴 ≺ a, the output value of the public-read interface.

The output of this function is the type of this interface given a specific execu-
tion state (𝐼𝔎 and public-read interface values).

6. Interface typesmatch if their concrete typematches at all possible system
states, where typematching is relaxed to allow the output type to be a sub-
set6 of the input type. In particular, note that 𝐼1 ⊆ 𝐼2 ⟹ ⟨𝔎, 𝐼1⟩ ⊆ ⟨𝔎, 𝐼2⟩.

Typically theeasiestway toensure that interfacesarematching inall possible
states is to ensure they depend on the same public-read interface. The rest of
Section 3.2 can be established analogously for simply dependently typed cryp-
tographic networks, with themodification of using the above definition of inter-
facematching.

Definition 3.13 (Public parameters). A public-read interface 𝐴 supplies the
public parameters for a knowledge assumption 𝔎 = (init,…) if and only if its

6Where subsets of types are constructed by ⟨𝔎pp, 𝐼1⟩ ⊆ ⟨𝔎pp, 𝐼2⟩ ⟺ R𝔎pp
(𝐼1) ⊆ R𝔎pp

(𝐼2), and
for all other defined naturally over all recursive types, for instance τ∗ ⊆ τ′∗ ⟺ τ ⊆ τ′.
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output type is 𝟙 + 𝑂, where 𝑂 is the type of the codomain of init, with inj1(⊤) in-
dicating the public parameters are uninitialised, and the output value v satisfies
the following criteria:

1. Initially, v = inj1(⊤).

2. The value v changes at most once during any execution and, if it does, it is
distributed according to inj2(init).

Wewill largely use this implicitly – for pp being the value supplied by such a
public-read interface, we will write 𝑋pp, 𝑊pp, Rpp and 𝔎pp as usual – for pp =
inj2(pp′), these are synonyms for 𝑋pp′ , etc., while for pp = inj1(⊤), the unini-
tialised state is captured by defining 𝑋inj1(⊤) ≔ 𝑊inj1(⊤) ≔ Rinj1(⊤) ≔ ∅.

3.3.3 Lifting Networks for Knowledge Extraction

The set of �⃗�-respecting random systems RespSys�⃗�, along with the transforma-
tion �⃗�(𝑅) for any 𝑅 ∈ RespSys�⃗�, provides a means of lifting individual random
systems. Applied to networks, it is clear something more is necessary – the
lifting does not preserve the types of output interfaces, and to permit these to
match again some additional changes need to bemade to the networks. Looking
forward, the lifted systems will interact with a separate, universal node rEPO,
which stores witnesses for the simulator to access.

We extend the notion of �⃗�-respecting to apply to networks, a network
is �⃗�-respecting if and only if all vertices in it are also �⃗�-respecting (we will
use RespNet�⃗� as the corresponding set of �⃗�-respecting networks7). In lifting
networks in this set, not only is each individual node lifted, but all outgoing
connections are connected to a new node, which we name CHArOn, which acts
as a relay; re-erasing witnesses, while also informing a central repository of
knowledge (outside of this network) of any witnesses it processes. We take the
name from the ferryman of the dead in ancient Greek mythology, who in our
case demands his toll in knowledge rather than coins. For any �⃗�-respecting
network𝑁 , we define the lifting �⃗�(𝑁 ) as follows:

Definition 3.14 (Network Lifting). The network lifting �⃗�(𝑁 ) for any crypto-
graphic network 𝑁 ∈ RespNet�⃗� is defined to compose as expected. In particular,

7This set also forbids interface name clashes with rEPO, ensuring this can be safely inserted
and is a subset of ∗.
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if there exists �⃗�′,𝑁 ′:𝑁 = �⃗�′(𝑁 ′), then �⃗�(𝑁 ) is defined as (�⃗� ∪ �⃗�′)(𝑁 ′). Oth-
erwise8, �⃗�(𝑁 ) is defined as consisting of nodes n′ for each node n ∈ 𝑁 , where
𝑅n′ = �⃗�(𝑅n) and each output interface is renamed to a unique9 new interface
name. For each output interface now named x and previously named y in 𝑁 ,
�⃗�(𝑁 ) contains a new node CHArOn(�⃗�, adv), where adv denotes if the interface
is adversarial, connected to free interfaces on the knowledge repository rEPO
and the public parameters for each knowledge assumption. Note that rEPO is
not part of the lifted network itself, which allows disjoint networks to remain
disjoint when lifted.

Where CHArOn is defined as follows:

Node CHArOn(�⃗�, adv)
This node intercepts an outgoing message of �⃗�(𝑅) and maps it to the correspond-
ing message 𝑅 would have output, as well as sending the additional witnesses to
rEPO(𝔎). adv indicates if this node should be adversarial or not. τ and τ′ represent
the arbitrary types of the interface in𝔎(𝑅) and 𝑅 respectively, differing only in that
τ has instances of [𝔎] replaced with ⟨𝔎, 𝐼 ⟩.

Interfaces and their types:

Type Description
a/b τ/τ′ The input and output messages
ppo,𝔎/ppi,𝔎 τpp,𝔎/𝟙 Public parameters read interface (for all𝔎 ∈ �⃗�)
ki,𝔎/ko,𝔎 𝑋pp ×𝑊pp/𝟙 The knowledge output interface

(for all𝔎 = (⋅,𝑋 ,𝑊 , ⋅) ∈ �⃗�, pp as received on ppo,𝔎)

𝐼 = {a} ∪ { ki,𝔎 ∣ 𝔎 ∈ �⃗� },𝑂 = {b} ∪ { ko,𝔎 ∣ 𝔎 ∈ �⃗� },𝐴 = {a, b} if adv, ∅ otherwise

When receiving x on interface a:

Recursively replace all ⟨x,w⟩𝔎pp
values in x with [x]𝔎pp

where the corresponding
part of τ′ does not have type ⟨𝔎pp, ⋅⟩. Record the list of such values in 𝐾𝔎 for each
𝔎 ∈ �⃗�.
for𝔎 ∈ �⃗� do

for ⟨x,w⟩𝔎pp
∈ 𝐾𝔎 do

8Note that this is well-founded recursion, due to the base-case of �⃗� = ∅ and as the order in
which knowledge assumptions are added does not affect CHArOn or rEPO.

9Where we assume uniqueness, this is assumed globally: In �⃗�(𝐴)�⃗�(𝐵), the uniquely selected
interface names should not clash, therefore being the same as �⃗�(𝐴𝐵).
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output (x,w) on ki,𝔎
require response ⊤ on ko,𝔎

output x on b

The node rEPO(𝔎) collects witnesses from CHArOn and provides adversar-
ial access to them. rEPO allows for some variation. For instance, it could:

1. Return the set of all witnesses.

2. Return at most one witness.

3. Abort when no witness is available.

4. For recursive witnesses (such as those used in the AGM and KEA assump-
tions), consolidate the witness into a maximal one, by recursively resolv-
ing (InPUT, i) terms.

We focus on 1., as it is the simplest, although we also specify the case of 4., as it
matches reality more closely. First, 1. is formally defined:

Node rEPO(𝔎)
This node stores all transmitted witnesses in the network and permits adversarial
querying of statements, returning all appropriate witnesses. Where pp is used, it is
as received on the public parameter read interface ppo.

State variables and initialisation values:

Variable Description
𝐾 : (𝑋pp ×𝑊pp)∗ ≔ ε List of acquired knowledge

Interfaces and their types:

Type Description
kji,𝔎/k

j
o,𝔎 𝑋pp ×𝑊pp/𝟙 Knowledge inputs

ppo,𝔎/ppi,𝔎 τ𝔎pp
/𝟙 Public parameters

xj𝔎/w
j
𝔎 𝑋pp/𝑊 ∗

pp Witness request

𝐼 = { kji,𝔎, x
j
𝔎 ∣ j ∈ ℕ } ∪ {ppo,𝔎}

𝑂 = { kjo,𝔎,w
j
𝔎 ∣ j ∈ ℕ } ∪ {ppi,𝔎}

𝐴 = { xj𝔎,w
j
𝔎 ∣ j ∈ ℕ }
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When receiving (x,w) on interface kji:

let 𝐾 ← (x,w),𝐾
output ⊤ on kjo

When receiving x on interface xj:

letw ← ε
for (x′,w′) in 𝐾 do

if x = x′ then letw ← w′,w

outputw onwj

4 can be defined as:

Node rEPO(𝔎)
This node stores all transmitted witnesses in the network and permits adversarial
querying of statements, returning all appropriate witnesses. Witnesses w are as-
sumed tobe representable as (a,w1,… ,wn),where a ∉ 𝑊 andwi ∈ 𝑊 . Any (InPUT, i),
at any level of the tree, is recursively substituted with the first alternatively avail-
able witness, if possible. It is assumed that the result is still in𝑊 . Where pp is used,
it is as received on the public parameter read interface ppo.

State variables and initialisation values:

Variable Description
𝐾 : (𝑋pp ×𝑊pp)∗ ≔ ε List of acquired knowledge

Interfaces and their types:

Type Description
kji,𝔎/k

j
o,𝔎 𝑋pp ×𝑊pp/𝟙 Knowledge inputs

ppo,𝔎/ppi,𝔎 τ𝔎pp
/𝟙 Public parameters

xj𝔎/w
j
𝔎 𝑋pp/𝑊 ∗

pp Witness request

𝐼 = { kji,𝔎, x
j
𝔎 ∣ j ∈ ℕ } ∪ {ppo,𝔎}

𝑂 = { kjo,𝔎,w
j
𝔎 ∣ j ∈ ℕ } ∪ {ppi,𝔎}

𝐴 = { xj𝔎,w
j
𝔎 ∣ j ∈ ℕ }

When receiving (x,w) on interface kji:

if w ≠ (InPUT, x) then
let 𝐾 ← (x,w),𝐾
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output ⊤ on kjo
When receiving x on interface xj:

letw ← ε;𝐾 ′ ← 𝐾
while 𝐾 ′ = (x′,w′),𝐾″ do

if x = x′ then letw ← unwind(w′),w
let 𝐾 ′ ← 𝐾″

outputw onwj

Helper procedures:

procedure unwind((a,w1,… ,wn))
for i inℤn where ∃x:wi+1 = (InPUT, x) do

for (x′,w′) in 𝐾 do
if x = x′ then

letwi+1 ← unwind(w′)
break

return (a,w1,… ,wn)

The set of valid �⃗�-distinguishers𝔇�⃗� is defined with respect to rEPO, where
we assume the choice of variation is made separately for each knowledge as-
sumption. Informally, it ensures that all parts of the distinguisher are �⃗�-lifted,
and the distinguisher collects all witnesses in a central knowledge repository
rEPO, but does not retrieve witnesses from this, effectively only providing
access to the simulator.

Definition 3.15 (�⃗�-Distinguishers). The set of valid �⃗�-distinguishers 𝔇�⃗�, for
any set of knowledge assumptions �⃗�, is defined as the closure under internal
renaming of

{ �⃗�(𝑁 ) ∪ ⋃
𝔎∈�⃗�

rEPO(𝔎)
||||
𝑁 ∈ RespNet�⃗� } .

Note that as𝑁 ∈ RespNet�⃗�, it cannot directly connect to any of the rEPO nodes.

As the number of rEPO and public parameter interfaces may differ be-
tween the real and ideal world, we must normalise them before establishing
indistinguishability. To do so, we wrap both worlds to contain an additional
node ⊥ which consumes all remaining interfaces, depending on the number
already used. This node depends on which interfaces are consumed in the
world, and we therefore formally also define a wrapper which roughly says
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“consume all remaining interfaces”, specifically for the rEPO interfaces and
public parameters. In the remainder of this section, we leave this wrapper as
implicit, with it detailed in Subsection 3.3.6. Formally, the ⊥ node is specified as:

Node ⊥(�⃗�,n)
This node does nothing, except connect to dangling ki,𝔎/ko,𝔎, x𝔎/w𝔎, and ppo,𝔎/ppi,𝔎
interfaces. n: �⃗� → ℕ3 represents the number of each interface not to connect to and
wewill denote (a𝔎, b𝔎, c𝔎) ≔ n(𝔎).

Interfaces and their types:

Type Description
kjo,𝔎/k

j
i,𝔎 𝟙/𝑋pp ×𝑊pp Knowledge repository inputs

ppo,𝔎/ppi,𝔎 τ𝔎pp
/𝟙 Public parameters

wj
𝔎/x

j
𝔎 𝑋pp Witness requests

𝐼 = { kj+a𝔎o,𝔎 ,wj+b𝔎
𝔎 , ppj+c𝔎o,𝔎 ∣ j ∈ ℕ }

𝑂 = { kj+a𝔎i,𝔎 , xj+b𝔎𝔎 , ppj+c𝔎i,𝔎 ∣ j ∈ ℕ }
𝐴 = { xj+b𝔎𝔎 ,wj+b𝔎

𝔎 j ∣ j ∈ ℕ }

When receiving any input:

abort

A minor result of interest can be obtained in the case that a cryptographic
networkdoes notmakeuse of a knowledge assumption. Formally,wedefine this
as �⃗�-agnosticism.

Definition3.16 (�⃗�-(Semi-)Agnostic). Acryptographicnetwork𝐴 is �⃗�-agnostic
if andonly if nooutputswitha component y: [𝔎pp] for any𝔎pp ∈ �⃗�are evermade.
A cryptographic network 𝑅 is semi-𝔎-agnostic if and only if any output with a
component y: [𝔎pp]was previously received as an input.

Given these definitions, existing indistinguishability and constructions results
between 𝔎-respecting networks can be lifted to equivalent results between the
lifted networks with respect to𝔎-distinguishers:

Lemma 3.4 (Indistinguishability Lifting). If 𝐴1𝐴2
ε,𝔇�⃗�1∼ 𝐵1𝐵2, where for i ∈

{1, 2},𝐴i,𝐵i ∈ RespNet�⃗�2
, �⃗�1 ∩ �⃗�2 = ∅, and �⃗� ≔ �⃗�1 ∪ �⃗�2, then:

𝐴1𝐴2
ε,𝔇�⃗�1∼ 𝐵1𝐵2 ⟹ 𝐴1�⃗�2(𝐴2)

ε,𝔇�⃗�∼ 𝐵1�⃗�2(𝐵2).

Chapter 3. Composition with Knowledge Assumptions 94



Proof. Recall from Definition 3.7 that three conditions need to be satisfied for
indistinguishability: a) Unbound interfaces must match, b) δ𝔇(𝐴,𝐵) ≤ ε, and c)
the set of distinguishers must be closed under internal renaming.

For any �⃗�,𝔇�⃗� is closed under internal renaming by definition. Furthermore,
as the interfaces of𝐴1𝐴2 and 𝐵1𝐵2 match by precondition and interfaces not re-
lated directly to the knowledge assumption are preserved (with only their types
beingmodified equally). For this point we only need to consider the knowledge-
supplying, public parameter and knowledge-querying interfaces, which will be
equal due to the definition of ⊥-lifting and �⃗�2(⋅) using the same types.
It remains to show

sup
𝐷∈𝔇�⃗�

Δ𝐷(𝐴1�⃗�2(𝐴2),𝐵1�⃗�2(𝐵2)) =

sup
𝐷∈𝔇�⃗�

|Pr(𝐷𝐴1�⃗�2(𝐴2) = 1) − Pr(𝐷𝐵1�⃗�2(𝐵2) = 1)| ≤ ε.

Consider how the behaviour of 𝐷𝐴1�⃗�(𝐴1) and 𝐷𝐵1�⃗�(𝐵2) differs from 𝐷′𝐴1𝐴2

and 𝐷′𝐵1𝐵2 respectively, where 𝐷′ is 𝐷 without rEPO(𝔎) (with any internal
connections being replaced with a dummy rEPO with no other purpose) for
𝔎 ∈ �⃗�2, not exporting public-parameter interfaces. 𝐴2 lacks CHArOn nodes
which impart knowledge to 𝐷’s rEPO(𝔎) nodes (for 𝔎 ∈ �⃗�2). However, as in
𝐷𝐴1�⃗�2(𝐴2) these nodes do not reveal any information to the distinguisher (as
the distinguisher cannot connect to the knowledge exporting interfaces, and
as 𝐴1 is �⃗�2-respecting) and neither reveals any information to the network
𝐴1�⃗�2(𝐴2) (due to the ⊥-lifting forcing these to be a no-op), this additional
mechanism has no impact on the behaviour. As a result, the output of 𝐷′𝐴1𝐴2

equals that of𝐷𝐴1�⃗�2(𝐴2). As𝐷′ ∈ 𝔇�⃗�1
, we have

|Pr(𝐷′𝐴1𝐴2 = 1) − Pr(𝐷′𝐵1𝐵2 = 1)| ≤ ε ⟹
|Pr(𝐷𝐴1�⃗�2(𝐴2) = 1) − Pr(𝐷𝐵1�⃗�2(𝐵2) = 1)| ≤ ε.

Lemma 3.5 (Construction Lifting). For𝐴1,2,𝐵1,2, α1,2 ∈ RespNet�⃗�2
and �⃗�1, �⃗�2

where �⃗�1 ∩ �⃗�2 = ∅ and �⃗� ≔ �⃗�1 ∪ �⃗�2:

𝐴1𝐴2
ε,α1α2,𝔇�⃗�1 𝐵1𝐵2 ⟹ 𝐴1�⃗�2(𝐴2)

ε,α1�⃗�2(α2),𝔇�⃗� 𝐵1�⃗�2(𝐵2).

Proof. Recall from Definition 3.8 that network construction 𝐴 ε,α,𝔇 𝐵 has two
separate conditions: α and 𝐵must have disjoint honest unbound interfaces, and
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𝐴

𝐷∈𝔇𝔎

𝔎 ⊥

≈
α

𝐷∈𝔇𝔎

𝐵

𝔎 ⊥

Figure 3.3: A visual representation of the 𝐴 α,𝔇𝔎 𝐵 experiment. The small
points denote CHArOn(𝔎) nodes, while 𝔎 denotes the rEPO(𝔎) node. Public
parameters have been omitted. Note that outside of 𝐷 CHArOn nodes are per-
mitted, but not required.

𝐴 ε,𝔇∼ α𝐵. From the precondition, we know that α′ and 𝐵′ (defined as above) have
disjoint honest interfaces. Interface names do not get changed through the �⃗�2

lifting, however new interfaces do get added. There is no clash in these inter-
faces, due to the global uniqueness requirement in the lifting. Furthermore, the
⊥-lifting will be the same for all 𝔎 ∈ �⃗�1 and normalise the interfaces available
for𝔎 ∈ �⃗�2.
It remains to show:

𝐴1�⃗�2(𝐴2)
ε,𝔇�⃗�∼ α1�⃗�2(α2)𝐵1�⃗�2(𝐵2),

which by Lemma 3.4 follows from 𝐴1𝐴2
ε,𝔇�⃗�1∼ α1𝐵1α2𝐵2, which in turn holds as

part of the precondition.

We visualise the construction experiment against a knowledge-respecting
distinguisher set𝔇𝔎 in Figure 3.3. Thismaybe contrastedwith Figure 3.2, which
does not have rEPO(𝔎) and does not allow the simulator to extract.

Lemma 3.6 (𝔇�⃗� Closure). 𝔇�⃗� is closed under sequential composition with lifted (with
respect to �⃗�) networks in RespNet�⃗�: ∀𝑅 ∈ RespNet�⃗�:𝔇�⃗��⃗�(𝑅) ⊆ 𝔇�⃗�
Proof. Follows immediately from RespNet�⃗� being closed under set union, and
Definition 3.15 stating that any �⃗�-lifted network has a corresponding distin-
guisher in𝔇�⃗�.

As a stricter set of knowledge assumptions corresponds to a smaller set of
permissible distinguishers, indistinguishability and construction results can be
transferred to larger sets of knowledge assumptions. A proof without knowl-
edge assumptions is clearly ideal – it still holds, regardless which knowledge
assumptions are added.
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Lemma 3.7 (Knowledge Weakening). In addition to weakening with respect to a
subset of distinguishers being possible, weakening is also possible for distinguishers with a
greater set of knowledge assumptions. For all𝐴,𝐵, 𝐶, α ∈ ∗, �⃗�1, �⃗�2, where �⃗�1 ⊆ �⃗�2:

𝐴
ε,𝔇�⃗�1

𝐶
∼ 𝐵 ⟹ 𝐴

ε,𝔇�⃗�2
𝐶

∼ 𝐵 (3.13)

𝐴
ε,α,𝔇�⃗�1

𝐶
𝐵 ⟹ 𝐴

ε,α,𝔇�⃗�2
𝐶

𝐵 (3.14)

Proof. For (3.13), it is sufficient to show that

sup
𝐷∈𝔇�⃗�1

𝐶
Δ𝐷(𝐴,𝐵) ≥ sup

𝐷∈𝔇�⃗�2
𝐶
Δ𝐷(𝐴,𝐵)

For this it is sufficient to show that every𝐷 ∈ 𝔇�⃗�2
𝐶 has an equivalent𝐷′ ∈ 𝔇�⃗�1

𝐶 :

∀𝐷 ∈ 𝔇�⃗�2
𝐶 : ∃𝐷′ ∈ 𝔇�⃗�1

𝐶 :𝐷𝐴 = 𝐷′𝐴 ∧ 𝐷𝐵 = 𝐷′𝐵.

For each distinguisher 𝐷 in 𝔇�⃗�2
𝐶, it consists of: a) 𝐶 itself, b) rEPO(𝔎) nodes

for every 𝔎 ∈ �⃗�2, and c) �⃗�2(𝐴) nodes for some 𝐴 ∈ RespNet�⃗�2
. For 𝐷′ in 𝔇�⃗�1

the same applies, howeverwith fewer rEPO(𝔎)nodes and a �⃗�1(𝐴)wrapping for
𝐴 ∈ RespNet�⃗�1

instead. As �⃗�1 ⊆ �⃗�2, RespNet�⃗�1
⊇ RespNet�⃗�2

, and it is therefore
sufficient to show that the different wrapper and lack of additional rEPO nodes
does not change the behaviour. This follows directly as the effect of the addi-
tional wrapper in �⃗�2 \ �⃗�1 can be emulated without changing whether a node is
�⃗�1-respecting, and likewise rEPO nodes are trivially �⃗�1-respecting, as they do
not produce knowledge-implying objects themselves. It follows that for every
distinguisher 𝐷 ∈ 𝔇�⃗�2

we can construct a semantically identical distinguisher
𝐷′ ∈ 𝔇�⃗�1

.

(3.14) follows directly from (3.13) and Definition 3.8.

Lemma 3.8 (Agnostic Indistinguishability). For �⃗�1 ⊆ �⃗�2, any �⃗�1-agnostic (resp.
semi-�⃗�1-agnostic) network 𝐴 and 𝐶 ∈ ∗, where 𝔎 ∈ �⃗�1 uses a basic (resp. recursive un-
winding)rEPO(𝔎) node:

𝐴
0,𝔇�⃗�2

𝐶
∼ �⃗�1(𝐴)

Proof. We consider the semantic behaviour of𝐷𝐶𝐴 and𝐷𝐶�⃗�1(𝐴) for all𝐷 ∈ 𝔇�⃗�1
.

First, consider the case of 𝐴 being �⃗�1-agnostic. In this case, the �⃗�1 wrapper
around 𝐴 has no impact on the semantics – the additional CHArOn nodes give
no information to rEPO, as there is no information to relay. Their behaviour is
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therefore simply to relay – the same as when they are absent. As a result 𝐷𝐶𝐴
behaves exactly like𝐷𝐶�⃗�1(𝐴), implying a statistical distance of zero.

If 𝐴 is only semi-�⃗�1-agnostic, CHArOn does include some witnesses, how-
ever they are always (InPUT, ⋅). Combinedwith the fact that these are actively ig-
nored by the recursive unwinding rEPO, this again has no impact on semantics.
Through the same reasoning, it is possible to mix fully-𝔎-agnostic and semi-𝔎
agnostic for different knowledge assumptions𝔎 ∈ �⃗�1, provided the correspond-
ing rEPO(𝔎) are basic and recursive unwinding respectively.

3.3.4 A Restricted Composition Theorem

The rules established inTheorem3.1 still hold, and it is clearwhya simplification
as in Corollary 3.2 is not possible – it assumes that the distinguisher set 𝔇 is
closedunder sequential compositionwith simulatorsandnetworks,which isnot
the case for𝔇�⃗�.

Theorem 3.1 already provides a sufficient condition for what needs to be
proven to enable this composition, however we can go a step further: While𝔇�⃗�
is not closed under sequential composition with arbitrary networks, it is closed
under sequential composition with knowledge-lifted networks. We can use
this fact to establish a simplified composition theoremwhen composing with a
�⃗�-liftedproof or network component. Weobserve that this implies composition
withproofswhichdonot utilise knowledge assumptions, as they are isomorphic
to �⃗� = ∅. In particular, Constructive Cryptography proofs directly imply
construction in the context of this paper aswell, and can therefore be composed
with protocols utilising our framework freely.

Theorem3.3 (KnowledgeComposition). Whencomposingproofs against �⃗�1 or �⃗�2

distinguishers, where �⃗�1 ∩ �⃗�2 = ∅ and �⃗� ≔ �⃗�1 ∪ �⃗�2, the following simplified composition
rules of transitivity (3.15) and subgraph substitution (3.16) apply. For all 𝐴,𝐵, α ∈
RespNet�⃗�2

, 𝐹 ∈ RespNet�⃗�, 𝐶,𝐷, 𝐸, β, γ ∈ ∗, ε, ε1, ε2.

⎡
⎢
⎢
⎢
⎢
⎣

𝐴
ε1,α,𝔇�⃗�1 𝐵

∧

𝐵
ε2,β,𝔇�⃗�2 𝐶

⎤
⎥
⎥
⎥
⎥
⎦

∧ αβ𝐶 ∈ ∗ ⟹ 𝐴 ε1+ε2,�⃗�2(α)β,𝔇�⃗� 𝐶 (3.15)

𝐷 ε,γ,𝔇�⃗� 𝐸 ∧ 𝐼𝑂H(𝐹 ) ∩ 𝐼𝑂H(γ𝐸) = ∅ ⟹ �⃗�(𝐹)𝐷 ε,γ,𝔇�⃗� �⃗�(𝐹 )𝐸 (3.16)
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Proof. The proof is done in parts.

Transitivity. By Lemma 3.6 and (3.5):

𝐵
ε2,β,𝔇�⃗�2 𝐶 ⟹ 𝐵

ε2,β,𝔇�⃗�2
�⃗�2(α) 𝐶 .

By Lemma 3.5 and preconditions, �⃗�2(𝐴)
ε1,�⃗�2(α),𝔇�⃗� �⃗�2(𝐵) and, by Lemma 3.7

(3.14), 𝐵 ε2,β,𝔇�⃗��⃗�2(α) 𝐶 . Therefore:

𝐴 ε1,�⃗�2(α),𝔇�⃗� 𝐵 ε2,β,𝔇�⃗��⃗�2(α) 𝐶,

and by Theorem 3.1 (3.7) (and αβ𝐶 ∈ ∗ implying �⃗�2(α)β𝐶 ∈ ∗)

𝐴 ε1+ε2,�⃗�2(α)β,𝔇�⃗� 𝐶 .

Subgraph substitution. ByLemma3.6,𝔇�⃗��⃗�(𝐶) ⊆ 𝔇�⃗�. Therefore, the precon-

dition can be weakened (3.5) to 𝐴 ε,α,𝔇�⃗��⃗�(𝐶) 𝐵. The rest follows by Theorem 3.1
Equation (3.8) and the honest networks intersection not being affected by the
�⃗�-lifting.

3.3.5 Reusing Knowledge Assumptions

Theorem 3.3 and its supporting lemmas prominently require disjoint sets of
knowledge assumptions. The primary reason for this lies in the definition of �⃗�
using the union of the knowledge assumptions �⃗�1 and �⃗�2 – all statements could
alsobemadeusingadisjointunionhere instead. If knowledgeassumptionswere
not disjoint, this would place an unreasonable constraint on the distinguisher
however: It would prevent it from copying information from one instance of a
knowledge assumption to another instance of the same knowledge assumption,
something any adversary is clearly capable of doing.

Equality for knowledge assumptions is not really well defined, and indeed
knowledge assumptions may be related. The disjointness requirement is there-
fore more a statement of intent than an actual constraint and we stress the im-
portance of it for reasonably constraining the distinguisher set here: If the dis-
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tinguisher is constrained with respect to two instances of knowledge assump-
tionswhich are related, itmay not be permitted to copy fromone two to another
for instance, an artificial and unreasonable constraint.

Care must be taken that knowledge stemming from one knowledge assump-
tion does not give an advantage in another. In many – but not all – cases this
is easy to establish, for instance, we conjecture that multiple instances with the
AGM with independently sampled groups are sufficiently independent. If this
care is not taken, the union of two knowledge assumptions may be greater than
the sum of its parts, as using both together prevents the distinguisher from ex-
ploiting structural relationships between the two, something a real adversary
may do.

3.3.6 Formal Renamings and Liftings in Section 3.3

InDefinition 3.14, CHArOn(�⃗�, adv) nodes have the renaming [a/x, b/y][ko,𝔎/kji,𝔎,
ki,𝔎/k

j
o,𝔎, ppi,𝔎/i

l
𝔎, ppi,𝔎/o

l
𝔎 ∣ 𝔎 ∈ �⃗�] applied to them, where j and l are uniquely

assigned, and (il𝔎, ol𝔎) are members of the public-read interface providing 𝔎’s
public parameters, as defined in Subsection 3.3.2, Definition 3.13. If this public-
parameter interface is already fully used, by the nature of countable infinity,
space can bemade by partial renaming.

In Definition 3.15, rEPO(𝔎) has the renaming [ppi,𝔎/ppni,𝔎, ppo,𝔎/ppno,𝔎] ap-
plied to it, for any n ∈ ℕ, selected separately for each knowledge assumption
𝔎.

If the distinguisher consumes the first n knowledge-supplying rEPO inter-
faces andm public-parameter interfaces, and the network𝐴 consumes the next
a of the former, b of the latter, and c of the knowledge-query interfaces, then
�⃗�⊥(𝐴,n), where n encodes the connections used by the distinguisher, will use
all countably infinite interfaces through a new ⊥ instance. This normalises the
connections betweenmultiple different resources.

Definition 3.17 (⊥-Lifting). The lifting �⃗�⊥(𝐴,n) for any network 𝐴 using a𝔎
knowledge-supplying interfaces (for𝔎), b𝔎 public-parameter interfaces (for𝔎),
and c𝔎 knowledge-query interfaces (for 𝔎), and any n: �⃗� → ℕ2 is defined as
𝐴′ ∪ {⊥(�⃗�,n′)}, where: 𝐴′ is 𝐴 with all the above a𝔎 interfaces renamed to fall
between a𝐷,𝔎 + 1 and a𝐷,𝔎 + a𝔎, and likewise with b𝔎 and c𝔎 to be between 1 and
c𝔎. n′ is defined by n′(𝔎) = (a𝐷,𝔎 + a𝔎, b𝐷,𝔎 + b𝔎, c𝔎), with (a𝐷,𝔎, b𝐷,𝔎) = n(𝔎).
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In Lemma 3.4, a more formal statement of

𝐴1𝐴2
ε,𝔇�⃗�1∼ 𝐵1𝐵2 ⟹ 𝐴1�⃗�2(𝐴2)

ε,𝔇�⃗�∼ 𝐵1�⃗�2(𝐵2)

using ⊥-lifting is that ∀(n: �⃗�2 → ℕ2):

let𝐴′ = �⃗�⊥
2(�⃗�2(𝐴2),n),𝐵′ = �⃗�⊥

2(�⃗�2(𝐵2),n) in𝐴1𝐴′ ε,𝔇�⃗�∼ 𝐵1𝐵′

The simplified notation for construction without ⊥-lifting is stated with re-
naming below:

∀(n: �⃗� → ℕ2): ∃𝐵′, α′, n⃗1, n⃗2,n′:

α′𝐵′ = �⃗�⊥(α𝐵,n) ∧
α′ = α[n⃗1] ∧ 𝐵′ = 𝐵[n⃗2] ∪ {⊥(�⃗�,n′)} ∧

�⃗�⊥(𝐴,n) ε,α′,𝔇�⃗� 𝐵′.
These modifications are necessary to ensure the renaming to use the first n in-
stances can be distributed across α and 𝐵.

3.4 A Composable SNARK

To demonstrate the usefulness of this framework, we will showcase an example
of how it can lift existing results to composability. For brevity, we sketch the
approach instead of providing it in full detail. Specifically, we sketch how, using
the bilinear AGMknowledge assumption𝔎bAGM defined in Subsection 3.1.1 and
an updateable reference string (which will be the focus of Chapter 4, but which
wewill briefly use here), we can implement a succinctNIZK functionality.

We rely on the results of Baghery et al. [BKSV21], which demonstrate that
Groth’s zk-SNARK [Gro16] has simulation extractability, with C∅C∅ [KZM+15]
demonstrating how – once extractability is given – the property-based defini-
tion can be lifted to a simulation-secure one. We conjecture that simulation
extractability holds in the AGM for most zk-SNARKs, however it has not been
proven inmost cases.

Once our proof sketch is complete, we also give a clear example of why uni-
versal composition isnotpossiblewithknowledgeassumptions: Specifically,we
construct a complementary ideal network and simulator which clearly violates
the zero-knowledge properties of the NIZK, and allows distinguishing the real
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and idealworlds. We stress that this is only possible due to it extracting from the
same knowledge assumption.

3.4.1 Construction

Our construction consists of a real and of an ideal world. Throughout the con-
struction,weassumeasetofnparties, identifiedbyanelement inℤn. Weassume
static corruption with at least one honest party – specifically we assume a set of
adversariesA ⊂ ℤn and a corresponding set of honest partiesH ≔ ℤn \A. These
sets cannot be used in the protocols themselves, but are known to the distin-
guisher and non-protocol nodes (that is, can be used to define ideal behaviour).
In all node specifications except𝔾, public-parameter interfaces are omitted and
should be assumed.

𝔎bAGM Parameters. In both worlds, the group initialisation is available as a
common reference string and is specified as the node𝔾:

Node𝔾
This node provides the initialisation of 𝔎bAGM. We assume the domain of init is
τpp,𝔎bAGM

.

State variables and initialisation values:

Variable Description
pp: 𝟙 + τpp,𝔎bAGM

≔ inj1(⊤) Public parameters

Interfaces and their types:

Type Description
initi/inito 𝟙/𝟙 Initialisation
ppji/pp

j
o 𝟙/𝟙 + τpp,𝔎bAGM

Public parameter queries

𝐼 = {initi} ∪ { ppji ∣ j ∈ ℕ }
𝑂 = {inito} ∪ { ppjo ∣ j ∈ ℕ }
𝐴 = ∅

When receiving⊤ on interface initi:

let pp ∗ inj2(init)
output ⊤ on inito
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When receiving⊤ on interface ppji:

output pp on ppjo

SNARKs. The ideal world consists of a proof-malleable NIZK node (nIZK),
found below.

Node nIZK
A proof-malleable NIZK for a relationR. Assumed are the following types: a)𝑋 for
statements,𝑊 for witnesses, Π for proofs.

State variables and initialisation values:

Variable Description
π: (𝑋 × Π)∗ ≔ ε Accepted proofs
π: (𝑋 × Π)∗ ≔ ε Rejected proofs

Interfaces and their types:

Type Description
proveji/prove

j
o 𝑋 ×𝑊 /𝟙 + Π Proving

verifyji/verify
j
o 𝑋 × Π/𝟚 Verifying

mauli/maulo 𝑋 × Π/𝟙 Proof malleability
wito/witi 𝟙 +𝑊 /𝑋 × Π Adversarial witness query
prfo/prfi Π/𝑋 Proof object selection

𝐼 = {mauli,wito, prfo} ∪ { proveji, verify
j
i ∣ j ∈ H }

𝑂 = {maulo,witi, prfi} ∪ { provejo, verifyji ∣ j ∈ H }
𝐴 = {mauli,maulo,witi,wito, prfo, prfi}

When receiving (x,w) on interface proveji:

if (x,w) ∉ R then
output inj1(⊤) on provejo

else
output x on prfi
require response π on prfo
assert (x, π) ∉ π
let π ← (x, π): : π
output inj2(π) on provejo
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When receiving (x, π) on interface verifyji:

if (x, π) ∉ (π ∪ π) then
output (x, π) onwiti
require response r onwito
if ∃w: r = inj2(w) ∧ (x,w) ∈ R then

let π ← (x, π): : π
if (x, π) ∈ π then

output 1 on verifyji
else

let π ← (x, π): : π
output 0 on verifyji

When receiving (x, π) on interfacemauli:

if ∃π′: (x, π′) ∈ π ∧ (x, π) ∉ π then
let π ← (x, π): : π

In the corresponding real-world, we use a zk-SNARK scheme S = (𝑆, 𝑇 , 𝑃 ,
Prove,Verify, SimProve,Xw) satisfying the standard properties of correctness,
soundness, and zero-knowledge in the random oracle model with SRS. Here 𝑆,
𝑇 , and 𝑃 , are the structure function, trapdoor domain, and permissible permuta-
tions of the structured reference strings, which will be discussed in more detail
in Chapter 4. SimProve should take as inputs only the witness x and trapdoor
τ ∈ 𝑇 . In addition, S should be simulation extractable with respect to the AGM–
after any arbitrary interaction, Xw should be able to produce the witness for
any valid statement/proof pair, with the sole exception that the proof was
generated with SimProve. Such white-box simulation extractability has been
under-studied for zk-SNARKs, although it has been established for Groth’s
zk-SNARK [BKSV21] and is plausible to hold in the AGM for most SNARKs.
For this reason, we rely on Groth’s zk-SNARK to concretely instantiate this
example, although we conjecture it applies to other SNARKs, notably Sonic. In
the real-world, an adversarially biased updateable structured reference string
(SrS), parameterised for the SNARK’s reference string, is available, specified as:

Node SrS
The SrS node constructs a (adversarially biased) structured reference string. The
rationale behind this design is formally introduced in Chapter 4 asFuSRS. Assumed
are the following types: a) 𝑇 for trapdoors, b) 𝑆 for reference strings, c) 𝑃 for permis-
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sible permutations over 𝑇 .

State variables and initialisation values:

Variable Description
okj: 𝟚 ≔ inj1(⊤) Initialisation status (j ∈ ℤn)

tH: 𝟙 + 𝑇 ≔ inj1(⊤) Honest trapdoor
t: 𝟙 + 𝑇 ≔ inj1(⊤) Full trapdoor

Interfaces and their types:

Type Description
initji/init

j
o 𝟙/𝟙 SRS initialisation

ninitjo/ninit
j
i 𝟙/𝟙 SRS initialisation notification

srsji/srs
j
o 𝟙/𝑆 SRS query

hsrsi/hsrso 𝟙/𝑆 Honest SRS component query
permo/permi 𝑃/𝟙 Permutation query

𝐼 = {hsrsi, permo} ∪ { initji, ninit
j
o, srs

j
i ∣ j ∈ H }

𝑂 = {hsrso, permi} ∪ { initjo, ninitji, srs
j
o ∣ j ∈ H }

𝐴 = {hsrsi, hsrso, permi, permo} ∪ { ninitjo, ninitji ∣ j ∈ H }

When receiving⊤ on interface initji:

if okj = inj1(⊤) then
let okj ← inj2(⊤)
output ⊤ on ninitji
require response ⊤ on ninitjo

output ⊤ on initjo

When receiving⊤ on interface hsrsi:

if tH = inj1(⊤) then
let tH

∗ inj2(𝑇 )
assert ∃t′: tH = inj2(t′)
output 𝑆(t′) on hsrso

When receiving⊤ on interface srsji:

assert∀k ∈ H: okk = inj2(⊤)
if tH = inj1(⊤) then

let tH
∗ inj2(𝑇 )
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assert ∃t′: tH = inj2(t′)
if t = inj1(⊤) then

output ⊤ on permi

require response p on ko,𝔎
let t ← inj2(p(t′))

assert ∃t′: t = inj2(t)
output 𝑆(t′) on srsjo

Furthermore, for each honest party j ∈ H, an instance of the SNARK pro-
tocol node (SnArK-nODE(j)) is available, which connects to the corresponding
party’s SrS interface and runs the SNARK Prove and Verify algorithms when
queried. In both worlds, the𝔎bAGM public parameters are provided by the node
𝔾. SnArK-nODE(j) is specified as:

Node SnArK-nODE(j)
The SNARK protocol relies on the scheme’s Prove and Verify algorithms, and access
to the (adversarially biased) SRS. Each SnArK-nODE depends on the party ID j. As
SNARKs often rely on a random oracle, an interface to query rO is available.

Interfaces and their types:

Type Description
proveji/prove

j
o 𝑋 ×𝑊 /𝟙 + Π Proving

verifyji/verify
j
o 𝑋 × Π/𝟚 Verifying

srsjo/srs
j
i 𝑆/𝟙 SRS query

rojo/ro
j
i 𝟚κ/𝟚∗ Random oracle query

𝐼 = { proveji, verify
j
i, srs

j
o }

𝑂 = { provejo, verifyji, srs
j
i }

𝐴 = ∅

When receiving (x,w) on interface proveji:

if (x,w) ∉ R then
output inj1(⊤) on provejo

else
output ⊤ on srsji
require response srs on srsjo
output Prove(srs, x,w) on provejo
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When receiving (x, π) on interface verifyji:

output ⊤ on srsji
require response srs on srsjo
output Verify(srs, x, π) on verifyjo

Finally, the SNARK’s Prove and Verify algorithmsmake use of a random ora-
cle, which is available in the real world, providing query interfaces to all parties
(we do not treat the random oracle as a knowledge assumption in this example).
This is specified as:

Node rO
The randomoracle node records queries of arbitrary bit strings and responds either
with an already recorded response, or a value sampled uniformly at random from
𝟚κ.

State variables and initialisation values:

Variable Description
𝐻 : (𝟚∗ × 𝟚κ)∗ ≔ ε Recorded queries

Interfaces and their types:

Type Description
roji/ro

j
o 𝟚∗/𝟚κ Random oracle query

𝐼 = { roji ∣ j ∈ ℤn }
𝑂 = { rojo ∣ j ∈ ℤn }
𝐴 = ∅

When receiving x on interface roji:

let b ← 0
for (x′, h) in𝐻 do

if x = x′ then
let b ← 1
output h on rojo

if b = 0 then
let h ∗ 𝟚κ
let𝐻 ← (x, h),𝐻
output h on rojo
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The ideal-world therefore consists of {nIZK,𝔾} (and the simulator, which
willbe introduced in thesecurityanalysis) andthereal-worldconsistsofSnArK⊎
{SrS, rO,𝔾}, where SnArK ≔ { SnArK-nODE(j) ∣ j ∈ H }. The topology of both
worlds is sketched in Figure 3.4.

BSRS

BΠ

BΠ BΠ

RO
NIZK

Figure 3.4: The Sonic toNIZK topologies. SnArK-nODE is represented byΠand
the public parameter node𝔾 is omitted for clarity.

3.4.2 Security Analysis

The SNARK simulator α both faithfully simulates the SrS node, creates simu-
lated proofs for honest proving queries and extracts witnesses using Xw (which
is given access to rEPO(𝔎bAGM)) from adversarial proofs when requested by the
nIZKnode. Finally, if the simulator fails to extract awitnesswhen asked for one
for a valid proof, it requests amaul.

Node α
The SnArK to nIZK simulator α makes use of a simulated prover from [MBKM19],
SimProve, as well as an assumed extractorXw, whichmakes use of the𝔎bAGM knowl-
edge extraction. Otherwise, the simulator mimics the SrS node, albeit retaining
access to the full trapdoor. When SimProve and Verify require access to the random
oracle, it simulates the behaviour of rO using 𝐻 . This simulated behaviour is also
exported on the corrupted parties ro interfaces.

State variables and initialisation values:

Variable Description
okj: 𝟚 ≔ inj1(⊤) Initialisation status (j ∈ H)

tH: 𝟙 + 𝑇 ≔ inj1(⊤) Honest trapdoor
t: 𝟙 + 𝑇 ≔ inj1(⊤) Full trapdoor
𝐻 : (𝟚∗ × 𝟚κ)∗ ≔ ε Recorded queries
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Interfaces and their types:

Type Description
maulo/mauli 𝟙/𝑋 × Π Proof malleability
witi/wito 𝑋 × Π/𝟙 +𝑊 Adversarial witness query
prfi/prfo 𝑋 /Π Proof object selection
initji/init

j
o 𝟙/𝑆 SRS initialisation

ninitjo/ninit
j
i 𝟙/𝟙 SRS initialisation notification

hsrsi/hsrso 𝟙/𝑆 Honest SRS component query
permo/permi 𝑃/𝟙 Permutation query
w𝔎bAGM

/x𝔎bAGM
𝑊 ∗

pp/𝑋pp Knowledge extraction
roji/ro

j
o 𝟚∗/𝟚κ Random oracle query

𝐼 = {maulo,witi, prfi, hsrsi, permo,w𝔎bAGM
} ∪ { initji, ninit

j
o ∣ j ∈ H } ∪ { roji ∣ j ∈ A }

𝑂 = {mauli,wito, prfo, hsrso, permi, x𝔎bAGM
} ∪ { initjo, ninitji ∣ j ∈ H } ∪ { rojo ∣ j ∈ A }

𝐴 = {maulo,mauli,witi,wito, prfi, prfo, hsrsi, hsrso, permo, permi,w𝔎bAGM
, x𝔎bAGM

} ∪
{ ninitjo, niniji ∣ j ∈ H }

When receiving (x, π) on interfacewiti:

let t′ ← ensureSrs

if Verify(𝑆(t′), x, π) then
letw ← Xw(x, π)
if (x,w) ∈ Rpp then

output inj2(w) onwito
else

output (x, π) onmauli
require response ⊤ onmaulo
output inj1(⊤) onwito

else
output inj1(⊤) onwito

When receiving x on interface prfi:

let t′ ← ensureSrs

assert ∃t′: t = inj2(t′)
return SimProve(𝑆(t′), t′, x)

When receiving⊤ on interface initji:

let okj ← inj2(⊤)
output ⊤ on ninitji
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require response ⊤ on ninitjo
output ⊤ on initjo

When receiving⊤ on interface hsrsi:

if tH = inj1(⊤) then
let tH

∗ inj2(𝑇 )
assert ∃t′: tH = inj2(t′)
output t′ on hsrso

When receiving x on interface roji:

let b ← 0
for (x′, h) in𝐻 do

if x = x′ then
let b ← 1
output h on rojo

if b = 0 then
let h ∗ 𝟚κ
let𝐻 ← (x, h),𝐻
output h on rojo

Helper procedures:

procedure ensureSrs
assert∀k ∈ H: okk = inj2(⊤)
if tH = inj1(⊤) then

let tH
∗ inj2(𝑇 )

assert ∃t′: tH = inj2(t′)
if t = inj1(⊤) then

output ⊤ on permi

require response p on ko,𝔎
let t ← inj2(p(t′))

assert ∃t′: t = inj2(t)
return t′

Theorem 3.4 (SNARKs Constructs NIZKs). For any secure SNARK schemeS :

𝔎(SnArK) ⊎ {SrS,𝔎(rO),𝔾} α,𝔇𝔎 {nIZK,𝔾}. (3.17)

Proof (sketch). All honestly generated proofs will verify in both worlds, by def-
inition in the ideal world and by the correctness of the SNARK in the real
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world. Furthermore, the proofs themselves are indistinguishable, by the zero-
knowledge property of the SNARK.

Adversarial proofswhich fail to verifywill also be rejected in the idealworld,
as the simulator will refuse to provide a witness, causing them to be rejected.
As per the above, the extractor Xw is able to (using rEPO(𝔎bAGM)) extract the
witnesses for any adversarial proof which does verify, except for cases of mal-
leability. As S is only (at most) proof-malleable, the simulator can, and does,
account for this by attempting to create amauled proof when extraction fails.

The simulator provides the ideal-world simulation of the SrS node, which
is emulated faithfully except that the simulator has access to the trapdoor. As a
result, this part of the system cannot be used to distinguish.

3.4.3 The Impossibility of General Composition

The two parts of Theorem 3.3 are limitedwhen compared to Corollary 3.2 in two
separate, but relatedways: The closureunder subgraphsubstitution requires the
added node to be a �⃗�-wrapped node, and transitivity requires the two compos-
ing proofs to use separate knowledge assumptions.

Wewill demonstrate that the nicer results fromCorollary 3.2 are not achiev-
able with respect to knowledge-respecting distinguishers, by means of a small
counter-example for both situations.

Theorem 3.5 (Subgraph Substitution is Limited). Subgraph substitution with
knowledge assumptions does not universally preserve secure construction. ∃𝐴,𝐵, 𝐶, α ∈
∗, ε ∈ ℝ, �⃗�:

𝐴 ε,α,𝔇�⃗� 𝐵 ⟹̸ 𝐶𝐴 ε,α,𝔇�⃗� 𝐶𝐵

Proof (sketch). Let 𝐴 be the SNARK real world and 𝐵 be the NIZK ideal world re-
spectively, with α being their simulator and �⃗� being {𝔎bAGM}. Let 𝐶 be a node
which receives elements in 𝑋pp, queries rEPO(𝔎bAGM) and returns the witness
to the distinguisher.

Then the following distinguisher can trivially distinguish the two worlds: a)
Make anyhonest proving query. b) Request extraction. c) Outputwhether or not
extraction succeeded.

Theorem 3.6 (Transitivity is Limited). Construction with knowledge assumptions

Chapter 3. Composition with Knowledge Assumptions 111



is not universally transitive. ∃𝐴,𝐵, 𝐶, α, β ∈ ∗, ε1, ε2 ∈ ℝ,𝔇�⃗�:

𝐴 ε1,α,𝔇�⃗� 𝐵 ∧ 𝐵 ε2,β,𝔇�⃗� 𝐶 ⟹̸ 𝐴 ε1+ε2,αβ,𝔇�⃗� 𝐶

Proof (sketch). Let 𝐵 be the SNARK real world and 𝐶 be the NIZK ideal world,
respectively, with β being their simulator and �⃗� being {𝔎bAGM}. Let 𝐴 be the
SNARK with additional interfaces for each party to reveal any witnesses of
broadcast proofs, which are shared through an additional broadcast channel.
Let α reproduce this functionality by extracting witnesses from the provided
proofs.

Thenadistinguisherwhichmakesanhonestproof andextracts itwill receive
the witness in the real and hybrid world, but not in the ideal world, where the
knowledge extraction of the proof will fail, as it is simulated by β. It is therefore
possible to distinguish and transitivity does not hold.

3.5 Relation to Simple UC

As the remainderof this thesis is statedusing theUCmodel (seeSubsection2.3.1),
it is important to discuss how the result of composable SNARKs from this chap-
ter can be used together with the rest of the results in this thesis. While the
relation with UC is less clear than that with Constructive Cryptography, it is

still the case that a proof of construction 𝐴 ε,α,∗ 𝐵 is directly equivalent to a
statementofUC-emulationandviceversa. This is due toboth settingshaving the
same token-passing executionmechanism, and the computational abstractions
of random systems and Turing machines are equivalent. There are two main
inconsistencies: UC has both an environment and adversary, and only two “in-
terfaces” exist for each ITI: the adversarial “backdoor” tape and the honest input
tape, with the difference that any ITI can write to the input tape.

Theadversary/environmentdifference is resolvedbyUC itself [Can01],which
notes that a dummy adversary can be usedwithout loss of generality. Using this,
the environment and distinguisher are in effect the same entity. Interfaces are
also less of an issue than they may appear. If multiple interfaces exist between
two nodes, this is equivalent to a single interfacewith appropriatemultiplexing.
As UC specifies external writes to provide information about who a message is
from, this multiplexing is already build-in further – it can be separated out into
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a pair of interfaces for each ITI sending amessage to another, andmessage types
can bemultiplexed if desired.

In effect, it is possible to naturally transform a UC functionality or proto-
col into a cryptographic network and vice versa, for which the UC-emulation
statement is equivalent to a statement of construction (with negligible ε and
the distinguisher set ∗). This allows results from subsequent chapters to be
“imported” into this framework and, as they are with respect to ∗ and not using
any knowledge assumptions, the SNARK construction from Section 3.4 can be
directly composed with them according to Theorem 3.3.
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4 SECUrEREFErEnCE
STrInGS FrOmCOnSEnSUS

--.--
This chapter is based on “Mining for Privacy: How to Bootstrap a Snarky
Blockchain” [KKK21c], first published at the 2021 Conference on Financial
Cryptography and Data Security, primarily authored by Thomas Kerber, and
co-authored by Aggelos Kiayias andMarkulf Kohlweiss.

POLYnOmIALcommitments used in zk-SNARKs, commonlybuild ona struc-
tured reference string, or SRS, consisting of different powers of a group gen-

erator, for instance gxi for some x ∈ 𝔽p and for all i ∈ ℤn. While impossibility
results [GO94] for non-interactive zero-knowledge show that some common ref-
erence string (or other setup, such as randomoracles) are required, these strings
areworse, asnotonlydo theyneed tobe randomlydistributed, but theirunderly-
ing trapdoor value (in the toy example of gxi , this would be x) must remain secret.

Theobviouswayof samplingsuchareference string frompublic randomness
reveals the exponents used – and knowledge of these values breaks the sound-
ness of the proof system itself. To make matters worse, the security of SNARKs
typically relies on knowledge assumptions, which state that to create group el-
ements related in such a way requires knowing the underlying exponents and
hence any SRS sampler will have to know the exponents used and be trusted to
erase them, becoming effectively a single point of failure for the underlying sys-
tem. While securemulti-party computation canbe, andhasbeen, used to reduce
the trust placed on such a setup process [Zca18], the selection of the participants
for the secure computation and the verification of the generation of the SRS by
theMPC protocol retain an element of centralisation.

For updateable reference strings, such as [GKM+18, MBKM19], it is possible to
produce an updated reference string from a prior one, such that knowing the
trapdoor of the new string requires both knowing the trapdoor of the old string,
and knowing the randomness used in the update. Groth et al. [GKM+18] conjec-
tured that a blockchain protocol may be used to securely generate such a refer-
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ence string. This conjecture is confirmed by the results of this chapter, which
presents a protocol to do so, primarily relying on the chain quality property of
“Nakamoto-style” ledgers [GKL15]. The reference string updates are integrated
into the block creation process, with special care being taken to accommodate
the high computation and communication cost of processing these updates. A
further important consideration is that an adversary may gain a significant ad-
vantage by “cheating” on the reference string update process, by choosing low-
entropy updates which are easy to compute. This chapter considers both the
adversarial and rational impact of this and demonstrates how the latter can be
controlled.

RelatedWork. Beyond the obvious relation to the works introducing update-
able reference strings in [GKM+18, MBKM19] (most notably Sonic [MBKM19],
which we follow closely in our instantiation), there have been attempts of
practically answering the question of how to securely generate reference strings.
These have been in a setting where the string is not updateable.

NotablyBoweet al. [BGG19] describe themechanismusedbySprout, thefirst
version of Zcash, during the initial setup of the cryptocurrency’s SRS. It uses
multi-party computation to generate a reference string with a root of trust on
the initial group of people participating. Due to performance constraints on the
MPC protocol, the set of parties participating is relatively small, although only
the honesty of a single participating party is required.

For the Sapling version of Zcash, a different approach was used when their
reference string was replaced (due to an upgrade of the zero-knowledge state-
ment and proof system used). Their second CRS generation mechanism, de-
scribed in [BGM17] uses a multiple-phase round-robin mechanism to generate
a reference string for Groth’s zk-SNARK [Gro16]. They utilise a random beacon
to ensure the uniform distribution of the result and a coordinator to perform
deterministic auxiliary computations.

Finally, Abdolmaleki et al. [ABL+19] demonstrate the UC security of anMPC-
based approach to SRS generation.
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4.1 Updateable Structured Reference Strings

Whileupdateable structuredreference strings (uSRSs) aremodelled in theworks
we are building on [MBKM19, Section 3.2], wemodel their security in the setting
of universal composability (UC) [Can01]. Here, a uSRS is a reference string with
an underlying trapdoor τ, which has had a structure function 𝑆 imposed on it.
𝑆(τ) is the reference string itself, while τ is not revealed to the adversary. In
Subsection4.1.3,weprove thatSonic [MBKM19] (with smallmodifications for ex-
traction, as described in Subsection 4.1.2), satisfies all the properties we require
in this section. Our main proof is independent of the Sonic protocol however,
and applies to any updateable reference string scheme satisfying the properties
laid out in the rest of this section.

4.1.1 Standard Requirements

A uSRS scheme S consists of a trapdoor domain 𝑇 , an initial trapdoor τ0, a set 𝑃
of permissible (and invertible) permutations over 𝑇 (that is, bijective functions
whose domain and codomain is 𝑇 ), and a structure function 𝑆 with the domain 𝑇 .
We require 𝑃 to include the identity function id and to be closed under function
composition: ∀p1, p2 ∈ 𝑃 : p1∘p2 ∈ 𝑃 . Anefficientpermutation lifting†must exist
(and wewill demonstrate its existence for Sonic), such that for any permutation
p ∈ 𝑃 and τ ∈ 𝑇 , p†(𝑆(τ)) = 𝑆(p(τ)). Finally, there must exist algorithms ρ ←
ProveUpd(𝑆(τ), p) and b ← VerifyUpd(𝑆(τ), ρ, 𝑆(p(τ))) for creating and verifying
update proofs respectively. The format of these update proofs is not specified,
however the following constraints must bemet:

1. Correctness. Applying an honestly generated update proof will verify:
∀p ∈ 𝑃 , τ ∈ 𝑇 :VerifyUpd(𝑆(τ),ProveUpd(𝑆(τ), p), 𝑆(p(τ))).

2. Structurepreservation. Applying anyvalid update is equivalent to apply-
ing some permutation p ∈ 𝑃 on the trapdoor:
∀ρ, τ, srs′:VerifyUpd(𝑆(τ), ρ, srs′) ⟹ ∃p ∈ 𝑃 : srs′ = 𝑆(p(τ)).

3. Update uniformity. Applying a random permutation is equivalent to se-
lecting a new random trapdoor: Let 𝐷 be the uniform distribution over
𝑇 and, for all τ ∈ 𝑇 , let 𝐷τ be the uniform distribution over the multiset
{ p(τ) ∣ p ∈ 𝑃 }. Then ∀τ ∈ 𝑇 :𝐷 = 𝐷τ.
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We define a corresponding UC functionality FuSRS, which provides a refer-
ence string 𝑆(p(τH)), which the adversary can influence by providing the permu-
tation p ∈ 𝑃 , given only 𝑆(τH) as input, for a randomly sampled τH ∈ 𝑇 .

FunctionalityFuSRS

Theupdateable structured reference string functionalityFuSRS allows the adversary
to update a reference string by applying a permutation from a set of permissible
permutations 𝑃 .

The functionality is parameterised by a trapdoor domain 𝑇 , a structure function
𝑆, and a set of permissible permutations 𝑃 over 𝑇 .

State variables and initialisation values:

Variable Description
τH ≔ ⊥ The honest part of the trapdoor
τ ≔ ⊥ The trapdoor

When receiving amessageHOnEST-SrS fromA:

if τH = ⊥ then let τH
∗ 𝑇

return 𝑆(τH)
When receiving amessage SrS from a party ψ:

queryAwith (PErmUTE,ψ) and receive the reply p
if τ = ⊥ then

assert p ∈ 𝑃 ∧ τH ≠ ⊥
let τ ← p(τH)

return 𝑆(τ)

We believe this functionality to be of independent interest and it is not
explicitly tied to our implementation. Notably, while we use a distributed
ledger as a weak form of a broadcast channel, other broadcasts can be con-
sidered without modification to this functionality. While, as presented, the
functionality does not dictate any specific usage, we conjecture that when
parameterised with an appropriate structure function and permutation set
it can be used to securely instantiate updateable SRS-based SNARKs, such as
Sonic [MBKM19], Marlin [CHM+20], or Plonk [GWC19]. Due to the UC setting,
this would require additional lifting to enable UC knowledge extraction, such as
that of C∅C∅ [KZM+15].
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4.1.2 Simulation Requirements

In addition to the basic properties of correctness, structure preservation, and
update uniformity, any simulator wishing to help realise FuSRS via updates will
need to have access to two additional properties:

1. Update proof simulation. From an initial SRS 𝑆(τ) for which the simu-
lator knows the trapdoor, it can produce a valid update to any (correctly
structured) SRS. Formally, with Sρ a PPT algorithm:
∃Sρ∀τ1, τ2 ∈ 𝑇 :VerifyUpd(𝑆(τ1),Sρ(τ1, 𝑆(τ2)), 𝑆(τ2))

2. Permutationextraction. The simulatormust be capable of extracting the
permutation p underlying any valid adversarial update proof.

The most natural method to achieve permutation extraction would be using
white-box extractors, as the updates themselves typically rely on some form of
knowledge assumption, such as knowledge-of-exponent. However, white-box
extractors cannot be used in UC proofs. Instead, we will assume that the update
proof is proven to correspond to a specific trapdoor through a lower-level NIZK.
Crucially, this lower-level NIZK should not require a structured reference string
and can rely only on a common random string, or a random oracle. Fortunately,
it is not subject to stringent efficiency requirements as Section4.4demonstrates.

Specifically, we assume that the basic update proof ρ is a statement in aNIZK
relationRwhere the witness is an encoding of the corresponding permutation
p. We require each update proof to have one and only one corresponding per-
mutation, formally expressed by requiring R to be a bijection. This results in
a straightforward modification to the ProveUpd and VerifyUpd algorithms that
permits the extraction of the underlying permutations even in the UC setting:
ProveUpd also creates a NIZK proof π of (ρ, p) and returns (ρ, π), While VerifyUpd
returns true only if this newly embedded NIZK proof also verifies.

The additionof thisNIZK trivially preserves all securityproperties including
correctness, due to the definition ofR:

Definition 4.1. A uSRS scheme is permutation extractable if the relation

R ≔ { (ProveUpd(𝑆(τ), p), p) | τ ∈ 𝑇 , p ∈ 𝑃 }

is a bijection and in NP.
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4.1.3 The Sonic uSRS

Sonic’s uSRS [MBKM19, Section 4.3] consists of a series of exponentiations of
group elements in pairing groups 𝔾1 and 𝔾2 of prime order q, where a bilinear
pairing e:𝔾1 × 𝔾2 → 𝔾𝑇 exists. Specifically, given generators g ∈ 𝔾1, h ∈ 𝔾2 and
a depth parameter d ∈ ℤq, the SRS has a trapdoor of (α, x) ∈ 𝔽∗2q , with τ0 = (1, 1).

The corresponding structure function is defined as:

𝑆((α, x)) ≔ ({gxi , hxi , hαxi}
d

i=−d , {g
αxi}

d

i=−d,i≠0)

Specification of Sonic Updates. Weomit the e(g, hα) term presented in Sonic,
as this can be computed from the rest of the SRS and is therefore immaterial to
the update procedure. The permitted trapdoor permutations are field multipli-
cations:

𝑃 ≔ { (α, x) ↦ (αβ, xy) ∣ (β, y) ∈ 𝔽∗2q } .
Correspondingly, † exponentiates group elements:

p = (α, x) ↦ (αβ, xy) ⟹
p† = ({𝐺i,𝐻i,𝐻 ′

i }
d
i=−d , {𝐺′

i }
d
i=−d,i≠0)

↦ ({𝐺yi
i ,𝐻

yi
i ,𝐻 ′βyi

i }
d

i=−d
, {𝐺′βyi

i }
d

i=−d,i≠0)

Observe that fieldmultiplications over α or x can efficiently be applied to the corre-

sponding structure through exponentiation: g(αxi)βyi = (gαxi)
βyi

. The full update
proof procedure is as follows:

procedure ProveUpd(srs, p)
let (β, y) ← p((1, 1))
return (gy, gβy, π)

The verification procedure ensures correct computation by checking the consis-
tency of various pairing computations:

procedure VerifyUpd(srs, ρ, srs′)
let ({𝐺i,𝐻i,𝐻 ′

i }di=−d, {𝐺′
i }di=−d,i≠0) ← srs

let ({𝐼i, 𝐽i, 𝐽 ′i }di=−d, {𝐼 ′i }i=−d,i≠0) ← srs′

let (𝐴,𝐵, π) ← ρ
if e(𝐼 ′1, h) ≠ e(𝐵,𝐻 ′

1) ∨ e(g, 𝐽 ′1) ≠ e(𝐵,𝐻 ′
1) ∨ e(𝐼1, h) ≠ e(𝐴,𝐻1) ∨ e(g, 𝐽1) ≠ e(𝐴,𝐻1) ∨

𝐼0 ≠ g ∨ 𝐽0 ≠ h then
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return 0
for i = −d to d do

if ¬(i = d ∨ e(𝐼i, 𝐽1) = e(𝐼1, 𝐽i) = e(𝐼i+1, h) = e(g, 𝐽i+1)) ∨ ¬(e(𝐼i, 𝐽 ′0) = e(g, 𝐽 ′i )) ∨
(i ≠ 0 ∧ ¬e(𝐼i, 𝐽 ′0) = e(𝐼 ′i , h)) then
return 0

return 1

Satisfaction of Security Properties.

Theorem 4.1. Sonic, as described in this section, is an updatable reference string scheme,
satisfying correctness, structure preservation, update uniformity, update extraction, permu-
tation extraction, and permutation lifting.

Proof. We prove each property individually.

Correctness. Follows from all pairing checks being satisfied.

Structure preservation. Suppose a structured input 𝑆(τ), an update proof ρ,
and a new SRS srs′, where:

𝑆(τ) = ({gxi , hxi , hαxi}
d

i=−d , {g
αxi}

d

i=−d,i≠0)

srs′ = ({gki , hmi , hni}di=−d , {gli}
d
i=−d,i≠0)

ρ = (gy, gβy)

If VerifySRS returns 1, we know all of the following hold, due to the conditions
checked:

• e(gl1 , h) = e(g, hn1) = e(gβy, hαx)

• e(gk1 , h) = e(g, hm1) = e(gy, hx)

• ∀i ∈ [−d, d): e(gki , hm1) = e(gk1 , hmi) = e(gki+1 , h) = e(g, hmi+1)

• ∀i ∈ [−d, d]: e(gki , hn0) = e(g, hni)

• ∀i ∈ [−d, d] \ {0}: e(gki , hn0) = e(gli , h)

As e(g, h) is a generator over 𝔾𝑇 and each of the above can be expressed as an
equality of exponentiations of the form e(g, h)a = e(g, h)b, we simplify these to
equalities within 𝔽∗q of their exponents:
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• l1 = n1 = αβxy

• k1 = m1 = xy

• ∀i ∈ [−d, d): kim1 = k1mi = ki+1 = mi+1

• ∀i ∈ [−d, d]: kin0 = ni

• ∀i ∈ [−d, d] \ {0}: kin0 = li

It follows directly that n0 = αβ, ki = mi = (xy)i, and li = ni = αβ(xy)i. As a result,
srs′ matches exactly the structured reference string 𝑆((αβ, xy)) = p†(𝑆(τ)).

Update uniformity. Let τ = (α, x). p ∗ 𝑃 is defined by a multiplication with
two uniformly sampled field elements in β, y ∗ 𝔽∗q, such that the trapdoor p(τ) =
(αβ, xy). Due to multiplication in prime fields with a fixed element (here α and
x) being a bijective functions, the result (αβ, xy) is also distributed uniformly at
randomin𝔽∗2q , thereforebeing indistinguishable fromanew, randomlysampled
trapdoor.

Update proof simulation. We present the following simulation algorithm:

procedure Sρ((α, x), srs)
({𝐺i,𝐻i,𝐻 ′

i }di=−d, {𝐺′
i }di=−d,i≠0) ← srs

return (𝐺(x−1)
1 ,𝐺′(x−1)(α−1)

1 )

This utilises only a small number of efficient group operations and is therefore
PPT. As the VerifyUpd pairing checks all succeed, the returned update proof will
verify.

Permutation Extraction. Observe that

R((𝐴,𝐵), p) ⟺ let (a, b) = p((1, 1)) in𝐴 = ga ∧ 𝐵 = gb.

A straightforward encoding of p is the pair of field elements (a, b). This relation
is clearly in NP, and is also a bijection due to the relation of𝔾1 and 𝔽∗q .

InstantiatingFR
NIZK. We can employ Fischlin’s transform [Fis05] in combina-

tion with a simple sigma protocol to prove knowledge of pairs of exponents.
Specifically, we propose the parallel composition of two Schnorr proofs of

Chapter 4. Secure Reference Strings fromConsensus 121



knowledge of exponent [Sch90]. It is important to treat these as a single proof
and not two separate proofs, as the latter would enable the adversary to create
proofswhich are only partially extractable. We posit that thesewould still allow
for simulation, however the simulatorwould be taskedwith amore difficult and
implementation specific book-keeping.

4.2 Building uSRS fromChain Quality

This section shows how to securely initialise a uSRS using a distributed ledger
by requiring block creators to perform updates on an evolving uSRS during an
initial setup period. After waiting for agreement on the final uSRS, it can be
safely used. To formally model this approach, we discuss the ideal and real (or
more accurately, hybrid) worlds used in our simulation proof. Bothworlds have
access to a ledger, however the ideal world’s ledger is independent of the refer-
ence string (which is instead provided by the independent FuSRS functionality),
while the real world’s ledger is programmed to generate it using updates.

4.2.1 High-Level Overview

This basic premise of this chapter relies onNakamoto-style ledgers’ basicmeans
of operation: Different users can extenda chain of blocks if they can satisfy some
condition,with this conditionbeingassociatedwitha typeofhardnesswhichen-
sures attackers are limited in the number of extensions they can perform. Given
such a structure, we associate a uSRS update with each block prior to a time δ1.
This time is selected such that the securityproperties of the ledger ensure at least
one of the blocks is honest in each competitive chain at this point.

In ourmodelling, we construct this from a ledger functionality with an addi-
tional leadership state, which is derived from information miners embed in their
blocks. Specifically for our case, these encode uSRS updates. We leave this suffi-
ciently general to allow other uses aswell. The basic idea is to show that a ledger
which performs uSRS updates in its leadership state is equivalent to one which
does not, but is accompanied by the FuSRS functionality. They make up our real
and ideal worlds, respectively. After δ1, users wait a further period δ2 until the
common prefix ensures that all parties agree on the reference string.

While ledger functionalities are often treated as global, our approach effec-
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tively constructs one ledger from another – the ledger is not a dependency of
our protocol, but a component. In this context, globality is irrelevant, as the
environment already has direct access to the functionality. We expect protocols
building on the ledger to use it in a global fashion, however. The same is not true
for the uSRS –most usages will likely rely on the simulator being able to extract
its trapdoor.

4.2.2 Our Ledger Abstraction

Our construction of the updateable structured reference string functionality re-
lies heavily on the properties of common prefix, chain quality, and chain growth de-
fined in the “Bitcoin backbone” analysis by Garay et al. [GKL15] for Nakamoto-
style consensus algorithms. Despite our use in the section title, we make use of
all threeproperties, not just that of chainquality. Weemphasise chainquality, as
it is the property central to ensuring an honest update has occurred. We briefly
and informally restate the three properties:

• Common prefix. Given the current chains Π1 and Π2 of two parties, and
removing k blocks from the first, it is a prefix of the second: Π⌈k

1 ≺ Π2.

• Chain quality. For any party’s current chain Π, any consecutive l blocks
in this chain will include μ blocks created by an honest party.

• Chaingrowth. If a party’s chain is of length c, then s time slots later, itwill
be at least of length c + γ.

These parameters determine the length of the two phases of our protocol. In the
first phase, we construct the reference string itself from the liveness parameter
(assuming μ ≥ 1), and, in the second phase, we wait until this reference string
has propagated to all users. The length of the first phase is at least δ1 ≥ ⌈lγ−1⌉s
and that of the second at least δ2 ≥ ⌈kγ−1⌉s. Combined, they make up the total
uSRS generation delay δ ≥ (⌈lγ−1⌉ + ⌈kγ−1⌉)s.

We assume a ledger which guarantees the backbone properties, formally de-
scribed in Subsection 2.4.3.3. Our functionality further depends on the global
clock Gclock, as described in Subsection 2.3.5. For the purposes of this section,
it is sufficient that this is a beacon providing monotonically increasing values
representing the current time to any party requesting them.
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In addition to this, we assume that each block created can contain additional
information, provided by its creator (the “miner”), which can be aggregated to
construct a “leader state”. Each created block is associated with an update a, and
the ledger is parameterised by two procedures, Gen and Apply, which describe
the honest selection of updates and the semantics of updates, respectively. Look-
ing forward, these utilise ProveUpd and VerifyUpd internally, although the for-
malism is sufficiently general to allow usage of the leader state for other, paral-
lel purposes. The exact parameters differ in our ideal and real world, with the
ideal world “hiding” the uSRS updates. Additionally, the real world adds time-
sensitivity: It does nothing to the SRS after the setup period. Gen is randomised,
takes a leader state σ and the current time t as inputs, and produces an update
a. Apply takes a leader state σ, an update a, and an update time t, and returns
a successor state σ′: σ′ = Apply(σ, (a, t)). For a chain, the leader state may be
computed by sequentially applying all updates in the chain, starting from an
initial state ∅.

The adversary controls when andwhich party creates a new block, as well as
the transactions each new block contains (provided it does not violate the back-
bone properties). For transactions created by a corrupted party, the adversary
can further control the block’s timestamp (within the reasonable limits of not
being in the future and being after the previous block) and the desired update a
itself. For honest parties updates,Gen is used instead.

The UC interfaces our ledger provides are:

• SUBmIT. Submitting new transactions for the ledger.

• rEAD. Reading the confirmed sequence of transactions.

• PrOJECTIOn. Reading the current chain’s sequence of (potentially uncon-
firmed) transactions.

• LEADEr-STATE. Reading the confirmed leader state.

• ADVAnCE. The adversary switches a party to a longer chain.

• EXTEnD. The adversary instructs a party to create a block.
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4.2.3 The IdealWorld

Our ideal world consists of two functionalities, composed in parallel (by which
we mean: the environment may address either and they do not interact). The
first is a variant of FuSRS, with the modification that it cannot be addressed by
honest parties before δ time slots have passed. Formally, this modification is
made with a wrapper functionalityWDelay(F, δ), formally described as follows:

FunctionalityWDelay(δ,F)
The wrapper functionalityWDelay(δ,F) of F accepts honest inputs only after δ time
slots.

When receiving amessage𝑀 from a party ψ:

send rEAD to Gclock and receive the reply t
if t < δ ∧ ψ ∈ H then return ⊥
else

send𝑀 toF and receive the reply y
return y

The second is the Nakamoto-style ledger functionality, parameterised with
arbitrary leader-state generation andapplicationprocedureswhichare alsopar-
tially used in the hybrid world: Gen = GenIdeal and Apply = ApplyIdeal, and the
following ledger parameters:

1. A common prefix parameter k.

2. Chain quality parameters μ and l.

3. Chain growth parameters γ and s.

Formally then, our ideal world consists of the pair (WDelay(δ,FuSRS),F ideal
NakLedger),

as well as the global functionality Gclock.

4.2.4 TheHybridWorld

In our hybrid world, we use a uSRS scheme S, with algorithms ProveUpd,
VerifyUpd, the structure function 𝑆, permissible permutations 𝑃 , permutation
lifting †, and initial trapdoor τ0. The hybrid world consists of a separate
Nakamoto-style ledger F real

NakLedger, a NIZK functionality FR
NIZK, and the global
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clock Gclock. The ledger is then parameterised by the same chain parameters as
those in the ideal world and the following leader-state procedures:

procedure Apply((srs,σideal), ((srs′, ρ, π, aideal), t))
if srs = ∅ then let srs ← 𝑆(τ0)
if t ≤ δ1 ∧ VerifyUpd(srs, ρ, srs′) then

send (VErIFY, ρ, π) toFR
NIZK and receive the reply b

if b then
let srs ← srs′

return (srs,ApplyIdeal(σideal, aideal, t))
procedureGen((srs,σideal), t)

if t > δ1 then
return (ε, ε, ε,GenIdeal(σideal, t))

else
let p ∗ 𝑃 ; ρ ← ProveUpd(srs, p)
send (PrOVE, ρ, p) toFR

NIZK and receive the reply π
return (p†(srs), ρ, π,GenIdeal(σideal, t))

Note that these parametrising algorithms use FR
NIZK and are therefore the

reason the ledger depends on this hybrid functionality.
Key here is that once a block is received after the initial chain quality pe-

riod, any reference string update it may declare is no longer carried out – at this
point the uSRS is not necessarily stable, as the chain may still be reorganised,
but should not change for this particular chain. Furthermore, these procedures
always mimic the ideal-world behaviour, extending it rather than replacing it.
This demonstrates the composability of allowing block leaders to produce up-
dates: One systemusing updates for security does not impact other parallel uses
of the leadership state.

There is little additional work to be done to UC-emulate the ideal-world be-
haviour, besides ensuring that queries are routed appropriately, especially how
the reference string is queried in the hybridworld. Wedescribe thiswith a small
“adaptor” protocol LEDGEr-ADAPTOr. This forwards most queries and treats
uSRS queries by querying the appropriate part of the leader state after time δ,
and by ignoring them before. Formally, it is described by:

Protocol LEDGEr-ADAPTOr
The protocol adaptor fits the interface of F real

NakLedger to match those of FuSRS and
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F ideal
NakLedger. It operates in the (F real

NakLedger,Gclock)-hybrid world.

When receiving amessage (SUBmIT, tx) from a party ψ:

send (SUBmIT, tx) toF real
NakLedger

When receiving amessagerEAD from a party ψ:

send rEAD toF real
NakLedger and receive the reply txs

return txs

When receiving amessage PrOJECTIOn from a party ψ:

send PrOJECTIOn toF real
NakLedger and receive the reply txs

return txs

When receiving amessage LEADEr-STATE from a party ψ:

send LEADEr-STATE toF real
NakLedger and receive the reply (⋅,σideal)

return σideal

When receiving amessage SrS from a party ψ:

send rEAD to Gclock and receive the reply t
if t < δ then return ⊥
else

send LEADEr-STATE toF real
NakLedger and

receive the reply (srs, ⋅)
return srs

Forward SUBmIT,rEAD, and PrOJECTIOn queries toF real
NakLedger

Formally, our real world consists of LEDGEr-ADAPTOr(δ,F real
NakLedger(FR

NIZK)),
the functionalitiesF real

NakLedger andFR
NIZK it accesses, and the global Gclock.

4.2.5 Alternative Usage of Gclock

In both worlds, Gclock is used to determine the cutoff point after which the ref-
erence string is deemed secure. A simple alternative to this usage of the clock
is to instead rely on the length of the chain for this purpose. We did not make
this choice as it complicates the ideal world: The delay wrapper would have to
communicate with the ideal world ledger and query it for the length of parties’
chains. Wedonot regard a clock as a significant additional assumption, however
little of the remainder of this chapter differs if chain lengths are used instead.
Even in this case, a clock is present to guarantee liveness, although it used only
to constrain the adversary.
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4.3 Security Analysis

Our security is derived through UC-emulation, stated in the following theorem:

Theorem4.2. For any updateable reference string schemeS , satisfying correctness, struc-
ture preservation, update uniformity, update simulation with Sρ, and permutation extrac-
tion, LEDGEr-ADAPTOr (in the (F real

NakLedger,F
R
NIZK)-hybrid world, parameterised as in

Subsection 4.2.4) UC-emulates the pair of functionalities (F ideal
NakLedger,WDelay(δ,FuSRS)),

parameterised as in Subsection 4.2.3, in the presence of the global clock functionality Gclock,
with the simulatorSLEDGEr-ADAPTOr.

As for anyUCproof,we require a simulatorwhich ensures the idealworld be-
haves indistinguishably from the real world. Intuitively, this simulator ensures
that the real and ideal world’s ledgers are equivalent and that the real world
uSRS is equal to the uSRS produced in the ideal world.

In order to achieve this, the simulator ensures that the initial honest refer-
ence string provided by FuSRS is the basis of the uSRS of a simulated execution
of the real-world protocol. Doing so relies primarily on three things: First, the
simulator’s ability to extract the permutation from any adversarial reference
stringupdate. Second, the simulator’s ability to, given the adversarial trapdoors,
then produce a valid “honest” update which ensures the reference string is a
random permutation of the ideal-world honest string 𝑆(τH). And finally, the
simulator’s knowledge that the final reference string in its simulation will have
at least one honest update.

The simulator observes eachof the competing chains and,when thefirst hon-
est update occurs in each, coerces the simulatedupdate into a permutationof the
ideal honest reference string. For each subsequent honest update, the simulator
performs the update normally, remembering the randomness used. Combined
with extracting from adversarial updates, the simulator either knows the entire
trapdoor of the reference string (if there was no honest update), or all except for
the first honest update. By the backbone properties enforced by FNakLedger, the
simulator knows that the first case will not apply, and that only one prefix of
valid updateswill exist, after δ time has passed. As a result, the simulator knows
exactlywhichpermutation to apply to thehonest ideal reference string tomatch
the real world’s result.

AsFuSRS only provides a single honest SRS, the simulator applies a random
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permutation to this for each initial honest update, ensuring that the updates of
different chains remain unlinkable. The full specification of the simulator is as
follows:

Simulator SLEDGEr-ADAPTOr
The simulator between theprotocol adaptor overF real

NakLedger, andF
ideal
NakLedger andFuSRS.

It operates in the Gclock-hybrid world.

State variables and initialisation values:

Variable Description
F simul
NakLedger A simulation of the hybrid-world ledger

FR
NIZK A simulation of the low-level NIZK functionality

𝐴 ≔ ∅ Map from honest updates to the applied permutation

When receiving amessage (TrAnSACTIOn, tx, t) fromF ideal
NakLedger:

simulate sending (SUBmIT, tx) toF simul
NakLedger

When receiving amessage (SUBmIT, tx) fromA forF real
NakLedger:

send (SUBmIT, tx) toF ideal
NakLedger

When receiving amessage (PErmUTE,ψ) fromFuSRS:

simulate sending LEADEr-STATE toF simul
NakLedger

through ψ and
receive the reply (srs, ⋅)

let a⃗ ← map(proj2,F simul
NakLedger.Π(ψ))

returnXp(a⃗)
When receiving amessage (EXTEnD,ψ,𝐵, t, a) fromA forF real

NakLedger:

send rEAD to Gclock and receive the reply t′

if ψ ∈ H ∧ t′ ≤ ⌈lγ−1⌉s then
let a⃗ ← map(proj2,F simul

NakLedger.Π(ψ))
let (srs, ⋅) ← foldl(Apply, ∅, a⃗)
let p ← Xp(a⃗)
if p−1†(srs) ≠ 𝑆(τ0) then

// We cannot extract a trapdoor;

// the SRS is already secure

let p′ ∗ 𝑃 ; ρ ← ProveUpd(srs, p′)
let srs′ ← p′†(srs)
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simulate sending (PrOVE, ρ, p′) toFR
NIZK and

receive the reply π
else

// We produce an update to match a

// random "initial" SRS

let τ ← p(τ0)
let p′ ∗ 𝑃
sendHOnEST-SrS toFuSRS and

receive the reply srsH
let srs′ ← p′†(srsH)
let ρ ← Sρ(p(τ), srs′)
queryAwith (PrOVE, ρ) and receive the reply π,

satisfying π ≠ ⊥ ∧ (ρ, π) ∉ FR
NIZK.Π ∧ (⋅, π) ∉ FR

NIZK.Π, else sampling
from {0, 1}κ

letFR
NIZK.Π ← FR

NIZK.Π ∪ {(ρ, π)}
let𝐴(ρ) ← p

let aideal ← ⊥
else if ψ ∈ H then

let srs′, ρ, π ← ε
let aideal ← ⊥

else let (srs′, ρ, π, aideal) ← a

send (EXTEnD,ψ,𝐵, t, aideal) toF ideal
NakLedger and

receive the reply (𝐵, aideal, id, t)
if ψ ∈ H then

letF simul
NakLedger.hon(id) ← 1

else
letF simul

NakLedger.hon(id) ← 0

letF simul
NakLedger.Π(ψ) ← F simul

NakLedger.Π(ψ) ‖ (𝐵, (srs′, ρ, π, aideal), id, t)
assert∀ψ′ ∈ P :F simul

NakLedger.Π(ψ)⌈k ≺ F simul
NakLedger.Π(ψ′)

return (𝐵, (srs′, ρ, π, aideal), id, t)
When receiving amessage (ADVAnCE,ψ, Σ′) fromA forF real

NakLedger:

simulate sending (ADVAnCE,ψ, Σ′) toF simul
NakLedger

// Remove SRS updates from Σ′

let Σ′ ← map(λ(𝐵, (⋅, ⋅, ⋅, aideal), t): (𝐵, aideal, t), Σ)
send (ADVAnCE,ψ, Σ′) toF ideal

NakLedger
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Forward requests toFR
NIZK and all other adversarial messages forF real

NakLedger toF
simul
NakLedger.

Helper procedures:

procedureXp(a⃗)
let p ← id

let srs = 𝑆(τ0)
for (srs′, ρ, π, ⋅) in a⃗ do

// Skip invalid updates

if ¬VerifyUpd(srs, ρ, srs′) ∨ (ρ, π) ∉ FR
NIZK.Π then continue

let srs ← srs′

if (ρ, π) ∈ FR
NIZK.𝑊 then

let p ← FR
NIZK.𝑊((ρ, π)) ∘ p

else if ρ ∈ 𝐴 then
// The update is honest.

// Start with its permutation.

let p ← 𝐴(ρ)
else

// A witness-less adversarial update

// was encountered.

abort
return p

We will prove UC-emulation, and will therefore refer to the ideal and real
worlds frequently throughout the proof. Beyond this, the simulator locally sim-
ulates the NIZK functionality and the ledger functionality. To be clear which
functionalitywe are talking about at anypoint,wewill useF ideal

NakLedger,F
simul
NakLedger,

andF real
NakLedger to refer to the ideal, simulated, and real ledgers, respectively. We

refer to the real-world NIZK functionality as FR
NIZK and the simulted NIZK as

SLEDGEr-ADAPTOr.FR
NIZK. The notationF.x is used tomean “the variable xwithin

the functionalityF” – it is also used to refer to the ideal trapdoorFuSRS.τH.
Our simulator, which we assume is provided with the update simulation al-

gorithm Sρ and which can extract permutations from adversarial updates via a
simulatedNIZK, is equippedwith ahelper functionXp. Givena series of updates,
Xp computes the permutation applied to the reference string’s trapdoor as far
back as possible. It receives as inputs the sequence of updates a⃗, and has access
to a mapping 𝑊 from NIZK statements and proofs to corresponding witnesses
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(as far as the simulatorknows them)andamapping𝐴 fromhonestupdates to the
permutation applied to the honest SRS. It returns a permutation in 𝑃 , which can
be applied either to the initial trapdoor τ0, or to the initial honest trapdoor τH, to
create the same SRS as the sequence of updates. We prove this in the following
auxiliary lemma that will be used in the proof of ourmain theorem.

Lemma4.1. In the ideal-world execution ofSLEDGEr-ADAPTOr,Xp(a⃗) outputs a permu-
tation p ∈ 𝑃 , such that its inverse, applied to the underlying trapdoor of the SRS generated
from the given sequence of updates a⃗, is either the initial trapdoor τ0, or the honest trapdoor
τH.

Proof. The output of Xp is either id, a permutation in the mapping 𝐴, a permu-
tation recorded by the simulated NIZK, or a series of function compositions of
the above. As only permutations in 𝑃 are stored in 𝐴, id ∈ 𝑃 and, as 𝑃 is closed
under composition, the returned permutation is in 𝑃 . The permutation applied
corresponds directly to how the underlying trapdoor of the uSRS is updated by
longest suffix of updates in a⃗ for which the trapdoor is known – that is, the trap-
door permutation is recorded in FR

NIZK.𝑊 , or a permutation of the honest trap-
door is recorded in 𝐴. When this is not the case, the update is skipped and the
trapdoor reset, ensuring that any trapdoors preceeding a non-extractable value
are ignored. The case that the trapdoors areknown for allof theupdates is trivial;
as by definition inverting this permutation will result in the initial trapdoor τ0.

If, however, at any point the trapdoor is not recorded in FR
NIZK.𝑊 (despite

VerifyUpd succeeding), at this point the trapdoor must be honestly generated:
As this update was not skipped, the NIZK proofs associated with it must verify.
The only way for the proofs to verify and the NIZK functionality not to have
recorded the correspondingwitnesses, however, is that the simulator added the
proofmanually to the NIZK’s set of valid proofs. This only happens at one point
– when creating simulated NIZK proofs to accompany simulated update proofs,
which is used only for random permutations applied to the honest reference
string. While (if the adversary is capable of inverting the structure function)
multiple honest updates may exist in the same chain, if at least one of them is a
replayedupdate, the last such effectively “resets” the reference string to a known
permutation of the honest reference string.

Finally, we note that for this witness-less update, the remaining trapdoor
defines a permutation ofFuSRS.τH. AlgorithmXp extracts the trapdoors from all
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subsequent updates to compute the permutation applied to this honest trapdoor
– ensuring precisely that inverting this permutation results inFuSRS.τH.

Proof (of Theorem 4.2). If the environment can distinguish between these worlds,
there must exist a minimal series of interactions the environment, combined
with its adversary, can make to cause the other UC ITMs to behave sufficiently
differently to allow distinguishing. We will show that for any interaction the
environmentmakes, it will not learn enough information to distinguish the two
worlds and therefore that across all (polynomiallymany) interactions it also can-
not distinguish. First, we considerwhat actions the adversary/environment pair
can take. The interactions fall into the following categories:

1. Honest or adversarial SUBmIT, rEAD, LEADEr-STATE, or PrOJECTIOn
queries

2. Interactions withFR
NIZK, or Gclock

3. ADVAnCE queries
4. EXTEnD queries
5. SrS queries

We will establish the following invariants throughout the execution of the UC
security game:

• Gclock has the same internal state in both the real and ideal worlds.

• SLEDGEr-ADAPTOr.FR
NIZK has the same internal state as the real-world

FR
NIZK, except that it does not know the witnesses for honestly generated

proofs or their mauled variants.

• SLEDGEr-ADAPTOr.F simul
NakLedger has the same internal state as the real-world

ledgerF real
NakLedger anddiffers from the ideal-world ledgerF ideal

NakLedger only in
that all state updates contain an addition SRS update term.

Ledger reads and submissions. Given these invariants, it is clear that the
environment cannot distinguish given the results of rEAD and PrOJECTIOn
queries – they must return the same value! Furthermore, as the adaptor proto-
col strips the SRS component from the leader state and the ideal world’s leader
state is precisely defined as being without this component, it is clear that also
LEADEr-STATE queries will be indistinguishable (even if made directly by the
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adversary, since these are answeredbyF simul
NakLedger). ForSUBmITqueries byeither

the environment or the adversary, both worlds will add the transaction, with
the current timestamp, to their ledger’s submitted transactions, and will notify
the adversary once and return the transaction togetherwith the timestamp. This
does not reveal any information to the environment which could be used to dis-
tinguish.

Queries toother functionalities. Likewise,FR
NIZK queries clearlywill notper-

mit the environment to distinguish, or invalidate the above mentioned invari-
ants – they do not go beyond the NIZK functionality, and this does not read
(only update) the witness map. Similarly for Gclock, as this exists in both worlds
and is notmanipulated by the simulator (or any other entity), beyond read-only
operations, it will behave identically.

ADVAnCEqueries. The simulatorfirst simulates advancinga specifiedparty’s
ledger state on F simul

NakLedger. If this succeeds, the simulator knows that the ad-
vancement will succeed in the ideal world as well, where the ledger state is less
constrained. It removes the SRS updates from the ledger state being switched
to and issues a corresponding advance query to F ideal

NakLedger. If the simulated
ADVAnCE does not succeed, it will also have failed in the real world execution,
both of which will abort. If the update succeeds, the invariant between the
various ledger states is preserved – up to the lack of SRS updates in the ideal
world, they are the same. If the update fails, both worlds terminate execution.

(EXTEnD,ψ,𝐵, t, a)queries. Let usfirst detail the functionof EXTEnDqueries.
Called by the adversary, if the party parameterψ represents an honest party, the
queryrunsGen togenerateanewupdatea toapply to thisparty’sviewof the lead-
ership state. If the party is adversarial on the other hand, an adversary-supplied
update parameter a is used instead. With the timestamp t (or the accurate time
for honestly created blocks), block content 𝐵, state update a, and a randomly
sampled ID, a new block is created and appended to ψ’s projected chain. Finally,
it is asserted that the common prefix property still holds.

Once the simulator intercepts such a query, it needs to ensure not only that
the same EXTEnDs are carried out in the simulated and ideal ledgers, but also
that honest SRS updates are (when necessary) sourced from theFuSRS function-

Chapter 4. Secure Reference Strings fromConsensus 134



ality. In the case that the party extending the chain is adversarial, this is simple
– split the adversarial realworld update a into an SRSupdate and an ideal-world
update (it is worth noting that these need not be valid), and forward only the
ideal-world update in an EXTEnD query to F ideal

NakLedger. This already results in
the real and ideal ledgers satisfying the invariant, leaving the simulated ledger.
For this, the simulator manually inserts the ID returned from the ideal-world
ledger, inserts the new block, and asserts the same common prefix condition
as the real world does, ensuring these two ledgers are in the same state and –
crucially – abort under the same conditions. The returned value is identical to
that returned in the real world.

For honest updates, things are more complex. If the current time is after
when honest SRS updates are performed, the honest SRS update is set to ε, as
in the real world. Otherwise, the SRS is reconstructed from the party’s current
projected ledger view and the simulator attempts to extract the trapdoor permu-
tation from this SRS. If it succeeds in extracting the entire trapdoor, the simula-
tor ensures it is updated such that it can no longer do so: It updates the uSRS to a
permutation of the honest uSRSFuSRS.τH, by first applying a fresh permutation
to it, recording this in the map 𝐴, and creating the corresponding update proof
using Sρ.

By the update uniformity property, this is indistinguishable from the result
of Gen, which the environment expects. In case the full trapdoor cannot be ex-
tracted,Gen is used to generate the “honest” SRS update, ensuring the simulator
knows the trapdoor for this update as well (as it retains the NIZK witness used).
Finally, the ideal ledger is sent an EXTEnD query, with aideal set to ⊥. Execution
proceeds as in the adversarial case, with the SRS part of the update being dis-
tributed equally in the real and simulated ledgers, and the ideal-world compo-
nentbeinggenerateddirectlyby the idealworld functionality (and thereforealso
being distributed the same as in the real world, which samples from the same
distribution).

SrS queries. Finally, a user may query the SRS. If this happens before time δ,
bothworlds return⊥– thedelaywrapperdoes so in the idealworld and the adap-
tor protocol does so in the real world. Otherwise, the real world reconstructs
the leadership state and returns only the SRS component, while the ideal world
queries the simulator for a trapdoor permutation and, if the SRS is not yet fi-
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nalised, applies it to the honest SRS.
Recall that after every extension,FNakLedger ensures that the common prefix

property holds. Further, once a party’s projected ledger state has some common
prefix, this is only ever extended – either by extending the whole projection (in
EXTEnD), or by switching to a different one with the same prefix (in ADVAnCE).
After timeδ, if chainqualityand livenesshold,wecansplit eachparty’sprojected
chain into two parts: Blockswith a timestamp at or before the time δ1, and those
with a timestamp after it. As EXTEnD enforces timestamps to bemonotonically
increasing, these concatenate to formtheentire chain. By thechaingrowthprop-
erty, and as it is at least time δ, we know that the first part contains at least l
blocks and the second at least k blocks. Chain quality ensures that the first part
contains at least μhonest blocks, whileApply ignores updateswith a timestamps
after δ1. Combined, these facts imply that, for any party, the valid SRS updates,
taken from their stable chain, are identical.

After the first SRS query, both the ideal and realworldswill not changewhat
value they return, the formerbecause it has then recorded thefinal trapdoor and
the latter because the common prefix containing valid reference string updates
cannot change. The first query is therefore themost interesting.

FromLemma4.1, we know that the permutation p extracted by the simulator
when it is queried for the SRS permutationwill, inverted and applied to the SRS’
underlying trapdoor, either result in τ0, or FuSRS.τH. From the above we know
that the SRS the simulator is extracting frommatches that honest parties gener-
ate – containing at least one honest update (by chain quality). As the first honest
update in any chain is extracted from an FuSRS-provided reference string, (and,
by the correctness property, it is valid) it cannot be τ0. Therefore, the simulator,
by providing p toFuSRS, satisfies its requirements of a permissible permutation
in 𝑃 and ensures that once the permutation is applied, the same SRS is returned:
𝑆(p(τH)) = 𝑆(p(p−1(τ))) = 𝑆(τ).

In the above we have brushed aside the issue of aborts, however these are
also simple to deal with. FuSRS aborts if given an invalid permutation, which the
simulator does not do. In the real world, if liveness or chain quality are violated,
FNakLedger aborts. In each query, the simulator ensures that the same query is
run against the simulated ledger, ensuring that both will abort under the same
conditions. This is the primary purpose for whichFuSRS asks for a permutation
on each invocation, despite only using it on the first, as well as why it supplies
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the identity of the calling party to the ideal-world adversary.

As it is possible to construct (non-succinct) non-interactive zero-knowledge
schemes from a random oracle, we can remove the requirement on FR

NIZK and
instead rely on a random oracle FRO (formally described in Subsection 2.3.5).
As almost all constructions of Nakamoto-style ledgers are in the random oracle
model, our usage of a low-level NIZK is not amajor additional assumption.

Corollary4.1. Foranyupdateable reference string schemeS , it is possible to realise thepair
of functionalities (F ideal

NakLedger,WDelay(δ,FuSRS)) in the (F real
NakLedger,FRO)-hybrid world

and in the presence of Gclock.

4.4 Implementation and Parameter Selection

We have implemented [Ker20] Sonic’s update mechanism (see Subsection 4.1.3)
and, using this, provide performance estimates for SRS generation in a live
blockchain network. Further, we simulate the optimal adversarial attack strat-
egy and demonstrate how this may be used to select optimal parameters for
the secure generation of reference strings. We demonstrate that for currently
typical applications, these parameters are practical for real-world usage.

While we have not modified a full blockchain client to utilise this extended
consensus, we discuss the impact it would have on each of the following points:

• block verification
• block generation
• chain reorganisation
• network usage
• local storage

While theBitcoinbackbonepaper [GKL15] provides boundson chainparameters
in given situations, these have threemain drawbacks in the context of this chap-
ter:

1. The bounds are not tight.

2. The criteria for security are stricter than required: It asserts liveness and
persistence are never violated, while this chapter only requires them in a
few select cases.
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3. The analysis is in the synchronousmodel – while the generation and veri-
fication of reference strings can take a significant amount of time.

Toobtainsensibleparameters togenerate reference strings,wemeasure the time
taken for computing and verifying updates, and factor this processing overhead
into a simulation of the optimal adversarial strategy to subvert the SRS genera-
tion procedure.

The implementation and numbers provided for execution time and storage
use the commonly used BLS12-381 curve pair. Circuits which have been practi-
cally deployed tend to require a depth of at most half a million, so we will often
assume a Sonic uSRS depth of 500,000. All data shown is available at [Ker20]
andmay be reproduced with the provided source code.

4.4.1 Execution Time of uSRSOperations

We tested our implementation of the uSRS generation mechanism on an AMD
Ryzen 7 2700X 8-core processor with hyper-threading enabled. This proces-
sor is a standard consumer-grade CPU – in proof-of-work mining it is likely
that miners will have access to better hardware. All operations have been par-
allelised, and the verification operation has been additionally optimised to use
fewer pairing operations. The workload, especially for uSRS generation, is also
highlyparallelisable (consistingofprimarily a largenumberof groupexponenti-
ations), suggesting further improvements by utilising GPUs and clusters of ma-
chines are possible. If such improvements are applied, the total time delay re-
quired for the securegenerationprocedure, aswell as theoptimal intendedblock
time could be reduced proportionally to the increase in parallelisation; assum-
ing paralellisation across 10 machines could reduce both by an order of magni-
tude, for instance.

Wemeasured the time taken to create and verify a uSRS update in relation to
the uSRS depth in Figure 4.1. For our NIZK, we use a UC-secure Fischlin proof,
described in Subsection 4.1.3. We measure the overhead of these proofs to be
23.956ms for proving and 1.567ms for verifying (a Fiat-Shamir proof of the same
type wasmeasured to 0.921ms and 0.870ms respectively), using SHA-3 in place
of a random oracle. For larger dimensions of reference strings, neither have
much impact on the total runtime.

Finally,we implemented aggregate updates: Thebulkof Sonic’s update verifica-
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Figure 4.1: The time taken to produce and verify uSRS updates, as a function of
the Sonic SRS depth d.

tion procedure is concerned with verifying the structure of the reference string,
while a few parts of it verify that it is an exponentiation of the previous string.
By retaining only the latter parts, a series of updates can be verified almost as
quickly as a single update. The verification of aggregate proofs has an overhead
of 1.634msper update included in the aggregate. The bulk of this cost arises from
the verification of the Fischlin proof. This allows for even large chain reorgani-
sations to be quickly verified.

4.4.2 Simulating the Optimal Attack Strategy

Themechanismwehave presented in this chapter operates in twophases. In the
first phase, the adversary has the chance to subvert the reference string, while in
the second phase it can carry out a denial of service attack, potentially convinc-
ing users that an incorrect (but not subverted) reference string is the canonical
one.

For the first phase, the adversary’s optimal strategy is to mine entirely in-
dependently from any honest activity: the adversary cannot adopt any honest
block – doing so would break the subversion of its reference string. Further, the
adversary has no reason to share any of its own blocks except if it reached the
threshold of having a fully valid subverted reference string – it only gives the
honest network a chance to catchup, in the case that the adversary is ahead. This
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allows for a straightforward simulation of the consensus protocol: The probabil-
ity of either honest parties, or the adversary creating an individual block is expo-
nentially distributed. In addition to this, honest parties have a fixed processing
overhead before they may start mining: This may include a networking delay,
but more crucially it includes the time taken to verify a newly received block’s
uSRS update and to produce the subsequent update. We assume that the adver-
sary canbypass large parts of this overhead, by virtue of networkdominance, by
skipping verification and by producing reference string updateswith small (and
therefore insecure) exponents.

The overhead manifests as shifting the honest party’s exponential distribu-
tion for block generation by a fixed constant. More precisely, we parameterise
each experiment by:

• The intended time between blocks b
• The combined networking and update overhead d
• The fraction of adversarial mining power α

Of these three, d can be seen as fixed, depending on the depth of the uSRS being
generated and the corresponding speed of verification and update generation.
For simplicity, we assume a uSRS depth of 500,000, which corresponds to d
being approximately 250 seconds on our single-CPU setup.

We draw the time of the next adversarial block from the exponential distri-
butionwith λ = α/b, and the next honest block from the exponential distribution
with λ = (1−α)/b, shifted to the right by d (that is, the probability density is 0 for
x < d). The simulation is then advanced to the lesser of the two times, which is
resampled fromthe samedistribution. Thenumberof times theadversaryor the
honest parties have extended their chain is counted and the honest parties win
at any point if and only if the honest chain is longer than the adversarial chain.

We ran one million experiments in parallel, either up to a fixed end time,
or until a large enough fraction of the experiments end in honest victory. We
refer to the probability of an adversarial success as the probability of subversion
ε. Figure 4.2 demonstrates that for a fixed d, a trade-off exists between the target
time between blocks b and the time until any given subversion threshold ε ismet.

A practical limit of this simulation approach is that it cannot by itself deter-
mine the length of time needed to wait until ε is negligible formost typical secu-
rity parameters. We can however observe that for fixed parameters, ε decreases
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Figure 4.2: The time required to generate a secure uSRS, as a function of the
intended time between blocks. This depends on the proportion of adversarial
mining power α and the bound ε on the probablity of subversion. Each data
point represents the time until at most a fraction of ε of one million parallel
experiments ended in adversarial victory. Values are given assuming d = 250 s
and both axes scale linearly to d.

approximately exponentially as time passes, as seen in Figure 4.3, outside of a
brief initial window.

While the second phase – that where the adversary attempts to create dis-
agreement as towhich reference string is the canonical one –may initially seem
different, its optimal strategy is identical, as it essentially wishes to create as
long as possible a fork, starting one block prior to the end of the first phase (to
select a different reference string). As creating the longest fork forking at this
point does not allow the adversary to accept honest blocks after it, nor gives the
adversary a reason to share its blocks, the adversarial strategy is the same and
therefore the same analysis applies.

4.4.3 Storage andNetwork Usage

A Sonic reference string consists of 4d + 1 elements in 𝔾1 and 4d + 2 elements
in𝔾2. For the commonly used BLS12-381 curve pair,𝔾1 elements have a storage
requirement of 48 bytes each and𝔾2 elements of 96 bytes each. An update proof
includes an additional two 𝔾1 elements and a Fischlin proof, which itself con-
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Figure4.3: Theprobabilityof the reference stringbeing subverted ε, as a function
of the time passed, in multiples of the intended time between blocks b. This
depends on the proportion of adversarial mining power α and the compound
overhead d. b is selected to be approximately at theminimum seen in Figure 4.2,
with d = .15b, d = .4b, and d = 2b for the α = .45, .33, and .1, respectively.

sists of twelve iterations, each with 2 elements in 𝔽∗q (each of which requires 32
bytes to store), two elements of𝔾1, and a 16-bit nonce. Each part of an aggregate
update has an additional two𝔾2 elements.

As it is not necessary to retain intermediate reference strings, and aggregate
updates are sufficient, for a chain of length l, andwith an uSRS depth of d, this is
a storage requirement of 576d + 288 bytes for the uSRS itself and l ⋅ (2 ⋅ 48 + 2 ⋅
96 + 12 ⋅ (2 ⋅ 32 + 2 ⋅ 48 + 2)) = 2, 232l bytes for storing updates.

For 500,000 gates and chains of length 20,000, this corresponds to a total
storage requirement of 318MiB, with the reference string itself being the largest
part, at 275MiB. Although this is quite manageable as a storage requirement,
it must be considered that the SRS itself (and a single update of around 2KiB)
has to be re-transmitted with each block. While at the common home-internet
upload speed of 10Mb/s, a blockwould take slightly under 4minutes to transmit,
it is reasonable to assume thatminerswould invest inhigh-grade connections to
offset the chance of their block being replaced with a competitors. Speeds up to
10Gb/s are commercially available, which would reduce the transmission time
to under a second.

One remaining issue is that of denial-of-service. The receipt and verification
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of a reference string is costly, and should therefore be done only after a block’s
proof-of-work has been received, which should depend on a commitment to the
subsequently sent reference string – such as the update proof itself. An attacker
can still perform a limited denial of service attack with blocks they legitimately
mined – however this uses no more resources in verification than a legitimate
block would.

4.4.4 Conclusion

Figure 4.2 provides insight into the space of tradeoffswhich can bemade for the
secure generation of reference strings. While the secure generation of a refer-
ence string is possible even for a small honest majority, the time required to do
so is much higher than for a more relaxed setting, with δ1 being approximately
three months for α = .45, in contrast to around two days for α = .33. The full
setup is double this: six months for α = .45 and four days for α = .33. Perhaps
surprisingly, the desired probability of subversion ε has a more muted effect on
the required setup time.

The minima observed for δ1 suggest that simply deploying this system on
existingblockchain systemsas they are currently parameterised is unwise: Most
blockchains emphasise small values of b to enable transactions to settle quickly,
withevennotoriously slowchains suchasBitcoinhavingvalueson the lowerend
of our scale. This is directly linked to the compoundoverhead of verification and
update generation – when b is small, the adversary can better use its advantage
of bypassing large parts of the verification and update procedure. As previously
noted, there is a lot of room for speedup by assumingminers use greater compu-
tation power – if each miner used ten machines, even the α = .45 case would be
reduced to under amonth in total.

4.5 Low-Entropy UpdateMitigation

While our analysis indicates that in a Byzantine, honest majority setting, our
protocolproduces a trustworthy reference string, it also asksparticipants toded-
icate computational resources to updates. It follows that in a rational setting,
players need to be properly incentivised to follow the protocol. We emphasise
that the rational setting is not our focus, and optimistically, in a setting where
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the majority of miners are rational and a small fraction honest, the few honest
blocks are sufficient to eliminate the issue described in this section.

For Sonic, a protocol deviation exists that breaks the security of the reference
string: By choosing the exponent in a specific low-entropy fashion, (e.g., y = 2l)
the computation of the update, which primarily relies on repeated squaring, can
be done significantly faster. More generally, some permutations in 𝑃 may be
more efficiently computable. In more detail, instead of using a random permu-
tation p, a specific choice ismade that eases the computation of srs′ – in themost
extreme case, for any uSRS scheme, the update for p = id is trivial.

4.5.1 Proposed Construction

In order to facilitate amitigation for this class of attacks, wewill need to assume
an additional property of the underlying ledger, in particular it must provide
a “resettable” randomness beacon: With each ADVAnCE operation (where the
adversary must be restricted in how often it may do such ADVAnCE queries),
a random beacon value is sampled in a variable bcn and is associated with the
corresponding block. Prior work [DGKR18] demonstrates that such beacon val-
ues allow for the adversary to bias them only by “resetting” it at most a certain
number of times, say t, before they are fixed by entering the ledger’s confirmed
state, with the exact value of t depending on the chain parameters.

We can then amendGen to derive its randomvalues from the randomoracle,
by sending the query (bcn, nonce) to FRO, where nonce is a randomly selected
nonce, andbcn is thepreviousblock’sbeaconvalue. Theresponse isused to index
the set of trapdoor permutations 𝑃 , choosing the result p, and the nonce is stored
by miners locally, and kept private. We adapt the Phase 1 period δ1 so that at
least l′ ≔ l(1 − θ)−1 + c blocks will be produced, where θ and c are new security
parameters (to be discussed below). Next, after Phase 2 ends, we can be sure that
thebeaconvalue associatedwith the endof Phase 1has been reset atmost t times.

We extract from bcn l′ biased coins, each with probability θ. For each block,
if the corresponding coin is 1, it is required to reveal its randomnesswithin a pe-
riod of time at least as long as the liveness parameter. Specifically, a partywhich
created one of the selected blocks may reveal its nonce. If its update matches
this nonce, the party receives an additional reward of value𝑅 times the standard
block reward.
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While this requires a stricter chain quality property, with the ledger func-
tionality instead enforcing that one of these l non-opened updates are honest,
we sketch why this property still holds in the next section.

4.5.2 Security Intuition

Consider now a rational miner with hashing power α. We know that, at best, us-
ing anunderlying blockchain likeBitcoin, the relative rewards such aminermay
expect are atmost α/(1−α) in expectation; this assumes a selfishmining strategy
thatwinsallnetworkracesagainst theother rationalparticipants. Nowconsider
aminerwhouses lowentropy exponents to save on computational power on cre-
ated blocks and, as a result, boosts their hashing power α to an increased relative
hashing power of α′ > α. The attacker can further try to influence the blockchain
by forking and selectively disclosing blocks which has the effect of resetting the
bcn value to a preferred one. To see that the impact of this is minimal, we prove
the following lemma.

Lemma 4.2. Consider a mapping ρ ↦ {0, 1}l′ that generates l′ independent biased coin
flips, each with probability θ, when ρ is uniformly selected. Consider any fixed n ≤ l′ po-
sitions and suppose an adversary gets to choose any one out of t independent draws of the
mapping’s random input with the intention to increase the number of successes in the n posi-
tions. The probability of obtainingmore than n(1 + ε)θ successes is exp(−Ω(ε2θn) + ln t).

Proof. In case t = 1, result follows from a Chernoff bound on the event 𝐸 defined
as obtaining more than n(1 + ε)θ successes, and has probability exp(−Ω(ε2θn)).
Given that each reset is an independent draw of the same experiment, by apply-
ing a union boundwe obtain the lemma’s statement.

The optimal strategy of a miner utilising low-entropy attacks is to minimise
the number of blocks of other miners are chosen, to increase its relative reward.
Lemma 4.2 demonstrates that at most a factor of (1 + ε)−1 damage can be done
in this way. Regardless of whether a miner utilises low-entropy attacks or not,
their optimal strategy beyond this is selfish mining, in the low-entropy attack
mining in expectation l′α′/(1 − α′) blocks [GKL15]. A rational miner utilising
low-entropy attacks will not gain any additional rewards, while a miner not do-
ing so will gain at least l′α/(1 − α)(1 + ε)−1θ𝑅 rewards from revealing their ran-
domness, by Lemma4.2. It follows that for a rationalminer, this strategy can be
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advantageous to plain selfishmining only in case:

α′

1 − α′ > (1 + θ(1 + ε)−1𝑅) α
1 − α

If we assume aminer can increase their effective hash rate by a factor of c, using
low-entropy exponents, then their advantage in the low entropy case is α′ =
αc/(αc + β), where β = 1 − α is the relative mining power of all other miners. If
follows that theminer benefits if and only if:

αc
αc+β

⋅ αc+β
β

> (1 + θ(1 + ε)−1𝑅)α
β

⟺ c > 1 + θ(1 + ε)−1𝑅

If we adopt a sufficiently large intended time interval between blocks it is possi-
ble to bound the relative savings of a selfishminer using low-entropy exponents;
following the parameterisation of Subsection 4.4.2, if a selfishminer using such
exponents can improve their hashing power by at most a multiplicative factor c
then we canmitigate such an attack by setting 𝑅 to (c − 1)/(θ(1 + ε)−1).

4.6 Discussion

While the clean generation of a new reference string from a ledger protocol is
itself useful, real-world situations are likely to bemore complex. In this section
we discuss practical adjustments that may bemade.

4.6.1 Upgrading Reference Strings

As distributed ledgers are typically long-lived and may well outlive any refer-
ence string used within it – or have been running before a reference string was
needed – a secure process to upgrade reference strings is important. Indeed,
the Zcash protocol has seen upgrades in its reference string. A reference string
being replaced with a new one is innocuous without further context, however it
is important to consider how they are usually used in zero-knowledge proofs. If
the proof they are used in is stateless, upgrading from an insecure to a secure
reference string behaves as one may naively expect: It ensures that after the
upgrade, security properties hold.

In the example of Zcash, which runs a variant of the Zerocash [BCG+14]
protocol, the situation is more muddy. Zerocash makes stateful zero-knowledge
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proofs. Suppose a user is sceptical of the security of the initial setup – and there
is good reason to be [SWB19] – but is convinced the second reference string is
secure. Is such a user able to use Zcash with confidence in its security?

Had Zcash not had safeguards in place, the answer would be no. While the
protocolmayoperateas intendedcurrentlyand theuser canbeconvincedof that,
due to the stateful nature of the proofs, the user cannot be convinced of the cor-
rectness of this state. The Zcash cryptocurrency did employ similar safeguards
to those we outline below. We stress the importance of such safeguards here, as
not every project may have the same foresight.

Specifically, for aZerocash-based system, an original reference string’s back-
door could have been used to create mismatched transactions and to effectively
“mint” large coins illicitly. This process is undetectable at the time and the
minted coins would persist across a reference string upgrade. Our fictitious
usermay therefore be rightfully suspicious as to the value of any coins he is sold
– theymay be a part of an almost infinite pool!

Such an attack, once carried out (especially against a currency) is hard to re-
cover from– it is impossible to identify “legitimate” owners of the currency, even
if the private transaction history were deanonymised and the culprit identified.
The culprit may have traded whatever he created already. Simply invalidating
the transaction would therefore harm those he traded with, not himself. In an
extreme case, if he traded one-to-one with legitimate owners of the currency,
hewould succeed in effectively stealing the honest users funds. If such an attack
is identified, the community has two unfortunate options: Annul the funds of
potentially legitimate users, or accept a potentially large amount of inflation.

Wemay assume a less grim scenario however: Suppose we are reasonably con-
fident in the security of our old reference string, but we are more confident of the
new one. Is it possible to convince users that we have genuinely upgraded our
security? We suggest the usage of a type of firewalling property. Such properties
are common in the domain of cross-chain transfers [GKZ19] and are designed to
prevent a catastrophic failure on one chain damaging another.

For monetary transfers, the firewall would guarantee an upper-bound of
funds was not exceeded. Proving the firewall property is preserved is easy if
a small loss of privacy is accepted – each private coin being re-minted before
it can be used after the upgrade, during which time its value must be declared.
Assuming everything operates fine and the firewall property is not violated,
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users interacting with the post-firewall state can be confident as to the upper
bound of funds available. Furthermore, attacks on the system can be identified:
If an attacker mints too many coins, eventually the firewall property will be
violated, indicating that too many coins were in circulation – bringing the
question of how to handle this situation with it. We believe that a firewall
property does give peace ofmind to users of the system and is a practical means
toassuageconcernsabout thesecurityofa systemwhichoncehadaquestionable
reference string.

In Zcash, a soft form of such firewalling is available, in that funds are split
across several “pools”, each of which uses a different proving mechanism. The
total value of each pool can be observed, and values under zero would be con-
sidered a cause for alarm and rejected. Zcash uses the terminology “turn-
stiles” [Zca19] and no attacks have been observed through them.

A further consideration for live systems is that asSubsection4.4.2 shows, the
time required strongly depends on the frequency between blocks. Thismay con-
flict with other considerations for selecting the block time – a potential solution
for this is to only performupdates on “superblocks”: blockswhichmeet a higher
proof-of-work (or other selectionmechanism) target than usual.

4.6.2 The Root of Trust

An important question for all protocols in the distributed ledger setting is
whether a user entering the system at some point during its runtime can be con-
vinced to trust in its security. Early proof-of-stake protocols, such as [KRDO17],
did poorly at this and were subject to “stake-bleeding” attacks [GKR18], for
instance – effectivelymeaning new users could not safely join the network.

For reference strings, if a newly joining user is prepared to accept that the
honest majority assumption holds, they may trust the security of the reference
string, as per Theorem 4.2. There is a curious difference to the security of the
consensus protocol however: to trust the consensus – at least for proof-of-work
based protocols – it ismost important to trust a current honestmajority, as these
protocols are assumed to be able to recover from dishonest majorities at some
point in their past. The security of the reference string on the other hand only
relies on assuming honest majority during the initial δ time units. This may
become an issue if a large period of time passes – why should someone trust the
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intentions of users during a different age?
In practice, it may make sense to “refresh” a reference string regularly to re-

new faith in it. It is tempting to instead continuously perform updates, however
as noted in Subsection 4.6.1, this does not necessarily increase faith in a stateful
system, although is can remove the “historical” part from the honest majority
requirement when used with stateless proofs.

Most subversion attacks are detectable – they require lengthy forks which
are unlikely to occur during a legitimate execution. In an optimistic case, where
no attack is attempted, this may provide an additional level of confirmation: if
there are no widespread claims of large forks during the initial setup, then the
reference string is likely secure (barring large-scale out-of-band censorship). A
flip side to this is that it may be a lot easier to sow doubt, however, as there is
no way to prove this: A malicious actor could create a fork long after the initial
setup and claim that it is evidence of an attack to undermine the credibility of
the system.

4.6.3 Applications to Non-Updateable SNARKs

Updateable SNARK schemes have two distinct advantages which our protocol
makes use of: First, they have an explicit update procedurewhich allows a party
ψ to replace a reference string whose security depends on some assumption 𝐴,
with one whose security depends on𝐴 ∨ (ψ is honest). Second, they can survive
withapartially biased reference string, a factwhichwedonotusedirectly in this
chapter, however the functionalityFuSRSweprovidepermits rejection sampling,
encoding it into the ideal world.

The lack of an update algorithm can be resolved for some zk-SNARKs, such
as [Gro16], by the existence of a weaker property: In two phases, the reference
string can be constructed with (potentially different) parties performing round-
robin updates (also group exponentiations) in each phase. This approach is also
detailed in [BGM17], and it implies anatural translation toourprotocol, inwhich
the first phase is replaced with two phases of the same length, performing the
first and second phase updates, respectively.

The security of partially biased references strings has not been sufficiently
analysed for non-updateable SNARKs, however this weakness can bemitigated.
Following [BGM17], it is possible to use a pure random beacon (as opposed to
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the resettable one used in Section 4.5) to create a “pure” reference string from
the “impure” one presented so far. To sketch the design: The random beacon
would be queried after time δ, and the randomness used to select a trapdoor per-
mutation over the reference string. This would then be applied by each party
independently, arriving at the same – randomly distributed – reference string.

As this is not required for updateable SRS schemes, we did not perform this
analysis in depth. However the approach to the simulationwould be to perform
the SRS generation identically, and then program the random beacon to invert
all permutations applied to the honest reference string. Since this includes the
one honest permutation applied on every honest update, this is indistinguish-
able from a random value to the adversary. It is worth noting that the require-
ment of a randombeacon is on the stronger side of requirements, especially as it
should itself not allow adversarial influence to provide the desired advantage.
Approaches using block hashes for randomness introduce exactly the limited
influence which we are attempting to remove!
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5 PrIVACY In
PrOOF-OF-STAKE

--.--
This chapter is based on “OuroborosCrypsinous: Privacy-Preserving Proof-of-
Stake” [KKKZ19], first publishedat the2019 IEEESymposiumonSecurity and
Privacy, primarily authored by Thomas Kerber, and co-authored by Aggelos
Kiayias, Markulf Kohlweiss, and Vassilis Zikas.

COnSTrUCTIOn of both privacy-preserving currency systems, such as Ze-
rocash [BCG+14], and secure proof-of-stake, such as Ouroboros [KRDO17,

DGKR18, BGK+18], has beenwell-studied. Combining both is a natural goal and
goes beyond a simple parallel composition of two systems, as proof-of-stake is
intrinsically interwoven with the currency, requiring knowledge of how much
stake users own by definition. This poses significant modelling challenges, and
questionsofhowthe leakage fromtheproof-of-stakeprotocol canbeminimised.

This chapter proposes a mechanism to combine the currency and ledger
(while still allowing for flexible alternative usage), by allowing transactions to
be addressed only to specific users. Furthermore, it presents CrYPSInOUS, a
proof-of-stake protocol which realises this ledger from a privacy-preserving
currency. This is based on the Ouroboros Genesis protocol [BGK+18]. Crucially
this analysis is not only universally composable and privacy-preserving, but
also forward-secure, ensuring that privacy is preserved independently of any
other protocols running concurrently, even considering adaptive corruption.

Proof-of-stake and transaction privacy is, seemingly, a contradiction in
terms: issuing a block by proof-of-stake fundamentally leaks information about
the issuer and the state of the ledger. We circumvent the contradiction by
adapting the techniques of Zerocash’s “transaction pouring” to our setting. A
notable difference is that coins evolve when used in a proof-of-stake eligibility
proof, allowing them to be both reused and spent without being linked to this
proof.
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The design has several subtleties since a critical consideration in the PoS set-
ting is tolerating adaptive corruptions: this ensures that even if the adversary
can corrupt parties in the course of the protocol execution in an adaptive man-
ner, it does not gain any non-negligible advantage by, for instance, re-issuing
past PoS blocks. In non-private PoS protocols such as Algorand [GHM+17] and
Ouroboros Genesis [BGK+18] this is captured by employing forward secure sig-
natures. In the context of our protocol however, a more sophisticated combi-
nation of key-private forward-secure encryption – a new encryption primitive
which we formally define and realise – and an evolving coins mechanism is re-
quired to achieve the same level of security. Intuitively, the reason is that we
need to ensure that past coins received provide no significant advantage to the
adversary when it corrupts an active stakeholder. We note that the naive ap-
proach of simply paying oneselfwith a new coin does notworkhere, as the same
coin should be able to be electedmultiple times in a sequence of PoS invocations
without leaving any evidence in the ledger.

The work presented in this chapter is concurrent and independent, of an-
other paper on privacy-preserving proof-of-stake by Ganesh et al. [GOT18].
Their work focuses on constructing a generic, privacy-preserving leadership
election, given a list of commitments to each party’s stake. This chapter by
contrast focuses on ensuring the proof of stake leadership election can runwith
a provably secure, privacy-preserving transaction scheme. Notably, Zerocash
cannot immediately be used with the system of [GOT18], as it does not maintain
a list of stake commitments – indeed, such a list would appear to reveal more
about the shift in funds than Zerocash does, such as how long an account has
seen no changes.

5.1 Protocol Intuition

To begin with, we give a high-level sketch of the CrYPSInOUS protocol in this
section, to aid in understanding the more formal break-down of the protocol
in Section 5.4, and to introduce core concepts. We will first sketch the design
of two protocols we are building on – Ouroboros Genesis [BGK+18] and Zero-
cash [BCG+14]. We will discuss how these can be combined, and the issues that
arise through this combination. Finally, we will sketch how we have resolved
these issues.
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5.1.1 The Foundations of Genesis and Zerocash

Ouroboros Genesis [BGK+18], divides time into discrete slots. At protocol start,
parties are assigned an initial stake in the system. Typically, only the relative
amount of such a stake is considered, that is, the fraction of the total stake
owned. By protocol-external means, the distribution of this stake may shift
over time, for instance, by users trading it amongst each other. In each slot,
users have a probability proportional1 to their relative stake to be “elected” as a
leader of the slot. In practice, this relies on a pseudo-random value being below
a user-specific target. Such leadersmay then create a new block and sign it with
a proof of leadership eligibility. In order to prevent so-called “grinding attacks”,
in which parties attempt the leadership election arbitrarily often with different
accounts, transferring themselves the funds, Genesis divides time further into
epochs. In each of these, the distribution of stake considered for leadership is
fixed, and the pseudo-random values used to determine it can only be predicted
once the epoch starts.

Zerocash [BCG+14] achieves complete transactional privacy in a distributed
ledger setting through the use of non-interactive zero-knowledge (NIZK) proofs.
It representsmonetaryvalue through coins,whichcanbecreated, andspentonce.
Crucially, it prevents double-spends and ensures value is preserved,while at the
same time preventing the creation and spending of a coin from being linked. A
transfer allows spending two coins and creating two new coins of the same com-
binedvalue. This closelymirrors the simplest formofBitcoin transactions. Each
party holds a secret key used to spend coins, which is simply a random string,
and its corresponding public key is a hash of the secret key. When creating a
new coin, it is created for a public key. Specifically, a nonce is randomly selected
for the new coin, and the transaction creating it commits to the coin’s public
key, nonce, and value. All such created commitments are kept in a protocol-
wideMerkle tree. To spend a coin, a partymakes a zero-knowledge proof of two
things: First, the protocol-wide Merkle tree contains a commitment to it, and
second, the spender knows the preimage of the public key. This by itself would
allow double spends, so Zerocash reveals a coin’s serial number, which is defined
as a PRF of the secret key and the coin’s nonce. The transfer finally proves in
zero-knowledge that the transaction is zero-sum.

1Technically it is not linear, however this is a close approximation.

Chapter 5. Privacy in Proof-of-Stake 153



5.1.2 The Core Protocol

The core principle of CrYPSInOUS is combining the strengths of both the
Ouroboros Genesis and Zerocash protocols. While Ouroboros Genesis assumes
the distribution of stake to be public, this fact is only used in verifying that
leaders of a slot met the appropriate target – to remove this intrinsic leakage,
we have parties hold Zerocash-style coins, with each coin being separately
considered for leadership. As in Ouroboros Genesis, each coin is eligible to
be a leader if a pseudorandom value meets some target. Instead of revealing
the coin’s value, however, in CrYPSInOUS parties produce a NIZK proof of
this, as well as proving that the respective coin is unspent2. This also forces
us to explicitly model the transaction system by which stake is allowed to shift
– as the stake distribution is no longer simply supplied to every party by the
environment, it is necessary to make explicit how it is derived. For this reason,
the core CrYPSInOUS protocol includes a Zerocash-like transaction system.

5.1.3 Freezing Stake in Zero Knowledge

The security argument of Ouroboros Genesis relies on parties not being able to
manipulate whether or not they won a leadership election. Specifically, it as-
sumes the distribution of stakeholders to be fixed before the randomness for the
same epoch is decided. Likewise, the set of coins that are eligible for a slot in the
leadership election is fixed in CrYPSInOUS. The protocolmaintains this frozen
set of coins, ℭlead, separately to the set of coins usable for spending, ℭspend. In
practice, as coins are anonymously represented as sets of both commitments
and serial numbers, and as any reuse of a serial number would lead to some
privacy leakage, we represent them through two sets of commitments,ℂlead and
ℂspend, andone set of serialnumbers, 𝕊. In creating the leadershipproofs, a coin’s
serial number is revealed. As it may later be spent, this would lead to some pri-
vacy leakage. Tomitigate this, we instead evolve the coin in the leadership trans-
action. This new, evolved coin can then be spent and used in further leadership
proofs, the latterbeingpossible as it is deriveddeterministically fromthe former
coin, which does not allow influencing the probability of it being elected in the

2Moreprecisely,weatomically spend the coin toourselves toprove this. Analternativewould
be to produce a non-membership proof [BLL00], which has a higher circuit cost, but is arguably
simpler.
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remainder of the epoch. We note that as this design inherently destroys the old
coin, it is important that even leadership transactions of different branches of
the chain are imported and validated.

5.1.4 Adaptive Corruptions

AsOuroboros Genesis is secure in the adaptive corruptionmodel, it seems natu-
ral that privacy results should be possible in the samemodel. The construction
described so far is not directly secure against adaptive corruptions. An adver-
sary could, after corrupting a party, attempt to create leadership proofs of past
slots with the newly corrupted party. Furthermore – in the UC framework –
a non-committing encryption [Nie02] would be needed for the ciphertexts in
the Zerocash style transactions, aswith a committing encryption, the simulator
would be unable to produce ciphertexts that stand up to inspection after corrup-
tion.

We solve the former issue by adding a cheap key-erasure scheme into the
NIZK for leadership proofs. Specifically, parties have a Merkle tree of secret
keys, the root of which is hashed to create the corresponding public key. The
Merkle tree roots act like a Zerocash coin secret key and can be used to spend
coins. For leadership however, parties also must prove knowledge of a path in
theMerkle tree to a leaf at the index of the slot they are claiming to lead. After a
slot passes, honest parties erase their preimages of this part of that path in the
tree. As the size of this tree is linear with the number of slots, we allow parties
to keep it small, by restricting its size. Keys therefore are associated with their
creation time, by committing to this in the corresponding public key. While this
does mean keys can expire, parties can trivially refresh them, and we sketch in
Section 5.6 that this is a rare occurrence for practical parameters. We emphasise
that parties are able to spend and refresh keys, even when expired.

While we could easily present CrYPSInOUS using non-committing encryp-
tion, known realisations of this primitive are not efficient enough for this pur-
pose in practice. Instead, we take advantage of our protocols network assump-
tions,which includeanupperboundonmessagedelivery, Δmax. This allowsus to
utilise forward secure encryption instead of non-committing encryption, under
the assumption that corruption is “delayed” by Δmax. This delay is modelled by
restricting adversarial access to the forward secure encryption secret key at time

Chapter 5. Privacy in Proof-of-Stake 155



t to the key for time t + Δmax.

5.2 Components of CrYPSInOUS

In this section we discuss the main components of the real-world execution,
including the hybrid functionalities that the protocol uses. We discuss the
ideal world, and in particular the private transaction ledger functionality in
Section 5.3. We provide all the aspects of the execution model from [BMTZ17,
BGK+18] that are needed for our protocol and proof, but omit some of the
low-level details and refer the more interested reader to these works wherever
appropriate.

As in the case of Bitcoin (see [GKL15, PSs17, BGK+18]), our protocol is im-
plicitly aware of an overestimate Δmax of the actual (unknown) network delay
Δ. However, this Δmax is not used in the message passing; instead the protocol
proceeds in an optimistic manner once messages are received (after at most
Δ rounds from sending) and Δmax is only used in the staking procedure to
determine the leader(s) of each slot.

Our protocol makes use of the following hybrid functionalities, similarly
to [BGK+18].

• The global clock functionality Gclock.

• Broadcast channelsFbc
Net andF tx

Net with the delay Δ.

• The genesis block generation and distribution functionality FInit, which
captures the assumption that all parties (old and new) agree on the first,
so-called genesis block. In fact, this functionality is slightly different from
the one in [BGK+18] as the blocks in our work have a different structure
to ensure privacy. Concretely, in Ouroboros Genesis this block includes
the keys, signatures, and original stake distribution of the parties that are
around at the beginning of the protocol. Here, for each stakeholder regis-
tered at the beginningof theprotocol,FInit recordshis keys and initial coin
commitments in the genesis block; this block is distributed to anyonewho
requests it in any future round. As in [BGK+18] we assume without loss
of generality that the global time is t = 0 in the genesis round. The new
genesis block functionality is specified below.
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• A random oracleFRO for abstracting hash function queries.

FunctionalityFInit

The functionality FInit is parameterised by the set of initial stakeholders P =
{ψ1,… ,ψn} and their respective stakes 𝑆:P → ℝ+. It allows each of these parties
to register keys, and provides themwith openings to their generated coins.

State variables and initialisation values:

Variable Description
𝔊 ≔ ⊥ The genesis block
ℂ ≔ ∅ Mapping from parties to their committed coin

When receiving amessageCLAIm from a party ψ:

if ψ ∉ P ∨ ψ ∈ ℂ then return rEJECT

sample skCOIn as CrYPSInOUS on GEnErATE
let ρc

∗ {0, 1}κ; pkCOIn ← prfpkrootskCOIn (0)
let (ℂ(ψ), rc) = comm(pkCOIn ‖ 𝑆(ψ) ‖ ρc)
return ((pkCOIn, ρc, rc, 𝑆(ψ)), skCOIn)

When receiving amessageGEnESIS from a party ψ:

send rEAD to Gclock and receive the reply t
if t = 0 ∨ ∃ψ ∈ P :ψ ∉ ℂ then abort

if 𝔊 = ⊥ then
let η1

∗ {0, 1}κ;𝔊 ← ({ ℂ(ψ) | ψ ∈ P } , η1)
return𝔊

To ensure privacy of transactions, we need to equip ourmodel with a couple
of extra functionalities not present in previous works. For instance, the (non-
private) Ouroboros protocol-line [DGKR18, BGK+18] relies on verifiable random
functions and key-evolving signatures to ensure security of the lottery which
defines slot leaders andprevents double spending in the presence of an adaptive
adversary.

In this work we cannot use signatures to authenticate coins/transactions as
we need to keep the spent amount and the identities of the receiver private. For
this reason we introduce key-private forward secure encryption and non-interactive
zero-knowledge proofs (NIZKs). Our protocol will be described as having access
to hybrid-functionalities for these primitives. To our knowledgenodefinition of
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key-private forward secure encryption or an implementation thereof has been
suggested. In fact, for reasons discussed in Subsection 5.2.3 an implementation
of this primitive against fully adaptive adversariesmight be impossiblewithout
additional setup assumptions. Instead, here we make an assumption about the
(in)ability of the adversary to quickly read keys of newly corrupted parties and
prove the securityof ourprotocolsunder this assumption. Proving impossibility
of the primitive against a fully adaptive adversary (or providing a protocol for it)
is an interesting future direction.

Finally, our constructionwillmake use of non-interactive equivocal commit-
ments and pseudo-random functions (PRFs). Construction of both these primi-
tives exists assuming a CRS under standard hardness assumption, for instance,
hardness of the DDH (Decision Diffie Hellman) problem. Notably we require a
stronger-than-typical form of PRFs, which we capture in Subsection 5.2.4.

5.2.1 Protocol Assumptions Encoded as aWrapper

The security statements about implementation of ledgers are typically condi-
tional. For instance, the Bitcoin ledger is proved secure assuming the majority
of the system’s hashing power is honest, and the Ouroboros (Genesis) ledger is
implemented assuming themajority of the stake is held byhonest parties. These
assumptions can be easily described by explicitly restricting the class of envi-
ronments and adversaries, but this would sacrifice the universal composability
of the statement. We follow the paradigm of [BMTZ17] to capture these assump-
tionswithout compromising composability: Instead of explicitly restricting the
adversary and environment, we introduce a functionality wrapper that wraps
the functionalities that the protocol accesses and forces the required assump-
tions on the adversary/environment. We refer to [BMTZ17] for a more detailed
discussion. The full wrapper is defined below; as this wrapper only becomes
relevant for interpreting our main theorems (Theorem 5.2 and Theorem 5.3) it
might be easier for the first-time reader to postpone parsing it until then.

FunctionalityWPoS
HonMaj (F

RLEAD
NIZK ,FRXFEr

NIZK ,F tx
Net,F

bc
Net,Gclock)

The wrapper functionality is parameterised by the bound β on participating stake
ratio, as defined in Ouroboros Genesis [BGK+18], and ε > 0, the parameter that de-
scribes the gap between the honest and adversarial stake. The wrapper is assumed
to be registered with the global clock Gclock and is aware of sets of registered parties
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and the set of corrupted parties.
The wrapper makes checks about the distribution of stake. While this is trivial

inOuroborosGenesis, it is not immediately obvious that thewrapper knows this in-
formation in CrYPSInOUS. The wrapper observes all network traffic and all NIZK
witnesses however, allowing it to reconstruct any party’s view of the ledger. We do
not describe this extraction in full detail – it is possible as the wrapper is around
all “real-world” functionalities. We can therefore make assertions about the stake
distribution despite the addition of privacy.

State variables and initialisation values:

Variable Description
FRLEAD
NIZK The simulated leadership NIZK

FRXFEr
NIZK The simulated transfer NIZK
F tx
Net The simulated transaction network

F tx
Net The simulated chain network

Gclock The simulated clock

When receiving amessage (PrOVE, x,w) from a corrupted party ψ forFRLEAD
NIZK :

let α ← fraction of honest stake participating in this round
if α is sufficient, as per [BGK+18] then

simulate sending (PrOVE, x,w) toFRLEAD
NIZK and receive the reply π

return π
else

return ⊥
When receiving amessage (PrOVE, x,w) from an honest party ψ forFRLEAD

NIZK :

simulate sending (PrOVE, x,w) toFRLEAD
NIZK and receive the reply π

return π

Forward but evesdrop all other requests to their simulated functionalities.

5.2.2 Non-Interactive Zero Knowledge

Weutilise theNon-Interactive Zero Knowledge functionalityFR
NIZK constructed

composably in Chapter 3. The reference string for this could be created in a
public proof-of-stake protocol, as suggested in Chapter 4, although this is not
described in detail in this chapter.

NIZKs can be used for signature-like behaviour by embedding the messages
that are to be signed in the statements of simulation-extractable NIZKs, con-
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structing in this way a signature of knowledge (SoK) [GM17]. In particular, we note
that witnesses used to generate proofs in CrYPSInOUS will contain the party’s
secret key and the proved statement commits to the party’s public key. As a
result, the NIZK used in CrYPSInOUS has similar unforgeability properties as
standard signatures.

5.2.3 Key-Private Forward-Secure Encryption

To guarantee the forward-privacy of transactions, a forward-secure encryption
scheme [CHK03] is necessary to hide information sent encrypted to a party’s
long-term encryption secret key. Traditional forward-secure encryption is in-
sufficient, as it would leak information about the recipient of a transaction. To
preserve the recipient’s anonymity in CrYPSInOUS transactions, we therefore
requirekey-privacyaswell [BBDP01]. Furthermore, as thesimulatormust create
simulated ciphertexts, which it may later need to reveal themessage of, encryp-
tion in theUC settingneeds to benon-committing towithstand adaptive corrup-
tions. Interestingly, however, there are no existing encryption schemes that si-
multaneously achieve key-privacy, forward-security, and the non-commitment
property.

We overcome the above limitation by slightly weakening the above security
requirements and only requiring forward-security with a time-sensitive non-
committing property: Informally, only messages addressed to a time window
of size Δmax into the future are protected. As it turns out, this weaker notion is
sufficient for our purposes. Even for this notion, however, it is not evident how
to efficiently realise such an encryption in the UC setting. To understand the
issue, it is useful to recall how we can realise non-interactive non-committing
encryption via erasures. The idea is to have parties update their keys once the
message is received. More concretely, amessage is encrypted at round t and sent
over to the receiver so that it can be decrypted with key skenct . Upon receiving it,
the receiver can decrypt it (using skenct ) and immediately update the key to skenct′

for the next round (and erase skenct ). This way the link between the ciphertext
and the key is eliminated by the time the adversary corrupts the receiver.

Theaboveapproach clearly fails if the channelhas anydelay, as inour setting,
as this gives the adversary awindow of opportunity of size Δ, and bounded only
by Δmax, to attack during which the message is already being transmitted but

Chapter 5. Privacy in Proof-of-Stake 160



has not yet been received by the recipient. This makes erasures useless in this
window (if correctness is to bemaintained).

To bypass the above issue, we make an assumption on the adversary’s adap-
tiveness which, roughly, implies that the adversary cannot immediately access
the secret key of a newly corrupted party. Specifically, we assume that the adver-
sary corrupting a party with key skenct at time t does not receive skenct , but rather
the key skenct+Δmax

, which this partywouldhold in time t+Δmax, if itwere allowed to
properly update its key. Weemphasise that this is amilder assumption than that
of delayed party-corruption which underlines the security of [KRDO17, BPS16].
Indeed, in theseworks the adversary is forbidden fromaccessing the entire state
of a corrupted party for a certain number of rounds after corruption; instead,
here we only restrict his access to the present keys, and we even give the adver-
sary an outlook, already upon corruption, of how the key will look in the near
future.

To enforce the above restriction without affecting the universal composabil-
ity of our statements, we use a technical trick inspired by [BMTZ17, DGHM13]:
We introduce an ideal functionality which captures this restriction/assumption.
This functionality, denoted by FKeyMem, stores keys upon request from parties,
andupdates themevery roundusingaone-way functionUpdate; whenanhonest
party requests a key it has submitted in the past, the functionality sends it the
current key. However, when the adversary asks for a key (on behalf of a cor-
rupted party) FKeyMem first applies Update Δmax times and returns the updated
key to the adversary.

As an added bonus from using the above functionality-based approach for
restricting the adversary, our treatment ensures that the restriction is localised
to the encryption functionality; thus, if someone comes upwith an instantiation
of the encryption functionality against a fully adaptive adversary, our protocol
would immediately be secure against such an adversary. TheFKeyMem function-
ality is specified below.

FunctionalityFKeyMem

FKeyMem is parameterised by its corruption delay Δmax and a memory update func-
tion update. We write updateΔmax to mean “apply update Δmax times.”
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State variables and initialisation values:

Variable Description
𝑀ψ ≔ ⊥ Memory for each party ψ

When receiving amessage (InIT,𝑀0) from a party ψ:

assert𝑀ψ = ⊥
let𝑀ψ ← 𝑀0

When receiving amessageGET from a party ψ:

if ψ ∈ H then return𝑀ψ

else return updateΔmax(𝑀ψ)

When receiving amessageUPDATE from a party ψ:

if 𝑀ψ ≠ ⊥ then let𝑀ψ ← update(𝑀ψ)

TheUCfunctionality forkey-privateand forward-secureencryption,FFwEnc and
the accompanying construction, are described in detail below.

FunctionalityFFwEnc

FFwEnc isparameterisedbyasecurityparameterκ, a set ofpartiesP , andamaximum
delay Δmax.

State variables and initialisation values:

Variable Description
𝐾 ≔ ∅ Mapping from parties to public keys
𝑇 ≔ ∅ Mapping from parties to earliest decryptable time slot
𝑀 ≔ ∅ Mapping from ciphertexts to their recipient, latest decryption time,

andmessage

When receiving amessageKEYGEn from a party ψ:

assert ψ ∉ 𝐾
queryAwith (KEYGEn,ψ) and receive the reply pk,

satisfying ∄ψ′:𝐾(ψ′) = pk, else sampling from {0, 1}κ
let 𝐾(ψ) ← pk; 𝑇 (ψ) ← 0
return pk

When receiving amessage (EnCrYPT, pk, t,m) from a party ψ:

if ∃ψ′:𝐾(ψ′) = pk ∧ ψ′ ∈ H ∧ t < 𝑇 (ψ′) + Δmax then
queryAwith (EnCrYPT, t, |m|) and receive the reply c,

satisfying c ∉ 𝑀 , else sampling from {0, 1}κ
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else
queryAwith (LEAK-EnCrYPT, pk, t,m) and receive the reply c,

satisfying c ∉ 𝑀 , else sampling from {0, 1}κ

let𝑀(c) ← (pk,m, t)
When receiving amessage (DECrYPT, t, c) from a party ψ:

if ψ ∈ H then let δ ← 0
else let δ ← Δmax

if t < 𝑇 (ψ) + δ ∨ ψ ∉ 𝐾 then return FAIL

if c ∈ 𝑀 then
let (pk,m, t′) ← 𝑀(c)
if pk ≠ 𝐾(ψ) ∨ t ≠ t′ then return FAIL
else return (OK,m)

else
queryAwith (DECrYPT,𝐾(ψ), t, c) and receive the replym
returnm

When receiving amessageUPDATE from a party ψ:

queryAwith (UPDATE,ψ)
let 𝑇 (ψ) ← 𝑇 (ψ) + 1

We extend the notion of forward-secure encryption (FSE) with a notion of
key privacy, described in detail in Definition 5.1 below. While this definition it-
self is novel, it is possible to combine existing schemes to satisfy it. In particu-
lar, [CHK03] constructs FSE fromhierarchical identity-based encryption (HIBE).
Their scheme, pairedwith the anonymousHIBE constructionof [BW06] satisfies
our requirements of key-privacy as we will argue below.

For the argument of key privacy, the FSE fromHIBE construction in [CHK03]
is straightforward, with the ciphertexts simply being the underlying HIBE
scheme’s ciphertexts. The core argument of the anonymity of [BW06] is the
indistinguishability of ciphertexts fromrandomgroupelements– and therefore
their independence of the encrypting identity [BW06, Lemmas 8 & 9]. We note
that the ciphertexts’ pseudo-randomness implies a stronger notion than just
anonymity – the ciphertext also does not reveal any information about theHIBE
public key. In particular, as ciphertexts are indistinguishable, our enhanced
security game given in Definition 5.1 is satisfied.

This construction’s time and space complexity is logarithmic in the number
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of time slots. As the number of slots is by necessity less than 2κ, the use of this
forward-secure encryption has a linear increase in cost with respect to the secu-
rity parameter compared to standard encryption.

5.2.3.1 Key-Private Forward-Security Against Chosen Ciphertext Attacks

Definition 5.1. A key-evolving public-key encryption scheme S = (Upd,Gen,
Enc,Dec) is called key-privately forward-secure against chosen ciphertext attacks (kp-fs-
CCA) if anyPPT adversaryhas onlynegligible advantage in the kp-fs-CCAgame,
defined in Game 5.1, for any set of partiesP and update bound𝑁 .

Game 5.1. The adversary wins the kp-fs-CCA game if it can distinguish two arbitrary
ciphertexts. The adversary may choose which parties they are encrypted for, and is given
access to a decryption and corruption oracle which permits corrupting any party, including
parties challenges have been issued for, as long as the corruption is requested for an updated
key.
Setup: For each partyψ ∈ P , sample (pkψ, sk0ψ) ∗ Gen(1κ,𝑁). The adversary receives all
public keys pkψ. Furthermore, a bit b ∗ {0, 1} is selected, but not revealed to the adversary.
Attack: The adversary issues multiple challenge(j, (ψ0,m0), (ψ1,m1)) queries, multiple
corrupt(i,ψ) queries and multiple decrypt(k, c,ψ) queries, where ψ,ψ0,ψ1 ∈ P and 0 ≤
i ≤ 𝑁 ; 0 ≤ j ≤ 𝑁 ; k ≤ 𝑁 . Furthermore, if a corrupt query is made for some party for
which a challenge query is also made for, then the corresponding i must be greater than the
corresponding j. corrupt queries may be issued only once for each party.

• corrupt(i,ψ) is answered with skip ≔ Upd(…Upd(sk0p , 1),… , i).

• challenge(j, (ψ0,m0), (ψ1,m1)) is answered by respondingwith c = Encpkψb
(j,mb),

and (j, c,ψ0) and (j, c,ψ1) are recorded as challenges. m0 andm1must be of the same
length.

• decrypt(k, c,ψ) is answered with ⊥ if (k, c,ψ) is recorded as a challenge. Otherwise,
it is answered withDec

skkp
(k, c∗).

Guess: The adversary outputs a guess b′ ∈ {0, 1}, and wins the game iff b′ = b.

For completeness, correctness is defined as usual:

Definition 5.2. A key-evolving public-key encryption scheme S = (Upd,Gen,
Enc,Dec) is perfectly correct, if for anymessagem, time bound𝑁 and time t ≤ 𝑁 :

Pr[(pk, sk0) ∗ Gen(1κ,𝑁);Decskt(t, Encpk(t,m)) = m] = 1,
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where skt ≔ Upd(…Upd(sk0, 1),… , t).

5.2.3.2 Lifting to a UC-Protocol

Akp-fs-CCA-secure key-evolving encryption scheme induces the following pro-
tocol for realisingFFwEnc in theFKeyMem-hybridmodel:

Protocol FWEnC
FWEnC is parameterised by the corruption delay Δmax, a time bound 𝑁 , the un-
derlying FSE scheme S . It operates in the FKeyMem-hybrid world, where FKeyMem

is parameterised by Δmax and the followingUpdate function:

functionUpdate((sk, t))
return (Upd(sk, t + 1), t + 1)

State variables and initialisation values:

Variable Description
t ≔ ⊥ Earliest time which is decryptable

When receiving amessageKEYGEn from a party ψ:

assert t = ⊥
let (pk, sk0) ∗ Gen(1κ,𝑁)
send (InIT, (sk0, 0)) toFKeyMem

erase sk0

let t ← 0
return pk

When receiving amessage (EnCrYPT, pk, t′,m) from a party ψ:

return Encpk(t′,m)
When receiving amessage (DECrYPT, t′, c) from a party ψ:

if t′ < t then return ⊥
sendGET toFKeyMem and receive the reply (sk, ⋅)
let t″ ← t
while t″ < t′ do

let t″ ← t″ + 1; sk ← Upd(sk, t″)
letm ← Decsk(t′, c)
erase sk
returnm

When receiving amessageUPDATE from a party ψ:

let t ← t + 1
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send UPDATE toFKeyMem

return ⊤

5.2.3.3 The Simulator

Wenow present the simulator for which wewill show UC emulation.

Simulator SFwEnc
In addition to responding to FFwEnc, the simulator SFwEnc maintains a simulated
FKeyMem, through which it provides the adversary with (delayed) access to secret
keys.

State variables and initialisation values:

Variable Description
𝐾 ≔ ∅ Mapping from parties to their key pairs

FKeyMem Simulated keymemory

When receiving amessage (KEYGEn,ψ) fromFFwEnc:

let 𝐾(ψ) ∗ Gen(1κ,𝑁); (pk, sk) ← 𝐾(ψ); 𝑇 (ψ) ← 0
simulate sending (InIT, (sk, 0)) toFKeyMem on behalf of ψ
return pk

When receiving amessage (EnCrYPT, t, l) fromFFwEnc:

letm ← 0l; (pk, ⋅) ∗ Gen(1κ,𝑁)
let c ∗ Encpk(t,m)
return c

When receiving amessage (LEAK-EnCrYPT, pk, t,m) fromFFwEnc:

return Encpk(t,m)
When receiving amessage (DECrYPT, pk, t, c) fromFFwEnc:

if ∃ψ, sk:𝐾(ψ) = (sk, pk) then
let t′ ← 0
while t′ < t do

let t′ ← t′ + 1; sk ← Upd(sk, t′)
returnDecsk(t, c)

else
return ⊥

When receiving amessage (UPDATE,ψ) from a party ψ:
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simulate sending UPDATE toFKeyMem on behalf of ψ

On receiving messages to FKeyMem from A: Forward these messages to the simulated
FKeyMem.

5.2.3.4 UC Emulation

Theorem 5.1. If the underlying key-evolving PKE scheme is kp-fs-CCA secure then
FWEnCUC-emulatesFFwEnc in theFKeyMem-hybrid world.

Proof. The points in which the simulator SFwEnc, combined with FFwEnc, can be-
have differently from FWEnC are in how they respond to various queries and
the internal state they maintain. We will use tψ as ψ’s time in both worlds – t
in ψ’s state in the real world and 𝑇 (ψ) in the ideal world. FWEnC maintains
a public/private key pair for each party, which the simulator selects from ex-
actly the same distribution and both return the public key, while storing sk0p .
Furthermore, both initialise tψ to zero. As a result, for KEYGEn-queries, the
simulation is perfect. For UPDATE, while the simulator does not call Upd on the
secret key, this ismerely because the call is deferred to the pointwhere it is used,
in DECrYPT. In both worlds however, tψ is updating the same way andmatches
the ideal functionality’s tψ value.

What remains is showing the correctness of encryption, decryption, and cor-
ruption queries. We will reduce this to kp-fs-CCA security, by showing that if
the environment can distinguish, we can extract a kp-fs-CCA adversary with
black-box access to the distinguishing environment, which wins the kp-fs-CCA
game with a non-negligible advantage. In both the real and ideal worlds, the
public and secret keys for ψ1,… ,ψn are sampled from Gen(1κ,𝑁) – with in the
real-world parties holding their own keys and, in the ideal world, the simula-
tor holding all. We note that while the dummy key pkdummy exists only in the
ideal world and its corresponding secret key is never used, we can assume it
also exists in the real world, however remains entirely unused. Therefore as
all (not adversarially generated) key pairs are sampled the same in both worlds,
we can extract this sampling from the UC security definition – if all key pairs
(pk1, sk1),… , (pkn, skn), (pkdummy, skdummy) are sampled from the same distribu-
tion and fixed in both the real and ideal executions, the real and ideal distri-
butions are indistinguishable with overwhelming probability. Given an envi-
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ronment Z which can distinguish between the real and ideal world with non-
negligible advantage, we can therefore assume that it can distinguish between
the real and ideal world, with fixed keys, with a non-negligible advantage. We
useZ to construct anadversaryA for thekp-fs-CCAgameandprove thatAhasa
non-negligible advantage. Specifically,A simulates runningZ against the ideal
world, with the followingmodifications:

• The public/secret key pairs used by the simulator are supplied byA by pro-
gramming the random tape.

• Amonitors all messages sent in the simulation, in particular messages to
the ideal functionality from all parties.

• SinceA does not hold any party’s secret keys, on a DECrYPT query to the
simulator, it posts a decrypt(t, c,ψ) query and returns the response.

• Wenote secretkeysareonlyused fordecryption, aswell asbeinghanded to
the (UC) adversaryuponcorruption. When the simulatorhands thekeys to
the (UC) adversary, the (kp-fs-CCA) adversary posts a corrupt(tψ + Δmax,ψ)
query to obtain sk

tψ+Δmax
p . While FKeyMem at the time of corruption stores

sk
tψ
p , by assumption it will first apply Δmax updates.

• When the ideal functionality receives an (EnCrYPT, pkp, t,m) query, if it
does not reveal m to the simulator, A queries challenge(t, (ψdummy, 0|m|),
(ψ,m)) and returns c.

We begin by observing that this adversary does obey the rules of the kp-
fs-CCA game. Specifically, the conditions for the game are as follows: a) A
challenge ciphertext is not queried for decryption, and b) A party is not chal-
lenged after it has been corrupted. For a) challenge queries are performed when
an EnCrYPT message is seen and due to the structure of FFwEnc, the challenges
will be issued for, at latest, the time tψ +Δmax−1. On corruption, the corrupt(k,ψ)
query ismadewith k = tψ+Δmax. As tψ ismonotonically increasingandEnCrYPT
is not called after corruption – and therefore no further challenge queries are
issued – the corruption can occur only after all challenges. For b), we note that
on corruption,FFwEnc will no longer query the simulatorwith EnCrYPT queries
for this party, but only with LEAK-EnCrYPT queries. As challenge queries are
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only issued on EnCrYPT queries, this party will no longer receive challenge

queries.
Next, if b = 0, the execution perfectly matches a random ideal world exe-

cution with SFwEnc. Specifically, if b = 0 the result of challenge(t, (ψdummy, 0|m|),
(ψ,m)) is Encpkdummy

(t, 0|m|). Furthermore, decrypt(t, c,ψ) = Decsktp
(t, c), that is, all

points in whichA intervenes in the UC execution, the execution is identical for
b = 0.

Finally, we will argue that if b = 1, the statistical distance between the
simulated UC execution and the UC execution of FWEnC is negligible. Hon-
est parties perform four operations in FWEnC: A one-time key-generation,
encryption, decryption, and update. The keys are supplied in kp-fs-CCA, and
sampled from the same distribution as in the protocol. Initially, t is set to 0
for ψ upon key generation in both the protocol and the simulator. In both
cases, pk is returned, sampled from the Gen algorithm. For encryption, re-
gardless of whether Encrypt or DummyEncrypt is called by the functionality, as
challenge(t, (ψdummy, 0|m|), (ψ,m)) = encpkp(t,m), the ciphertext will be sampled
from encpkp(t,m), the same distribution used in the protocol. For decryption
queries, if it lies in the past, both the protocol and functionality will return ⊥.
The functionality will, if it supplied the ciphertext itself and the party is the
intended recipient, return the corresponding plaintext. Otherwise it asks the
simulator for decryption, which in turn makes a decrypt query. We note that
by contrast, the protocol will always run Decsktp

(t, c). If a decrypt query is made,
we know that – since the ciphertext was not previously challenged (at least not
with the same party and time slot) – the behaviour is identical. Otherwise, we
knowby the correctness of the underlying key-evolving encryption scheme that
with overwhelming probability the decryption must return the same plaintext.
For update, tψ is kept the same in the protocol and the simulated execution by
incrementing it. While the secret key is not updated in the simulated execution,
this update serves only to erase information – something the simulator does not
care about.

5.2.4 PRFs with Unpredictability UnderMalicious Keys

Consider a PRF family {fk}k∈𝐾 such that fk:𝑋 → 𝑌 for all k ∈ 𝐾 . The usual PRF
security requires that any PPT distinguisher D with an oracle cannot tell the
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difference between an oracle fk(⋅) for a randomly selected k and a truly random
function over 𝑋 → 𝑌 . The definition can be ported to the random oracle setting
where both the function fk aswell as the distinguisher𝐷 have access to a random
oracle 𝐻(⋅). Unpredictability under malicious key generation is an additional
property that, intuitively, suggests the function does not have any “bad keys”
that can eliminate the entropy of the input, a concept introduced in [DGKR18].
In the random oracle model, the property can be expressed as follows: for any
PPT A and x ∈ 𝑋 , 𝑇 ∈ ℕ, the probability of the event Pr[fk(x) < 𝑇 ∣ x ∉ 𝑄𝐻 ]
equals 𝑇 /2κ whereA(1κ) = k and 𝑄𝐻 is the set of queries ofA to𝐻 .

We will employ the following construction. Let 𝐻 : {0, 1}∗ → 𝔾 be a function
mapping to a cyclic group 𝔾 generated by g with a compact representation. We
use an elliptic curve group based on the “elligator” curves [BHKL13] that have
the property that a uniform element over𝔾 is indistinguishable from a random
κ-bit string. We then define fk(m) ≔ 𝐻(m)k for k ≠ 0 and we show that it is a PRF
with unpredictability under malicious key generation from 𝑋 to {0, 1}κ. Indeed
observefirst that (gk,𝐻(m),𝐻(m)k) is aDDH triple over the group𝔾. Thus, by the
DDH assumption and the random oracle model, we can substitute all queries to
the PRF by random group elements. Now observe that by the encoding proper-
ties of the curve these elements canbe substituted by randomstrings over {0, 1}κ.
Regarding the unpredictability under malicious key generation observe that in
the random oracle model, Pr[𝐻(x)k < 𝑇 ] ≤ ∑y<𝑇 Pr[𝐻(x)k = y] = 𝑇 ⋅ Pr[𝐻(x) =
y1/k] ≤ 𝑇 /2κ in the conditional space x ∉ 𝑄𝐻 .

5.2.5 Equivocal Commitments

Wemake use of a non-interactive equivocal commitment scheme [DG03], which
is secure in the CRS model assuming hardness of discrete logarithms. For self-
containment we include a high-level description, including some notation used
in our proofs below.

Specifically, we will assume the existence of six algorithms, initcomm, comm,
deComm, simInitcomm, simComm, and equiv. initcomm generates a public key
pkcomm which is given as an argument to comm and deComm and will be part
of the parameterisation of the CRS functionality. In addition to satisfying the
traditional commitment properties of binding, hiding, and correctness, the
scheme also satisfies equivocality. Specifically, simInitcomm provides an equiv-
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ocation key in addition to pkcomm. This equivocation key “breaks” the binding
property – simComm can generate a commitment without a message and equiv

can later create a witness matching anymessage for this commitment. We note
that we do not require additional common properties, such as extraction or
non-malleability, as these are provided by other components of CrYPSInOUS’
design, in particular the NIZK functionality.

We write (cm, r) ← comm(m) to create the commitment cm for message m,
and deComm(cm,m, r) = ⊤ if the decommitment to m and r verifies. Likewise,
we write cm ← simComm(ek) for simulating a commitment with equivocation
key ek and r ← equiv(ek, cm,m) to equivocate, where deComm(cm,m, r) = ⊤. In
all these, we leave the public key pkcomm implicit, as it is assumed to be globally
known via the CRS.

5.3 The Private Ledger

Wenextprovide thecompletedescriptionof theprivate ledger functionality that,
as we prove, is implemented by CrYPSInOUS. Privacy of CrYPSInOUS is cap-
turedby the transactionswhichare returned fromthe functionalitybeing blinded
by a function blind. CrYPSInOUS transactions are represented as a tuple of sub-
transactions, denoted tx = (stx1,… , stxℓ). Each subtransaction is a pair of recip-
ient ID andmessage, (id,m), where IDs usually correspond to real-world public
keys. These IDs are generated by the private ledger functionality, allowing it to
show the message on to the party which generated the corresponding ID, or to
the adversary in case no honest party generated it. An exception is the symbol
PUBLIC, which is used to denote subtransactions visible to all parties.

5.3.1 UC Specification

The private ledger behaves similarly to Gδ
DelayLedger, but also tracks party regis-

tration (in order to notice disconnections and to exclude these from liveness), all
rEAD requests are passed through blind. It is additionally parameterised by a
stateful leakage procedure Lkg, which provides the simulator with information
about whowins a simulated leadership election.
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Functionality GpLedger
GpLedger is amodification of Gδ

DelayLedger which supports partially hiding transactions
(whicharedivided intoaddressed subtransactions), a “leakage” function, theoutputof
which is given to the adversaryon request. It also supports IDgeneration,whichare
used to address subtransactions. It is parameterised by a mapping 𝑆0 from parties
to their initial stake.

For computing coin spendability, themapping of ledger states𝑀 retains histor-
ical data, which is accessed through subscript: 𝑀t refers to the state of𝑀 at the end
of time t. This is used to ensure parties saw a transaction in their ledger state at the
time they spent a coin originating in it.

State variables and initialisation values:

Variable Description
Σ ≔ ε Authoritative ledger state

𝑀 ≔ λψ.ε Mapping of parties to ledger states
𝑈 ≔ ∅ Multiset of unconfirmed transactions
Id ≔ ∅ Mapping from parties to tag, id pairs

Reg ≔ ∅ Tracks registration of parties
ℭ0 ≔ ∅ Initial set of party ID, coin ID, and value

When receiving amessagemAInTAIn-LEDGEr from a party ψ:

send rEAD to Gclock and receive the reply t
let Reg ← Reg ∪ (ψ, t)
if t = 0 then

let coinId ← (GEnErATE, COIn)
let ℭ ← ℭ ∪ {(coinId, 𝑆0(ψ))}
return (coinId, 𝑆0(ψ))

queryAwith (mAInT,ψ)
When receiving amessage (SUBmIT, tx) from a party ψ:

send rEAD to Gclock and receive the reply t
assert t > 0 ∧ (ψ, t) ∈ Reg

queryAwith (TrAnSACTIOn, blindA(H, Id, (⊥, tx, t,ψ))) and receive the reply
txid,
satisfying (txid, ⋅, ⋅) ∉ Σ ∪ 𝑈 , else sampling from {0, 1}κ

let 𝑈 ← 𝑈 ∪ {(txid, tx, t,ψ)}
When receiving amessage (GEnErATE, tag) from a party ψ:
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queryAwith (GEnErATE,ψ, tag) and receive the reply id,
satisfying ∄ψ′: (⋅, id) ∈ Id(ψ′), else sampling from {0, 1}κ

let Id(ψ) ← Id(ψ) ∪ {(tag, id)}
return id

When receiving amessagerEAD from a party ψ:

assert liveness
if ψ = A then

send rEAD to Gclock and receive the reply t
let lkgs ← { Lkg(ψ′,𝑀(ψ′), Id,Reg,𝑀 ,ℭ0, t) | ψ′ ∈ online ∩H }
return (map(blindA(H, Id), Σ),map(blindA(H, Id), 𝑈 ), lkgs)

else
returnmap(blind({ψ}, Id),𝑀(ψ))

returnmap(proj1,𝑀(ψ))
When receiving amessage (EXTEnD, Σ′) fromA:

send rEAD to Gclock and receive the reply t
for txid in Σ′ do

assert ∃u, t′,ψ: (txid, u, t,ψ) ∈ 𝑈
let 𝑈 ← 𝑈 \ {txid, u, t′,ψ}
let Σ ← Σ ‖ (txid, u, t,ψ)

When receiving amessage (ADVAnCE,ψ, Σ′) fromA:

if map(proj1,𝑀(ψ)) ≺ Σ′ ≺ map(proj1, Σ) then
let𝑀(ψ) ← take(Σ, |Σ′|).

Helper procedures:

procedure liveness
send rEAD to Gclock and receive the reply t
if ∃(⋅, ⋅, t′, ⋅) ∈ 𝑈 : |t − t′| > δ then

return ⊥
else if ∃(txid, tx, t′,ψ) ∈ Σ: |t − t′| > δ ∧ ∃ψ′ ∈ H: (txid, tx, t′,ψ) ∉ 𝑀(ψ′) then

return ⊥
else

return ⊤
procedure online

send rEAD to Gclock and receive the reply t
return { p | p ∈ P , ∀t′ ∈ ℕ: t − onlineDelay − 1 ≤ t′ < t ⟹ (p, t′) ∈ Reg }
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function blind(P , Id, (⋅, tx, ⋅, ⋅))
let tx′ ← ε
for (pk,m) in tx do

if pk = PUBLIC ∨ ∃ψ ∈ P : (ID, pk) ∈ Id(ψ) then
let tx′ ← tx′ ‖ (pk,m)

else
let tx′ ← tx′ ‖ (⊥, |m|)

return tx′

function blindA(H, Id, (txid, tx, t,ψ))
let tx′ ← ε
for (pk,m) in tx do

if pk ≠ PUBLIC ∧ ∃ψ ∈ H: (ID, pk) ∈ Id(ψ) then
let tx′ ← tx′ ‖ (⊥, |m|)

else
let tx′ ← tx′ ‖ (pk,m)

return (txid, tx′, t,ψ)

5.3.2 Leakage for Leader-Based Protocols

In our system, we permit the leakage lkglead, which effectively simulates the
protocols leadership election and leaks the winning party. Specifically, for each
time t, the adversary receives a set of parties that won the leadership election.
This set is selected by sampling a random coin for each party, weighted by
their stake using the same algorithm as in Ouroboros Praos [DGKR18]. We
note that while this leakage is protocol-specific, it follows a general principle
of leaking the elected leaders in a protocol. Specifically, honest parties will be
selected by lkglead with the probability of them winning a leadership election
in CrYPSInOUS. This probability is the same as in Ouroboros Genesis, and is
the functionϕf of their stake, whereϕf is the independent aggregation function
described in [DGKR18, BGK+18].

In addition to this, we note Zerocash-style protocolswill allow an adaptively
corrupting adversary to compute the serial number of coins it sent to an honest
party after corrupting them. As the serial number is by necessity committing,
the simulatormustknowwhensuchadversarially sent coins are spent, to ensure
the consistency of the simulation. For this reason, we also leak the points at
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which adversarially sent coins are spent.
To formally capture both of these, defining how coins are distributed in the

ideal world for any given ledger state is required. We capture this through a
function ℭideal, which takes the ledger state Σ, the IDmapping id, and the initial
coins ℭ0 as inputs, returning a triple of spendable coins, spendable coins seen
and owned by honest parties, and transactions spending adversarially created
coins. Formally, the ideal-world semantics are described in Subsection 5.3.3.

For the full leakage,weassume tepStarti is the time epi starts, t
epFreeze
i is the time

before which the stake for epi is frozen, and ep(t) is the epoch time t lies in. We
write Σ<t for filter(λ(⋅, ⋅, t′): t′ < t, Σ). Then, the leakage is stateful, tracking past
leakages in the variable 𝐿 – it does not contradict this past leakage, and samples
for each party whether this party won the current slot’s leadership, given its
available stake for this epoch.

procedure Lkglead(ψ, Σ, Id,Reg,𝑀 ,ℭ0, t)
let (ℭ,ℭH, spends) ← ℭideal(Σ, Id,ℭ0,𝑀)
let epochFreeze ← tepFreezeep(t)
let (ℭep,ℭep

H, ⋅) ← ℭideal(Σ<epochFreeze, Id,ℭ0,𝑀)
if (ψ, t) ∉ 𝐿 then

let v ← 0
let vt ← ∑(⋅,v′)∈ℭep v′

for coinId ∈ Id(ψ), (coinId′, v′) ∈ ℭH ∩ ℭep
H do

if coinId = coinId′ then let v ← v + v′

let αψ ← v/vt; 𝐿(ψ, t) ∗ ϕf(αψ)
return (𝐿(ψ, t), spends)

Inapreliminary stepofouranalysiswealsoutilise a leakage function leaking
all information, lkgid. This is effectively the identity function, simply return-
ing the parameters passed to it. With this leakage the private ledger effectively
becomes a “standard” GLedger functionality, as the simulator still receives all in-
formation it would with the standard non-private ledger, with the exception of
the transaction blinding on submission. In our security analysiswewill forcibly
disable this, by setting blindA(⋅, ⋅, tx) ≔ tx instead.
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5.3.3 Ideal-World Transaction Semantics

We consider ideal-world transactions starting with (PUBLIC, TrAnSFEr) to be
transfer transactions. While it may appear sufficient to have ideal-world transfers
appear as something like “give 0.05 of Alice’s stake to Bob”, our realisation of
transfers using a Zerocash-like [BCG+14] design introduces some subtleties that
need to be reflected in the ideal world. Specifically, we will require parties to
specify which coins they are attempting to spend. Specifically, as in Zerocash,
two coins are burned and two coins created, in any transfer. As a special case, as
our protocol has no otherminting functionality, we allowa zero-value coin to be
burned in place of the second coin. Formally, the transactions have the follow-
ing form: ((PUBLIC, TrAnSFEr), (pkr, c4), (pks, c1, c2, c3)), where ci are ID/value
pairs. This can be interpreted as “transfer the coins c1 and c2 to coins c3 and
c4.” It is worth noting that c3, while being a newly created coin, is not included
in the component addressed to pkr. It should be seen as a means of returning
“change” from a transaction, corresponding to its real-world usage of Bitcoin
andZerocash transactionsandshould thereforealsobeaddressed to the sending
party. Coins are triples of an owner ID, a coin ID, and its value. Owner IDsmust
originate from the ledgers GEnErATE interface (with the tag COIn), otherwise
they are treated as invalid. Coin IDs are arbitrary (within {0, 1}κ) and are used to
disambiguate coins with the same owner ID and value. Should a coin ID, owner
ID, and value be reused, the coin it would create is ignored.

The function ℭideal is defined as follows:

function ℭideal(Σ, Id,ℭ0,𝑀 )
let ℭ ← ℭ0

let ℭspent ← ∅
// ℭH represents coins honest parties see.

let ℭH ← { (idCoin, v) | (idCoin, v) ∈ ℭ0, ∃ψ ∈ H: (COIn, idCoin) ∈ Id(ψ) }
// Map coins to the transaction it was created in.

let coinTx ← ∅
for c ∈ ℭ0 do let coinTx(c) ← GEnESIS

// Adversarial coin IDs.

let idsA ← ∅
// spends lists when adversarial coin IDs were spent.

let spends ← ∅
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for (txid, tx, t,ψ) in Σ do
if ((PUBLIC, TrAnSFEr), (idr, cr), (ids, c1, c2, c3)) ← tx then

∀i ∈ {r, 1, 2, 3} : let (ownIdi, coinIdi, vi) ← ci
let senderIds ← {(COIn, ownId1), (COIn, ownId2)}
if {c1, c2} ⊈ ℭ ∪ {(⊥, 0)} then continue

if {coinId1, coinId2, coinId3, coinIdr} ⊈ {0, 1}κ then continue

if ψ ∈ H ∧ (ID, ids) ∈ Id(ψ) then let sender ← ψ
else if ψ ∈ A then let sender ← A
else continue
if sender = A ∧ ∃ψ ∈ H: senderIds ∩ (Id(ψ) \ {(COIn,⊥)}) ≠ ∅ then continue

if sender ≠ A ∧ senderIds ⊈ Id(sender) ∪ {(COIn,⊥)} then continue

if sender ≠ A ∧ (COIn, ownId3) ∉ Id(sender) then continue

if sender ≠ A∧ {coinTx(c1), coinTx(c2)} ⊈ 𝑀t(ψ)∪ {GEnESIS} then continue

if vr + v3 ≠ v1 + v2 then continue

let ℭspent ← ℭspent ∪ {c1, c2} ;ℭ ← ℭ ∪ {c3, cr} \ ℭspent

if sender = A then let idsA ← idsA ∪ {coinIdr}
for i ∈ {1, 2} where coinIdi ∈ idsA do

let spends ← spends ∪ (txid, i)
let coinTx(c3) ← txid; coinTx(cr) ← txid

if ∃ψ ∈ H: {(COIn, ownId3), (ID, ids)} ⊆ Id(ψ) then
let ℭH ← ℭH ∪ {c3}

if ∃ψ ∈ H: {(COIn, ownIdr), (ID, idr)} ⊆ Id(ψ) then
let ℭH ← ℭH ∪ {cr}

let ℭH ← ℭH \ ℭspent

return (ℭ,ℭH, spends)

5.4 The CrYPSInOUS Protocol

In this section we provide a detailed description of the CrYPSInOUS UC pro-
tocol. The protocol has a similar structure as Ouroboros Genesis [BGK+18], but
differs considerably in the leader election and the processing of transactions. As
already discussed, the protocol assumes access to a global random oracle and
clock, and functionalities for network, encryption, and NIZK.
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5.4.1 High-Level Transaction Semantics

In the realworld, thedesign looks slightlydifferent than the ideal-worldonepre-
sented inSubsection 5.3.3, following the approachofZerocash [BCG+14]. Specifi-
cally, parties locallymaintain, for each coin c, nonces, ρc and commitment open-
ings, rc, to their coins. In order to spend a coin, they reveal the deterministically
derived serial number, snc, aswell as prove the existence of a valid commitment,
cmc, somewhere in a Merkle tree of coin commitments. Like Zerocash, newly
created coins are encrypted with the recipient party’s public key, and the send-
ing party is unable to spend them as it would require the recipient’s private key
to correctly generate the coin’s serial number. Themain difference is the design
of addresses, corresponding to the ideal-world IDs. Parties generate a new coin
public/secret key pair when given a GEnErATE query, and update their secret
key after spending a coin with it.

To become a leader at a time t, parties must prove knowledge of a path in a
local Merkle tree of secret keys skCOIn, labeled with t. This path is then erased
by the party, to ensure leadership proofs cannot be re-made for past slots. This
Merkle tree is created during key generation, with the coin’s public key being
derived from theMerkle tree’s root, and the timeof key generation. Each leaf is a
PRFof theprevious leaf, to reduce storagecosts. Weemploystandardspace/time
trade-offs by keeping the top of the tree stored, recomputing parts of the bottom
of the tree as needed. It is parameterised by the number of leaves 𝑅, which we
leave as a system parameter, although we note it could also be defined as a per-
user parameter.

A user’s public key is derived from the root of the Merkle tree, root, and the
time it was created, t. It is eligible for leadership so long as there are still paths
in the tree to prove the existence of, after which the coin must be refreshed by
spending it. We stress that this is a rare occurrence, as the assumption of honest
majority relies on coins not only being held by honest parties, but also being
eligible for leadership.

The protocol will take ideal transactions as an input and construct a corre-
sponding Zerocash-style transaction in the real world. This transaction is then
broadcast as usual in a blockchain protocol. On a rEAD request, the irrelevant
information is not returned and only the information corresponding to the orig-
inal ideal-world transaction is returned back to the requester. In addition to
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transfers, we note that other types of transaction are accepted in the idealworld.
Wenote that these are not validated, however,making the real-world equivalent
far simpler to construct. Specifically, we encrypt each subtransaction with the
public key of the party it is addressed to. On a rEAD request, the ciphertexts
that the requesting party can decrypt are decrypted, and all others are replaced
with ⊥.

5.4.2 Protocol Overview

The protocol CrYPSInOUS assumes as hybrids two Δ-delay networks,Fbc
Net and

F tx
Net, two non-interactive zero-knowledge functionalitiesFRLEAD

NIZK andFRXFEr
NIZK , a

forward-secure encryption schemeFFwEnc, a global clockGclock, a randomoracle
FRO, a non-interactive equivocal commitment protocol, and a CRS used by the
commitment scheme, to supply the commitment public key,F initcomm

CRS .
The protocol execution proceeds in discrete time intervals referred to as slots.

As in Ouroboros Genesis, slots correspond directly to rounds given by Gclock. In
each slot sl, the parties execute a staking procedure to extend the blockchain. This
proceeds similarly to Ouroboros Genesis, electing leaders to slots, withmodifica-
tions to avoid revealing more information about the leader than necessary. We
note that due to network-level attacks, the adversary is able to guess with good
probability which party is the leader. Furthermore, due to serial numbers being
revealed and being committing, the simulator must know when coins whose
serial number the adversary could guess after corruption – specifically those
sent by the adversary itself –were spent. This additional leakage can be avoided
by a paranoid party, by it immediately transferring coins to itself on receipt.
Furthermore, it is only an issue for parties which may be corrupted. In a hypo-
thetical setting where the adversary committed to not corrupting a party, this
party would no longer have leakage of this kind. Similar to Ouroboros Genesis,
time is alsodivided into largerunits, called epochs,with thedistributionof stake
considered for leadership purposes being frozen for each epoch.

We specify a concrete transaction system, based on Zerocash [BCG+14]. Par-
ties hold coins with inherent value, and a fixed total value across the system (a
restriction imposed for simplifying the analysis. Adding block rewards would
be a straightforward extension). The Ouroboros Genesis leadership election is
performed on a per-coin basis, with each coin competing separately. If any of
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a party’s coins win the election, the party proceeds to generate a new block, ex-
tending their current chain. The block itself is generated as in Ouroboros Gene-
sis, although the validity of it is proved differently. Specifically, FRLEAD

NIZK is used
to produce a signature of knowledge of a coin that won the leadership election
during a given slot. This proof is done in aZerocash style, and involves renewing
the coin in question. Specifically, the Zerocash serial number of the leading coin
is revealed, and a new coin of the same value is minted. We also refer to this
proof, together with its auxiliary information such as the spent serial number
and newly created coin commitment, as a leadership transaction.

We note that Ouroboros Genesis requires the stakeholder distribution to be
frozen to prevent grinding attacks. In order to allow a coin to be used for lead-
ership proofs multiple times in an epoch, we introduce a new resistancemecha-
nismagainst attacks of this type: Thenewly generated coin in a leadership trans-
actionhas itsnoncedeterministicallyderived fromthenonceof theoldcoin. The
leadership test itself utilises only this nonce from the coin as a seed – it follows
that the leadership test for the derived coin is fixed along with the randomness
of the epoch.

Once a block is created, the party broadcasts the new chain, extended with
this block. Furthermore, the party broadcasts the leadership transaction sepa-
rately, in order to ensure the newly created coin will eventually be valid, even if
the consensus does not adopt the broadcast chain.

A chainproposed by anypartymight be adopted only if it satisfies the follow-
ing twoconditions: (1) it is valid according to awell definedvalidationprocedure,
and (2) the block corresponding to each slot has a signature of knowledge from a
coin winning the corresponding slot.

To ensure the second property we need the implicit slot-leader lottery to
provide its winners (slot leaders) with a certificate/proof of slot-leadership. For
this reason, we implement the slot-leader election as follows: Each party ψ
checks, for each of their coins c, whether or not it is a slot leader, by locally
evaluating a maliciously-unpredictable pseudo-random function, as described
in Subsection 5.2.4, with entropy supplied by the epoch randomness ηep, by
being evaluated at the slot index sl and ηep, seeded with the “winning coin’s
secret key” rootc ‖ ρc. The generation of ηep is similar toOuroborosGenesis – it is
initially supplied through the CRS, then for subsequent epochs, it is sampled in
a maliciously-unpredictable way from “randomness contributions” ρ provided
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by slot leaders over the course of the previous epoch.
Specifically, we will use the MUPRF construction of Subsection 5.2.4, for a

given group 𝔾. If the MUPRF output y is below a certain threshold 𝑇c – which
depends on c’s stake – then ψ is an eligible slot leader; furthermore, he can gen-
erate a signature of knowledge of a valid coin which satisfies these conditions.
In particular, each new block broadcast by a slot leader contains a NIZK proof π,
signing the rest of the block content, with the knowledge of the nonce ρc, sk

COIn
c,sl

for the slot sl the leadership transaction is for, proving that the nonce and secret
key correspond to some unspent coin commitment cmc. The leadership transac-
tion also evolves the coin that wins leadership – this is done in order to establish
adaptive security, and is done by updating the coin nonce used: ρc′ = prfevlrootc(ρc).
A new coin, in the same value, with this updated – and, crucially, deterministic
– nonce is created and committed in the transaction. In particular, parties erase
ρc and onlymaintain ρc′ after the leadership proof is generated.

As in Ouroboros Genesis, it is possible for multiple parties, or no party to be
a leader of any given slot. Our protocol behaves identically to Genesis in this
regard, and we utilise the same chain selection rule in our protocol.

We next turn to the formal specification of the protocol CrYPSInOUS. We
follow closely the modular design of Ouroboros Genesis, beginning with a mas-
ter protocol described below. Most of the subcomponents will be introduced
throughout the rest of this section, however thedetails of transactionprocessing
is omitted. Formally this is done through the FETCH-InFOrmATIOn protocol,
which fetches transactions and chains from the network, and updates the local
ledger state accordingly.

Protocol CrYPSInOUS
The CrYPSInOUS protocol is divided into several sub-protocols. For simplicity,
where these use the same state variable names, these variables are considered
shared.

State variables and initialisation values:

Variable Description
ℭfree ≔ ∅ Set of unbound secret keys
pkenc ≔ ⊥ Encryption public key

When receiving amessagemAInTAIn-LEDGEr from a party ψ:

run LEDGEr-mAInTEnAnCE
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When receiving amessage (SUBmIT, tx) from a party ψ:

if tx = ((PUBLIC, TrAnSFEr), (⋅, ⋅), (pkenc, ⋅, ⋅, ⋅)) then
return SUBmIT-XFEr(tx)

else
return SUBmIT-GEnErIC(tx)

When receiving amessage (GEnErATE, tag) from a party ψ:

if tag = COIn then
send rEAD to Gclock and receive the reply t
let skCOIn

t
∗ {0, 1}ℓprf

for i in {t + 1,… , t + 𝑅} do
let skCOInt + i ← prfevlskCOIn

i
(1)

let rootskCOIn ← merkleRoot ({skCOIn
t ,… , skCOIn

t+𝑅 })
let pkCOIn ← prfpfrootskCOIn (t)
let ℭfree ← ℭfree ∪ {rootskCOIn}
return pkCOIn

else if tag = ID ∧ pkenc = ⊥ then
send KEYGEn toFFwEnc and receive the reply pk

let pkenc ← pk

return pk

else
return r ∗ {0, 1}κ

When receiving amessagerEAD from a party ψ:

return rEAD-STATE

5.4.3 Real-World Transactions

Before giving further parts of the formal specification we introduce some nec-
essary terminology and notation. Each party ψ stores a local blockchain C – ψ’s
local view of the blockchain. Such a local blockchain is a sequence of blocks 𝐵i
(i > 0) where each 𝐵 ∈ C has the following format: 𝐵 = (txlead, st); where txlead =
(LEAD, ⃗stxref, stxproof) and stxproof = (cmc′ , snc, ep, sl, ρ, h, ptr, π). Here, st is the
encoded data of this block, h is the hash of the same data, sl and ep are the slot
and epoch the block is for, respectively, (cmc′ , rc′) = comm(pkCOIn ‖ t ‖ vc ‖ ρc′) is
the commitment of the newly-created coin, and snc = prfsnrootCOIn

sk
(ρc) is the serial

number of the coin c, which is revealed to demonstrate the coin has not been

Chapter 5. Privacy in Proof-of-Stake 182



spent. We define ρ = μsk
COIn
sl , where μ isFRO evaluated at nOnCE ‖ ηep ‖ sl; ρ is the

randomness contribution to the next epoch’s randomness, ptr is the hash of the
previous block, and π is a NIZK proof of the statement LEAD, defined below. The
component ⃗stxref consists of a (typically empty) vector of reference leadership
transactions. These are processed before the leadership transaction itself is pro-
cessed and serve to allow successive leadership proofs with the same coin, even
when the selected chain switches.

Definitionof LEAD. A tuple (x,w) is inRLEAD if and only if all of the following
hold:

• x = (cmc2 , snc1 , η, sl, ρ, h, ptr, μρ, μy, root)
• w = (path, rootskCOIn , pathskCOIn , tc, ρc1 , cmc1 , rc1 , v, rc2)
• pkCOIn = prfpkrootskCOIn (tc)
• ρc2 = prfevlrootskCOIn

c1
(ρc1)

• ∀i ∈ {1, 2} : deComm(cmci , pk
COIn ‖ v ‖ ρci , rci) = ⊤

• path is a validMerkle tree path to cmc1 in a tree with root root.
• pathskCOIn is a valid path to a leaf at position sl − tc in a tree with root
rootskCOIn .

• snc1 = prfsnrootskCOIn (ρc1)

• y = μ
rootskCOIn

c1
‖ ρc

y ; ρ = μ
rootskCOIn

c1
‖ ρc

ρ
• y < ord(𝐺)ϕf(v)

Note that x of LEAD contains values sl, h, ptr that seemingly nothing is proven
about. As the NIZK is non-malleable, this makes them effectively part of a sig-
nature of knowledgemessage.

Kinds of transactions. CrYPSInOUS handles three kinds of transactions:
Leadership transactions, such as the above txlead, transfer transactions txxfer, and
general-purpose transactions. Each of these is handled separately. The transfer
transactions and general-purpose transactions correspond directly to ideal-
world transactions with the same behaviour. Leadership transactions by con-
trast exist only in the real world.

General-purpose transactions in the ideal world consist of a vector of sub-
transactions, addressed either to everyone (PUBLIC), or to a specific party. The
corresponding real-world transaction is a vector of the same subtransactions,
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which are either directly the content of the idealworld transaction, in the case of
a transaction addressed to PUBLIC, or an encryption of the content usingFFwEnc,
to the party specified as the recipient. Upon reading the state, parties attempt to
decrypt ciphertexts and, failing that, replace it with ⊥. To disambiguate transac-
tions, we prefix generic transactions with the label GEnErIC.

The implementationof transfer transactions ismore involved, aswenot only
want to guarantee their privacy, but also their validity. To achieve this, we re-
place transactionwhich fall into the permissible ideal-world format –whichwe
recall, is txidealxfer = ((PUBLIC, TrAnSFEr), (pkr, (id4, v4)), (pks, (id1, v1), (id2, v2),
(id3, v3)))–witha cryptographic constructionhiding the respective information.
We define a real transfer transaction to be: txrealxfer = (TrAnSFEr, stxproof, cr),
where stxproof = ({cmc3 , cmc4} , {snc1 , snc2} , t, root, π), cr is a FFwEnc-encryption
for the slot the transaction was submitted on, and stxrcpt = (ρc3 , rc3 , vc3) to pkr.
Similar to leadership transactions, (cmc3 , rc3) = comm(pkCOIn

pks
‖ t ‖ vc3 ‖ ρc3) and

(cmc4 , rc4) = comm(pkCOIn
pkr

‖ t ‖ vc4 ‖ ρc4); snc1 and snc2 are revealed to spend
the coins c1 and c2, respectively, and π proves the statement XFEr, defined
below, specifically proving the existence of cmc1 and cmc2 , in the Merkle tree of
coin commitments with the root root, as well as various consistency properties.
The use of FFwEnc implies that parties will not be able to decrypt ciphertexts
addressed to them indefinitely, however they are still required to respond
with the corresponding ideal-world information to rEAD requests. As a result,
when a transfer transaction is first seen and decrypted, the corresponding ideal
world transaction is locally stored. Furthermore, parties maintain locally the
information needed to spend coins they own – specifically (pkCOIn

c , ρc, rc, vc).

DefinitionofXFEr. A tuple (x,w) is inRXFEr if and only if all of the following
hold:

• x = ({cmc3 , cmc4} , {snc1 , snc2} , t, root)
• w = (rootskCOIn

c1
, pathskCOIn

c1
, rootskCOIn

c2
, pathskCOIn

c2
, pkCOIn

c3 , pkCOIn
c4 , (cmc1 , ρc1 ,

rc1 , v1, path1), (cmc2 , ρc2 , rc2 , v2, path2), (ρc3 , rc3 , v3), (ρc4 , rc4 , v4))
• ∀i ∈ {1, 2} : pkCOIn

ci = prfpkrootskCOIn
ci

(1)
(if i = 2, v2 = 0, this checkmay be skipped)

• ∀i ∈ {1,… , 4} : deComm(cmci , pk
COIn
ci ‖ vi ‖ ρci , rci) = ⊤

(if v2 = 0, this checkmay be skipped for i = 2)
• v1 + v2 = v3 + v4
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• path1 is a valid path to cmc1 in a tree with root root.
• path2 is a valid path to cmc2 in a tree with root root,
or v2 = 0 and snc2 = prfzdrvrootskCOIn

c1
(ρc1).

• pathskCOIn
ci

is a valid path to a leaf at position t in rootskCOIn
ci

, for i ∈ {1, 2}.
• ∀i ∈ {1, 2} : snci = prfsnrootskCOIn

ci
(ρci)

(or, if v2 = 0, this checkmay be skipped for i = 2)

5.4.4 Interacting with the Ledger

At the core of the CrYPSInOUS protocol is the process that allows parties to
maintain the ledger. There are three types of processes that are triggered by
three different commands provided that the party is already registered to all its
local and global functionalities.

• The command (SUBmIT, tx) is used for sending a new transaction to the
ledger. The party maps tx to a corresponding txreal, which is stored in the
party’s local transaction buffer, and is multicast to the network.

• The commandGEnErATE is used for creating anewaddress, which canbe
used by other parties to transfer funds to this current party.

• The command rEAD is used for the environment to ask for a read of the
current ledger state. On receipt, the partymaps each transaction s⃗t

⌈k
to its

ideal-world equivalent, and returns this ideal-world chain.

• The command mAInTAIn-LEDGEr triggers the main ledger update. A
party receiving this command first fetches from its network all informa-
tion relevant for the current round, then it uses the received information
toupdate its local info– i.e., asks the clock for the current time t, updates its
epochcounter ep, its slot counter sl, and its (local viewof) stakedistribution
parameters, accordingly; finally it invokes the staking procedure unless
it has already done so in the current round. If this is the first time that
the party processes a mAInTAIn-LEDGEr message then before doing
anything else, the party invokes an initialisation protocol to receive the
initial information it needs to start executing the protocol – in particular
the genesis block.
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The relevant sub-processes involved in handling these queries are detailed in
the following sections. After introducing each of these basic ingredients, we
conclude with a technical overview of the main ledger maintenance protocol
LEDGEr-mAInTEnAnCE, a detailed specification of the protocol rEAD-STATE
for answering requests to read the ledger’s state, and a detailed specification of
the protocols SUBmIT-XFEr and SUBmIT-GEnErIC.

5.4.4.1 Party Initialisation

A party that has been registered with all its resources and setups becomes op-
erational by invoking the initialisation protocol CrYPSInOUS-InIT upon pro-
cessing its first command. As a first step the party receives its encryption key
from FFwEnc. It receives any initial stake it may have as a single coin from FInit.
Subsequently, protocol CrYPSInOUS-InIT proceeds as in Ouroboros Genesis,
although it does not register any keys. This is managed instead by the ledgers
GEnErATE interface. Formally, the initialisation procedure is specified as:

Protocol CrYPSInOUS-InIT
TheCrYPSInOUS initialisation procedure claims any initial stake and retrieves the
genesis block.

State variables and initialisation values:

Variable Description
ℭfree ≔ ∅ Set of unbound secret keys

ℭ ≔ ∅ Set of spendable coins
C ≔ ⊥ The currently selected chain

claimed ≔ ⊥ If initial funds have been claimed

Prior to any other interaction, if C = ⊥:
send rEAD to Gclock and receive the reply t
let ep ← ep(t)
if t = 0 ∧ init = ⊥ then

send CLAIm toFInit and receive the reply ((pkCOIn, ρc, rc, vc), skCOIn)
let ℭ ← ℭ ∪ {(pkCOIn

c , ρc, rc, vc)} ,ℭfree ← ℭfree ∪ {skCOIn}
let init ← ⊤

else if t > 0 then
sendGEnESIS toFInit and receive the reply𝔊
let C ← 𝔊
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5.4.4.2 The Staking Procedure

Thenextpart of the ledger-maintenanceprotocol is the stakingprocedurewhich
is used for the slot leader to compute and send the next block. A party ψ is an
eligible slot leader for a particular slot sl in an epoch ep if one of ψ’s coins, c,
is both eligible for leadership in ep, and a PRF-value depending on sl and the
coin nonce ρc and secret key skCOIn

t is smaller than a threshold value 𝑇c. We
discuss when a coin is considered eligible for leadership and how its threshold
is determined. A coin is eligible for leadership depending onwhen, and how, its
corresponding commitment entered the chain. Specifically, if its corresponding
commitment was created in a transfer transaction, it is valid in a similar way as
transactions are considered for leadership in an epoch: If it is sufficiently old
by the time the epoch starts, it is taken as part of the snapshot fixing the stake
distribution for ep. Commitments originating from leadership transactions are
always immediately eligible for leadership, as their nonce and secret key are
deterministically derived. It is possible, althoughunusual, for a coin created in a
leadership transaction in a fork to be used eligible for leadership in an unrelated
fork of the chain. In this case, the coin is still eligible, as the originating leadership
transaction will be added to ⃗stxref.

Each coin c’s value vc induces a relative stake for the coin, αc. We use the
same function ϕf(αc) to determine the probability of a coin winning the leader-
ship election, with the corresponding threshold, 𝑇c = ord(𝔾)ϕf(αc). Due to the
independent aggregation property of ϕf, the probability of a party winning the
leadership election in CrYPSInOUS and in Genesis is initially the same, regard-
less of how stake is split between coins. One key difference, however, is that
when a coin is transferred in CrYPSInOUS, it is no longer eligible for leadership. As
a direct consequence, any stake transferred during an epochmust be considered
adversarial for the given epoch.

The staking procedure evaluates two distinct MUPRFs for each eligible coin.
If the output of one of these is under the target for some coin, the party is a
slot leader and continues to create a new block 𝐵 from their current transaction
buffer. Aside of themain contents, the party assembles a leadership transaction
and assigns it to the block. This transaction includes a NIZK proof of leader-
ship – specifically of the statement LEAD – and acts as a signature of knowledge
over the block content, as well as the pointer to the previous block. An updated
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blockchain C containing the new block 𝐵 is finally broadcast over the network.
Formally, the staking procedure is specified as:

Protocol STAKInG-PrOCEDUrE
The CrYPSInOUS staking procedure attempts to extend the current chain, and
broadcasts any successful new blocks created. The group used in Subsection 5.2.4
is denoted 𝐺, and a mapping from random oracle outputs to corresponding group
elements is assumed, also denoted by 𝐺(x). Further, a collision-resistant hash
function𝐻 is used to link blocks, and a family of pseudo-random functions labelled
prfab when operating on domain a with key b is used to deterministically derive
random values.

State variables and initialisation values:

Variable Description
ℭfree ≔ ∅ Set of unbound secret keys

ℭ ≔ ∅ Set of spendable coins
C ≔ ⊥ The currently selected chain

txBuf ≔ ε Buffer of transactions to include
doneLead ≔ 0 The lead time leadership was tested

On invocation:

send rEAD to Gclock and receive the reply t
if doneLead = t ∨ C = ⊥ then return
let doneLead ← t
for (pkCOIn

c , ρc, rc, vc) ∈ ℭ do
if c is not eligible for leadership then continue

send (QUErY,nOnCE ‖ ηep(t) ‖ t) toFRO and receive the reply μρ
send (QUErY, LEAD ‖ ηep(t) ‖ t) toFRO and receive the reply μy
retrieve skCOIn

c,t , rootc, and tc in ℭfree corresponding to pkCOIn
c

let ρ ← 𝐺(μρ)rootskCOIn
c

‖ ρc ; y ← 𝐺(μy)rootskCOIn
c

‖ ρc

if y < ord(𝐺) ⋅ ϕf(vc) then
let 𝐵 ← ε
for tx ∈ txBuf do

if validate(tx, C ‖ 𝐵) then
let 𝐵 ← 𝐵 ‖ tx

let txBuf ← ε
let ptr ← 𝐻(C); h ← 𝐻(𝐵)
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let ρc′ ← prfevlrootskCOIn
c

(ρc); snc ← prfsnrootskCOIn
c

(ρc)
let (cmc′ , rc′) = comm(pkCOIn ‖ vc ‖ ρc′)
let ⃗stxref be the ordered leadership transactionsmade by ψ not in C
let (root, path) be the root of ℂlead in C, after applying all transactions in

⃗stxref and the path to cmc in this tree
let pathc be the path to skCOIn

c,t in a tree in ℭfree

let x = (cmc′ , snc, ηep, sl, ρ, h, ptr, μρ, μy, root)
letw = (path, rootskCOIn , pathc, tc, ρc, cmc, rc, vc, rc′)
send (PrOVE, x,w) toFRLEAD

NIZK and receive the reply π
let txlead = (LEAD, ⃗stxref, (cmc′ , snc, ep, sl, ρ, h, ptr, π))
let C ← C ‖ (txlead,𝐵)
let ℭ ← (ℭ \ {(pkCOIn

c , ρc, rc, vc)}) ∪ {(pkCOIn
c , ρc′ , rc′ , vc)}

send (BCAST, txlead) toF tx
Net

send (BCAST, C) toFbc
Net

break

From the staking procedure we construct the ledger maintenance protocol,
which in addition to attempting to stake on each block, catalogues received
transactions, ensures information and forward-security is up-to-date, as well
as claiming initial stake.

Protocol LEDGEr-mAInTEnAnCE
The ledger maintenance protocol LEDGEr-mAInTEnAnCE organises received
transactions and chains, claims initial stake and the genesis block, and participates
in staking.

State variables and initialisation values:

Variable Description
ℭcnd ≔ ∅ A set of not-yet spendable coins
log ≔ ε A log of received transaction information
C ≔ ⊥ The currently selected chain

txBuf ≔ ε Buffer of transactions to include
tfwenc ≔ 0 The “time” ofFFwEnc

On invocation:

send rEAD to Gclock and receive the reply t
if t = 0 ∨ C = ⊥ then

run CrYPSInOUS-InIT
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if t = 0 then return
run newTx ← FETCH-InFOrmATIOn
let txBuf ← txBuf ‖ newTx
send (BCAST, C) toFbc

Net

for tx in txBuf do
send (BCAST, tx) toF tx

Net

for tx in newTx do
if tx = (TrAnSFEr, stxproof = (cms, ⋅, ⋅, ⋅), crcpt) then

send (DECrYPT, crcpt) toFFwEnc and receive the replym
if m = (OK, (pkCOIn

c , t, ρc, rc, coinIdc, vc)) ∧ cmc ∈ cms then
if ∄skCOIn

t ∈ ℭfree corresponding to pkCOIn
c then continue

let ℭcnd ← ℭcnd ∪ {(pkCOIn
c , ρc, rc, vc)}

let log ← log ‖ (tx, rECEIVE, (pkCOIn
c , coinIdc, vc))

else if tx = (GEnErIC, c1,… , cn) then
for c in {c1,… , cn} do

if c = (PUBLIC,m) then continue
else if c = (PrIVATE, c′) then

send (DECrYPT, c′) toFFwEnc and receive the replym
if m = (OK,m′) then let log ← log ‖ (PLAInTEXT, c′,m′)

for (skCOIn
c , tc) ∈ ℭfree do

for ∃c = (pkCOIn
c ,…) ∈ ℭcnd whose transaction is in C ⌈k do

let ℭcnd ← ℭcnd \ {c} ;ℭ ← ℭ ∪ {c}
∀t′ ≤ t erase skCOIn

c,t′ from ℭfree

while tfwenc < t − k do
send UPDATE toFFwEnc

let tfwenc ← tfwenc + 1

run STAKInG-PrOCEDUrE

5.4.4.3 Submitting Transactions

Transactions submitted to the CrYPSInOUS protocol are, as previously dis-
cussed, first mapped to corresponding real-world transactions, which then get
handled as standard ledger transactions by being broadcast over a multicast
network, and being assembled into blocks. Specifically, transfer transactions
are mapped to Zerocash-like transactions, where only the first coin received
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to a given address is spent, and other transactions are mapped into encrypted
components. The submitting procedure for transfer transactions is:

Protocol SUBmIT-XFEr(txxfer)
The submission procedure for transfer transactions builds a working zero-knowl-
edge proof to authenticate the transfer. If this cannot be done, it falls back to sub-
mitting the transaction as “generic”.

State variables and initialisation values:

Variable Description
ℭ ≔ ∅ Set of spendable coins
log ≔ ε A log of received transaction information
C ≔ ⊥ The currently selected chain

On invocation:

send rEAD to Gclock and receive the reply t
let ((pkencr , (pkCOIn

c4 , coinId4, v4)), (pkencs , (pkCOIn
c1 , coinId1, v1), (pkCOIn

c2 , coinId2, v2),
(pkCOIn

c3 , coinId3v3))) ← txxfer
if pkencs ≠ pkenc ∨ v1 + v2 ≠ v3 + v4 ∨ pkCOIn

c3 ∉ ℭfree then
return SUBmIT-GEnErIC(txxfer)

let c1 and c2 be the first coins received at (pkCOIn
c1 , coinId1) and (pkCOIn

c2 , coinId2),
respectively, according to log

let c1, c2 ∈ ℭ be the (potentially) evolved variant of c′1, c
′
2.

ensure c1, c2 values are v1, v2, and their transactions are in C ⌈k

(if v2 = 0 ∧ pkCOIn
c2 = ⊥, ignore c2)

if the above failed then
return SUBmIT-GEnErIC(txxfer)

retrieve (pkCOIn
ci , ρci , rci , vci) from ℭ for i ∈ {1, 2}

retrieve skCOIn
ci from ℭfree for i ∈ {1, 2}

let rootskCOIn
ci

, pathskCOIn
t,ci

be the root and path to time t’s sub-key in skCOIn
ci

if pkCOIn
c2 = ⊥ ∧ v2 = 0 then
let snc2 ← prfzdrvrootskCOIn

c1
(ρc1)

let rootskCOIn
c2

, pathskCOIn
t,c2

, ρc2 , rc2 , path2 ← ⊥
else

let snc2 ← prfsnrootskCOIn
c2

(ρc2)

let ρc3 ← coinId3; ρc4 ← coinId4
let (cmci , rci) ← comm(pkCOIn

ci ‖ vi ‖ ρci) for i ∈ {3, 4}
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let snc1 ← prfsnrootskCOIn
c1

(ρc1)
let root be the transferMerkle tree root in C ⌈k

let path1, path2 be paths to cmc1 , cmc2 in root, if still undefined
if cmc1 or cmc2 were not found in root then

return SUBmIT-GEnErIC(txxfer)
let x ← ({cmc3 , cmc4}, {snc1 , snc2} , t, root)
letw ← (rootskCOIn

c1
, pathskCOIn

t,c1
, rootskCOIn

c2
, pathskCOIn

t,c2
, pkCOIn

c3 , pkCOIn
c4 , (cmc1 , ρc1 , rc1 , v1,

path1), (cmc2 , ρc2 , rc2 , v2, path2), (ρc3 , rc3 , v3), (ρc4 , rc4 , v4))
send (PrOVE, x,w) toFRXFEr

NIZK and receive the reply π
send (EnCrYPT, pkencr , t, (pkCOIn

c4 , t, ρc4 , rc4 , coinId4, vc4)) toFFwEnc and
receive the reply crcpt

let stxproof ← ({cmc3 , cmc4} , {snc1 , snc2} , root, t, π)
let txrealxfer ← (TrAnSFEr, stxproof, crcpt)
let log ← log ∪ {(txrealxfer, SEnD, (pkencs , (pkCOIn

c1 , coinId1, v1), (pkCOIn
c2 , coinId2, v2),

(pkCOIn
c3 , coinId3v3)))}

erase c1,2: ℭ ← ℭ \ {(pkCOIn
ci , ρci , rci , vci) | i ∈ {1, 2}}

let ℭcnd ← ℭcnd ∪ {(pkCOIn
c3 , ρc3 , rc3 , vc3)}

send (BCAST, txrealxfer) toF tx
Net

return txrealxfer

Submitting “generic” transactions is comparatively straightforward:

Protocol SUBmIT-GEnErIC(tx)
The generic transaction submission protocol encrypts non-public transactions us-
ing the recipient’s public key.

On invocation:

send rEAD to Gclock and receive the reply t
let txreal ← GEnErIC
for stx in tx do

if stx = (PUBLIC,m) then
let txreal ← txreal ‖ stx

else if stx = (pkencr ,m) then
send (EnCrYPT, pkencr , t,m) toFFwEnc and receive the reply c
let txreal ← txreal ‖ (PrIVATE, c)

send (BCAST, txreal) toF tx
Net

return txreal
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5.4.4.4 Reading the State

The last commandrelated to the interactionwith the ledger is the readcommand
rEAD that is used to read the current contents of the state. Note that in the ideal
world, the result of issuing such a command is for the ledger to output a (long
enough prefix) of the ideal-world state of the ledger, with parts the party does
nothave access to beinghidden. As the format of real-world transactions differs,
we need to invert themapping from real transactions to the corresponding ideal
transactions. For generic transactions, this is a little tricky, as theuse of forward-
secure encryption implies that the information associated with the transaction
in the ideal world is erased in the real world. To circumvent this, parties main-
tain a log, recording information necessary to reconstruct the ideal-world rep-
resentation of the transaction. The reconstruction process is fully specified as:

Protocol rEAD-STATE
The read protocol retrieves all information a party can see on their ledger’s current
chain, without the last k blocks.

State variables and initialisation values:

Variable Description
log ≔ ε A log of received transaction information
C ≔ ⊥ The currently selected chain

On invocation:

run FETCH-InFOrmATIOn
send rEAD to Gclock and receive the reply t
let Σideal ← ε
for tx in C ⌈k do

if tx = (TrAnSFEr, stxproof, stxrcpt) then
let stxchng ← stxrcpt ← ⊥
if ∃stx′: (tx, SEnD, stx′) ∈ log then

let stxchng ← (ψ, stx′)
if ∃stx′: (tx, rECEIVE, stx′) ∈ log then

let stxrcpt ← (ψ, stx′)
let Σideal ← Σideal ‖ ((PUBLIC, TrAnSFEr), stxrcpt, stxchng)

else if tx = (GEnErIC, stx1,… , stxn) then
let txideal ← ε
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for stx in tx do
if stx = (⊤,m) then let txideal ← txideal ‖ (⊤,m)
else if stx = (⊥, c) then

if ∃m: (PLAInTEXT, c,m) ∈ log then let txideal ← txideal ‖ (ψ,m)
else let txideal ← txideal ‖ ⊥

let Σideal ← Σideal ‖ (txideal)
return Σideal

5.4.5 Transaction Validity

Transaction validity again differs in the real and ideal world, as the transactions
themselves differ. The real-world transaction semantics (which formally runs
in FETCH-InFOrmATIOn) maintain three sets, the sets of coin commitments
ℂspend, ℂlead for spending and leadership, respectively, initialised to the initial
set of coin commitments ℂ1, and the set of spent serial numbers 𝕊, initialised to
∅. A chain is processed transaction by transaction. Leadership transactions and
transfer transactions are both validated, other transactions are ignored. A lead-
ership transaction is valid if and only if all leadership transactions in ⃗stxref are
valid adopted leadership transactionsand theNIZKproof is validwith respect to
theMerkle root of the current tree, with these adopted transactions inserted, as
well as ηep, and it has a greater slot number than the previous slot. Furthermore,
the serial number sn revealed in it must not be in the current 𝕊. The root used
must either be the root of the predecessor block, or the root of a past leadership
transaction’sMerkle tree, with only this transactions commitment added to the
tree. Finally, ptrmust be the hash of the previous block and h must be the hash
of the remaining transactions. After it is successfully validated, 𝕊 ← 𝕊 ∪ {sn},
ℂlead ← ℂlead ∪ {cm}, ℂspend ← ℂspend ∪ {cm}.

Transfer transactions are likewise validatedby checking theNIZKproofwith
respect to thepublic transactioncomponent. Furthermore, it is checked that root
was at some point the root of ℂspend and that {sn1, sn2} ∩ 𝕊 = ∅. If so, the effect
is updating 𝕊 ← 𝕊 ∪ {sn1, sn2} and ℂspend ← ℂspend ∪ {cm, cm3}. Finally, at the
start of an epoch, old enough spending coins are allowed for leadership proofs:
ℂlead ← ℂlead ∪ ℂspend

t−k , where ℂspend
t−k is the set of spending coin commitments k

slots before the start of the epoch.
If a leadership transaction is included normally in a block, or included
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in ⃗stxref (that is, it is not this block’s leadership transaction), it is considered
an adopted leadership transaction. The validity criteria for these are different,
requiring only that the proof is valid, the serial numbers are unspent, and
the Merkle root was a valid root for ℂlead at some point. The effects of the
transaction remain the same, although is is no longer the leader of a block. A
block’s transactions are validated prior to the leadership transaction, as thismay
depend on adopted leadership transactions. TheMerkle tree root of ℂlead of any
adopted leadership transactions chain’s is saved and preserved. These are valid
for other leadership transactions in the same epoch. Specifically, they are also
valid for the leadership transaction of the block it is contained in.

5.5 Security Analysis

We split our security analysis of CrYPSInOUS into two parts: In a first part, we
showthatCrYPSInOUSrealises a “non-private” versionofGpLedger –specifically,
we show that it realises GpLedger with lkg set to the identity function lkgid and
blindA(⋅, ⋅, tx) overridden to return tx; that is, the ledger leaks its entire content to
the simulator, described in detail during the proof. We argue that the simulator
S1 can simulate any real-world attacks on CrYPSInOUS against a non-private
GpLedger. This first part already proves that our protocol satisfies all the prop-
erties of the public ledger, including chain quality, common prefix, and chain
growth. In a second part, we argue that in addition to the above, it also satisfies
privacy. This is done by instantiating lkg to lkglead, in which only the leaders of a
given slot are leaked. For this case we provide a simulator S2 which is able, with
access only to this restricted leakage to simulate the outputs of S1, to generate a
viewwhich is indistinguishable from S1.

5.5.1 Stage 1: Public Proof-of-Stake

Theorem5.2. CrYPSInOUS, in the (WPoS
HonMaj(F

RLEAD
NIZK ,FRXFEr

NIZK ,FFwEnc,FΔ
Net),FRO,

Gclock)-hybrid world, UC-emulates GpLedger with lkg = lkgid and blindA(⋅, ⋅, tx) overrid-
den to return tx, under the DDH assumption.3

3Wewill be working under this assumption throughout the rest of the security analysis, and
will typically leave it implicit. We will also be assuming the binding (under discrete log, which
is implied by DDH) and hiding of our commitments, and the pseudo-randomness of our PRFs
implicitly.
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Simulator S1
For simplicity, we assume thatA does not violate the requirements ofWPoS

HonMaj. If it
does, simulation is simpler, as the adversary relinquishes the ability to make lead-
ership proofs.

State variables and initialisation values:

Variable Description
FInit Simulated CrYPSInOUS initialisation

FRLEAD
NIZK Simulated leadership NIZK

FRXFEr
NIZK Simulated transfer NIZK
F tx
Net Simulated transaction network

Fbc
Net Simulated chain network

FFwEnc Simulated forward secure encryption
F initcomm
CRS ≔ ∅ Simulated commitment CRS

ek ≔ ⊥ Equivocation key
ϕψ Simulated protocol for each party ψ ∈ P

doneMaint ≔ ∅ Party, time pairs of whenmaintenance was done
Clast ≔ ⊥ The current “best” chain
𝑀 ≔ ∅ Mapping from ciphertexts tomessages

pks ≔ ∅ Mapping from parties to their public keys
txs ≔ ∅ Set of all transactions ever submitted

On initialisation:

let (F initcomm
CRS .s, ek) ∗ simInitcomm

When receiving amessage (mAInT,ψ) from GpLedger:

send rEAD to Gclock and receive the reply t
if (ψ, t) ∉ doneMaint then

runϕψ.LEDGEr-mAInTEnAnCE
let doneMaint ← doneMaint ∪ (ψ, t)

When receiving amessage (TrAnSACTIOn, ⋅, tx, t,ψ) from GpLedger:

simulate sending (SUBmIT, tx) toϕψ and receive the reply txid

let txs ← txs ∪ {txid}
return txid

When receiving amessage (GEnErATE,ψ, tag) from GpLedger:

simulate sending (GEnErATE, tag) toϕψ and receive the reply id

if tag = ID ∧ ψ ∉ pks then
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let pks(ψ) ← id

return id

When receiving amessageCLAIm from a corrupted party ψ forFInit:

sendmAInTAIn-LEDGEr to GpLedger on behalf of ψ

When receiving amessage (BCAST, C) from a party ψ forFbc
Net:

if Clast = ⊥ then
sendGEnESIS toFInit and receive the reply𝔊
let Clast ← 𝔊

if Clast ≺ C ⌈k then
let Σ′ ← Σ(C ⌈k \ Clast)
send (EXTEnD, Σ′) to GpLedger

When receiving amessage (TArGET,ψ, C) fromA forFbc
Net:

send (ADVAnCE,ψ, Σ(C ⌈k)) to GpLedger

Forward all other queries to their simulated functionalities.

Helper procedures:

function Σ(C)
let Σ′ ← ε
for 𝐵 in C do

for tx in 𝐵 do
run ensureSubmitted(Σ′, tx)
let Σ′ ← Σ′ ‖ tx

return Σ′

function ensureSubmitted(Σ, tx)
if tx ∈ txs then

return
let tx′ ← ε
if ∃tx″: tx = (GEnErIC, tx′) then

let tx′ ← ε
let tx′ ← (PUBLIC, GEnErIC)
for c in tx′ do

if ∃m: c = (PUBLIC,m) then
let tx′ ← tx′ ‖ c

else
let tx′ ← tx′ ‖ decrypt(c)
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else if ∃… : tx = (TrAnSFEr, ({cmc3 , cmc4}, {snc1 , snc2}, root, t, π), crcpt) then
let x ← ({cmc3 , cmc4}, {snc1 , snc2}, t, root)
simulate sending (VErIFY, x, π) toFR

NIZK and receive the reply b
if ¬b ∨ ∄Σ′ ≺ Σ: root(Σ′) = root then

continue
letw ← FR

NIZK.𝑊((x, π))
determine the corresponding ideal-world coins fromw
ensure the change is received by the adversary4

if the ciphertext cannot be decrypted and understood correctly by
the recipient then
modify the recipient to be a new adversarial ID

let tx′ be the corresponding ideal-world transfer

send (SUBmIT, tx′) to GpLedger

answer the following TrAnSACTIOn query with tx

function decrypt(c)
if c ∈ 𝑀 then return𝑀(c)
else

send rEAD to Gclock and receive the reply t
for ψ ∈ H; t′ ∈ t − Δmax … t do

simulate sending (DECrYPT, t′, c) toFFwEnc and receive the reply r
if ∃m: r = (OK,m) then

let𝑀(c) ← (pks(ψ),m)
return𝑀(c)

return ⊥

Proof (sketch). The backbone of the proof of Theorem 5.2 is similar to the secu-
rity proof of Ouroboros Genesis [BGK+18] with some surgical modifications; in
particular, in Step 1 we argue that the usage of NIZKs, nonces, and key-private
forward-secure encryption, can replace the usage of forward secure signatures,
and in Step 2 we argue that the usage of NIZKs and MUPRFs can replace the
usage ofVRFs inGenesis. In anutshell, this allowsus to argue in Step 3 that lead-
ership transactions in CrYPSInOUS can be used to replace leadership proofs in
Genesis. This allows us to leverage the security analysis from Ouroboros Gen-
esis [BGK+18] in Step 4 for proving that CrYPSInOUS implements, at the very

4Even if addressed honestly, this is an adversarial transaction, and the honest party will not
see the change.
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least, a non-private version of the ledger.
Transactions submitted to CrYPSInOUS are pre-processed, before being

handled as a Genesis transactionwould be and, on reading from the ledger, this
pre-processing is partially inverted. This inversion being only partial is what
will later be used to establish the privacy properties of CrYPSInOUS. In Step 5,
we establish that this pre-processing and post-processing has the same effect
as blinding a transaction in the ideal world, and that the validation predicate
of CrYPSInOUS – which is run only against pre-processed transactions – is
equivalent to its ideal-world counterpart. Finally, in Step 6, we argue that
combined, these properties demonstrate realisation of GpLedger with lkg = lkgid
and overridden blindA.

Step 1. The security properties guaranteed byFFwSig and used in [BGK+18], are
those of forward-secure unforgeability, correctness, and authenticity. A proof
of LEAD gives the former two properties and a notion of authenticity that is dif-
ferent to FFwSig, but sufficient for how it is used in [BGK+18]. Non-malleable
NIZKs, such as the ones used in our construction, can be interpreted as “signing”
their public inputs with the knowledge of a witness [GM17]. In particular, if the
witness itself contains a secret key known only to one party, a NIZK over such
a witness effectively acts as a signature. In CrYPSInOUS, the usage of skCOIn

in the witness for leadership proof effectively acts as a signature over the rest
of the block, providingunforgeability and correctness guarantees. Furthermore,
as the statementLEADhas the sameconditionsas a leadershipproof in [BGK+18],
the desired authenticity property is also satisfied. This is not sufficient to emu-
late FFwSig, however using skCOIn

sl and ρc in the witness rectifies this. As honest
parties update both skCOIn

sl and ρc after theproof, and skCOIn
sl and ρc arenecessary

to generate a new proof for the same slot, the adversary will be unable to create
leadership proof for past slots. This is effective only so long as skCOIn

sl and ρc can-
not be retrieved from elsewhere. skCOIn

sl is generated locally by an honest party,
is never communicatedby it (except toFRLEAD

NIZK , whichguarantees its secrecy) and
is erased by the honest party in the same slot.

Step2. Theproperty ofVRFprovability is directly captured by the correctness
of NIZKs, and that of uniqueness is directly captured by non-malleability. Pseu-
dorandomness is directly supplied by the security under malicious key genera-
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tion of MUPRFs. Two VRF calls are embedded in the NIZK; the VRF is used to
generate the randomness contribution ρ, and theVRF is used to check the target.
While in CrYPSInOUS the latter is not publicly revealed, it is still present and
is verified by a verification of the NIZK. The NIZK is not as flexible as the VRF,
in that it cannot be used to generate arbitrary VRF proofs at any time, however
it can still be safely substituted, as the relation is stricter. The NIZK inputs in
Ouroboros CrYPSInOUS depend on the coin’s secret key, while in Ouroboros
Genesis, they depend on the party’s secret key. AsOuroborosGenesis anticipates
parties acting as multiple parties in the protocol, we can simply consider each
CrYPSInOUS coin as one Genesis party.

Step 3. A leadership transaction in CrYPSInOUS can be made only if a coin
passes the same threshold check as in Ouroboros Genesis. Due to the inde-
pendent aggregation property of the threshold function, the probability of
this happening for a party holding a specific value of (honest) stake is equal in
CrYPSInOUS andGenesis. Furthermore, the NIZK ensures the impossibility of
creating a leadership transactionwithoutwinning this election in CrYPSInOUS,
while the VRF validation and block validity check enforce the same property
in Genesis. The mechanism of “adopted” leadership transaction ensures this
property is preserved, even by a party selecting a new local chain.

Due to the equivalent output distribution of VRFs and PRFs in Genesis and
CrYPSInOUS, respectively, the randomness contribution ρ is also equivalent.

Step 4. Given we can replace leadership proofs with leadership transactions
in the GLedger proof of [BGK+18], the rest of the proof can be carried out the same
for CrYPSInOUS. This establishes that, CrYPSInOUS effectively runs an inter-
nal ledger. While the transactions posted to this ledger are not directly those
posted to CrYPSInOUS itself, we will establish their relationship and that this
corresponds directly to the difference between the public and private ledger.

Step 5. Submitted transactions are pre-processed before being sent to the net-
work, and transactions from the network are post-processed on a rEAD request
in CrYPSInOUS. For brevity, we will refer to the former mapping as f and the
latter as f−1ψ . We define consistency of this mapping to be the following property:
f−1ψ ∘ f = blind({ψ}) – that is, rEAD requests return the same as f−1ψ of the rEAD in
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the mapped ledger. Specifically, as the real-world validation predicate already
operates on the mapped transactions, this predicate should behave the same as
the ideal-world predicate over the original transactions.

For generic transactions this is straightforward: subtransactions addressed
to PUBLIC are preserved and not affected by the mapping. Subtransactions ad-
dressed to a party ψ are encrypted with pkencp in the real world, and each party
attempts to decrypt them on the inversemapping. Specifically, subtransactions
addressed to any other party will fail to decrypt and be replaced with ⊥, while
subtransactions which are correctly encrypted, will be replaced with (pkp,𝑀),
where 𝑀 is the originally encrypted plaintext. This matches the behaviour of
blind exactly.

Transfer transactions. This leaves us with the consistency of mappings for
transfer and leadership transactions. In addition tobeing standard transactions,
transfer transactions induce a stakeholder distribution. They are intrinsically
linked with leadership transactions in the real world, so we will consider these
as well. The ledgers, both real and ideal, can be read as a sequence of transfer
transactions and, in the real world, leadership transactions. We will prove by
induction thatvalidity is equivalent in the real and idealworld, aswell as that the
inversemapping of the real-world transaction is the ideal transaction. First, we
note the inductionhypothesis: For everyvectorof transfer and (in the realworld)
leadership transactions in the real and ideal worlds, two sets of valid coins are
induced: a) The set of valid ideal-world coins, where each coin has a party, ID
(which the simulator sets to be the coin’s public key pkCOIn

c ) and value, and b)
The set of valid real-world coins, which have the same attributes, as well as an
associated coin secret key skCOIn, a nonce ρc, and a commitment randomness rc.
The induction hypothesis is that these sets are equivalent, that is, the ideal set is
equal to the real set without the secret key, nonce and randomness, and that in
the vector of transactions, the same transfer transactionswere considered valid
in both worlds.

Asabase case, this is guaranteedbyFInit, whichcreates the samedistribution
of coins in the realworld aswasgiven in the idealworld, selecting random ρc and
rc values. In the induction step, we increase the real-world transaction vector by
one transaction. There are four cases, depending on whether the transaction is
honest or adversarial, andwhether it is a transfer or leadership transaction. We
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will consider the honest cases first.

Honest leadership. In the case of an honest leadership transaction, the trans-
action is valid in the realworld, ashonestpartieswouldnotpost an invalid trans-
action. It spends a coin, and recreates a coin of the same value. This is reflected
by updating the set of real-world coins by replacing ρc and, rc with new values
ρc′ and rc′ . Trivially, this entails the induction claim.

Honest transfers. In the case of an honest transfer transaction, the ideal
world transaction is valid iff the two spent coins were the first coins received at
an ID owned by the sending party, the transaction is zero-sum and the address
of the “change” coin is also owned by the same party. If these conditions do not
hold, the honest party would ignore the request in the real world. If they do, the
honest party is, by inductionhypothesis, guaranteed to know the corresponding
skCOIn

t , ρc and rc-values of the coins that are spent, so it is able to generate a valid
transaction and NIZK proof. Afterwards, in the real and ideal world, the coin
is removed from the set of valid coins, and the newly created coins are not yet
added, but will be added once the transaction has been confirmed. We conclude
the induction hypothesis is maintained in an honest transfer transaction.

Adversarial transactions. To consider adversarial transactions, the simula-
tor does not immediately add them to the buffer. Instead, the simulator locally
stores themandwaits until the adversaryhas themsufficientlydeep in the chain
that theymust be added to the idealworld state. At this stage, the simulator adds
themto the ideal-worldbufferand immediatelypromotes themto the state. This
allows the simulator tomanage conflicting adversarial transactions, as it simply
waits for the adversary itself to resolve the conflict. In particular, transactions
attempting to spend the same coin, in either a leadership or transfer transaction,
will be conflicting, as they would reveal the same serial number. Once an adver-
sarial leadership transaction is confirmed in the same way, the adversary will
control the same updated coins as in the honest case and will be unable to use
the old coins again, as the transaction semantics prevents the reuse of the coins’
serial numbers.

Adversarial transfers. As the simulator waits until it enters the state, we
need only consider sufficiently deep, valid transactions in the real world, and
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ensure the simulator can create a corresponding ideal world transaction. The
real-world transaction will need to spend two valid coins, which can originate
only from corrupted parties. It creates two new coins, addressed to any party, or
potentially no party at all, of the same value. This directly corresponds to a legal
adversarial transaction in the idealworld and, by inductionhypothesis, all coins
spent will be unused. The adversary cannot spend honest coins, as it does not
know their secret key, with which to create a NIZK proof, cannot spend coins
multiple times, as this would invalidly reveal the same serial number twice.
Finally, it cannot spend non-existent coins, as it could not provide a Merkle
path witness.

Equivalence. Weconclude that real and ideal transactions induce the sameset
of valid coins andare valid in the same cases. The simulator delaying adversarial
transactions in the ideal world is not visible to the environment in any way, as
the buffer is only seen by the simulator itself and by the ideal-world coin compu-
tation (whichdoesnot care about the order of adversarial transactions until they
enter the state). The set of coins induces a stakeholder distribution, as required
by the proof of [BGK+18].

Finally, the inversemappingofparties’ viewscorrespond to their ideal-world
views. Specifically, if a party sees anything in the idealworld, it is the recipient or
senderofacoin. In the formercase itneedsonly tobeable tosupplypkCOIn

c andvc
in the idealworld–provided the coinhasnot since been spent. If the transaction
was honest, the party will have seen them on decrypting its ciphertext and – if
the coin has not been spent – can be found recorded in log. If the transaction
is dishonest, either the ciphertext still correctly encrypts the coin, or, if it does
not, the ideal transactionwouldnothavebeenaddressed to thehonest party, but
to the adversary instead. If the party is the sender, it recorded the sending in log

and returns the contents from there. We conclude that honest parties’ responses
to rEAD requests in the real and ideal worldsmatch.

Step 6. The private ledger differs primarily from the standard ledger in that
it a) applies blind to the output of rEAD requests, b) leaks less information to
the adversary, and c) provides a mechanism for unique ID generation (which
are used internally). Difference a) follows directly from the consistency demon-
strated in Step 5. Furthermore, we are considering an overly permissive leak-
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age predicate, lkgid, which provides the adversary with the same information
it would receive from the standard ledger satisfying b). Finally, CrYPSInOUS
allows ID generation; IDs are generated as either PRF outputs of a PRF seeded
with a random, secret value, which will lead to unique IDs for honest parties
with overwhelmingprobability. FFwEnc public keys, are guaranteed to be unique,
while other IDs randomly sample from {0, 1}κ, whichhas anegligible probability
of collision. We conclude that CrYPSInOUS realises GpLedger with S1, under the
leakage predicate lkgid and blindA(⋅, ⋅, tx) = tx.

5.5.2 Stage 2: Private Proof-of-Stake

Theorem5.3. CrYPSInOUS, in the (WPoS
HonMaj(F

RLEAD
NIZK ,FRXFEr

NIZK ,FFwEnc,FΔ
Net),FRO,

Gclock)-hybrid world, UC-emulates GpLedger with lkg = lkglead under the DDH assump-
tion.

Simulator S2
The simulator S2 behaves like S1, with a few key differences in how information
about transactions is extracted and acted on. Let ℓcoin be the encoded length of coin
tuples.

State variables and initialisation values as inS1.
When receiving amessage (TrAnSACTIOn, ⋅, tx, t,ψ) from GpLedger:

if ∃tx′: tx = (PUBLIC, TrAnSFEr) ‖ tx′ then
return simXfer(tx′,ψ)

else
return simGen(tx,ψ)

When receiving amessage (mAInT,ψ) from GpLedger:

send rEAD to Gclock and receive the reply t
send rEAD to GpLedger and receive the reply (⋅, ⋅, 𝐿)
if (ψ, t) ∉ doneMaint then

run simStake(ψ, t, 𝐿)
let doneMaint ← doneMaint ∪ (ψ, t)

WhenA requests the corruption of ψ:

corrupt ψ
send rEAD to GpLedger through ψ and receive the reply Σ
constructϕψ.log from Σ
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if ψ ∉ FFwEnc.𝐾 then
send KEYGEn toFFwEnc on behalf of ψ

send rEAD to Gclock and receive the reply t
letFFwEnc.𝑇 (ψ) = t + 1
determinewhich leadership and transfer transactions were simulated as origi-

nating from ψ
disambiguatewhich coins wonwhich leadership transactions
for unspent coin c belonging to ψ do

if cwas created by an honest party then
let ρc

∗ {0, 1}κ
let t be the time the coin creating transaction was submitted
let rc ← equiv(ek, cmc, pk

COIn
c ‖ t ‖ ρc ‖ vc)

else
extract (pkCOIn, ρc, rc, vc) by decrypting the corresponding ciphertext

if c is currently visible to ψ then
letϕψ.ℭcnd ← ϕψ.ℭcnd ∪ {(pkCOIn, ρc, rc, vc)}

ensureϕψ.ℭfree,ϕψ.ℭcnd, andϕψ.ℭ are consistent with a real execution:
checkwhich coins are confirmed,
move them to ℭ, and
erase them from ℭcnd

Other behaviour as inS1.

Helper procedures:

procedure simXfer((stxidealrcpt , stx
ideal
chng),ψ)

send rEAD to Gclock and receive the reply t
if stxidealrcpt = (⊥, ⋅) then

let cm ← simComm(ek).
queryAwith (EnCrYPT, t, ℓcoin) and receive the reply stxrealrcpt,

satisfying stxrealrcpt ∉ FFwEnc.𝑀 , else sampling from {0, 1}κ ,
on behalf of FFwEnc

letFFwEnc.𝑀(stxrealrcpt) ← (⊥,−1,⊥)
else

let (pkencq , (pkCOIn, ⋅, v)) ← stxrcpt
let ρ ∗ {0, 1}ℓprf
let (cm, r) ← comm(pkCOIn ‖ ρ ‖ v)
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simulate sending (EnCrYPT, pkencq , t, (pkCOIn, t, ρ, r, v)) toFFwEnc and
receive the reply stxrealrcpt

let cm2 ← simComm(ek)
let sn1, sn2

∗ {0, 1}ℓprf
if ρ{1,2} were adversarially generated, and can be read then

use ρi to compute sni instead

let root be theMerkle root ofϕψ.C ⌈k

let x ← ({cm3, cm4}, {sn1, sn2}, root)
queryAwith (PrOVE, x) and receive the reply π,

satisfying π ≠ ⊥ ∧ (x, π) ∉ FRXFEr
NIZK .{Π,Π}, else sampling from {0, 1}κ ,

on behalf of FRXFEr
NIZK

letFRXFEr
NIZK .Π ← FRXFEr

NIZK .Π ∪ {(x, π)}
let stxproof ← ({cm, cm2}, {sn1, sn2}, root, t, π).
let tx ← (TrAnSFEr, stxproof, stxrealrcpt)
simulate sending (BCAST, tx) toF tx

Net on behalf of ψ
return tx

procedure simGen(txideal,ψ)
send rEAD to Gclock and receive the reply t
let txreal ← GEnErIC
for stx in txideal do

if ∃pkenci ,m: stx = (pkenci ,m) then
send (EnCrYPT, pkenci , t,m) toFFwEnc through ψ and

receive the reply c
let txreal ← txreal ‖ (PrIVATE, c)

else if stx = (PUBLIC,m) then
Let txreal = txreal ‖ (PUBLIC,m)

else if ∃ℓ: stx = (⊥, ℓ) then
queryAwith (EnCrYPT, t, ℓ) and receive the reply c,

satisfying c ∉ FFwEnc.𝑀 , else sampling from {0, 1}κ ,
on behalf of FFwEnc

letFFwEnc.𝑀(c) ← (⊥,−1,⊥)
let txreal = txreal ‖ (PrIVATE, c)

simulate sending (BCAST, txreal) toF tx
Net on behalf of ψ

return txreal

procedure simStake(ψ, t, 𝐿)
if ψ ∉ 𝐿 then return
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let cm ← simComm(ek); ρ, sn ∗ {0, 1}ℓprf
queryAwith (EnCrYPT, t, ℓcoin) and receive the reply c,

satisfying c ∉ FFwEnc.𝑀 , else sampling from {0, 1}κ ,
on behalf of FFwEnc

let C,𝐵, h, ptr, epoch, sl, root, ηep, μρ, μy, and stxref bedefined as in anhonest stak-
ing protocol execution by ψ

let x ← (cm, sn, ηep, sl, ρ, h, ptr, μρ, μy, root)
queryAwith (PrOVE, x) and receive the reply π,

satisfying π ≠ ⊥ ∧ (x, π) ∉ FRLEAD
NIZK .{Π,Π}, else sampling from {0, 1}κ ,

on behalf of FRLEAD
NIZK

letFRLEAD
NIZK .Π ← FRLEAD

NIZK .Π ∪ {(x, π)}
let stxproof ← (cm, sn, ep, sl, ρ, h, ptr, π)
let tx ← (LEAD, ⃗stxref, stxproof)
simulate sending (BCAST, tx) toF tx

Net on behalf of ψ
simulate sending (BCAST, C ‖ (tx,𝐵)) toFbc

Net on behalf of ψ

Proof (sketch). The leakage lkglead leaks only the leader of any given slot. We
utilise a modified version of S1, which differs only in that it creates simulated
transaction instead of real transactions and reconstructs a corrupted party’s
state when required. In Step 1, we argue that the simulated transactions are
indistinguishable from real transactions and, in Step 2, we argue that the re-
constructed party state is indistinguishable from a real party’s state. Finally, in
Step 3, we argue that the simulator S2 is indistinguishable from S1, although
requiring less leakage from the private ledger functionality. As a result, the
same security argument as for S1 holds with respect to GpLedger with restricted
leakage.

Step 1. There are threeprimitives that are simulated in simulated transactions:
Commitments, NIZKs, and FFwEnc encryptions. Due to the simulation security
of NIZKs and the equivocality of the commitments, we know they are indistin-
guishable from real NIZKs and commitments respectively. For FFwEnc, the sim-
ulator hands the adversary the same information about the plaintext (namely,
the length) as the functionality itself, leaving the adversarywith no information
to distinguish. As transactions consist of these primitives, and the simulator
accurately knows the format and originating party of a transaction, it can create
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a perfect simulated equivalent of the transaction and broadcast it on behalf of
the same party.

Step 2. While the first simulator was effectively running the protocol for real
parties,making corruption trivial, S2 must reconstruct the parties’ local state in
a way the adversary cannot distinguish from a real execution. Parties maintain
four important state variables: the local chain C, the local buffer txBuf, the set of
coinsℭ (as well asℭfree andℭcnd), the log of transfer interactions, and ciphertext
to plaintext mappings, log.

Maintaining C and txBuf is straightforward, as the network interactions di-
rectly dictate their contents and the network is not anonymous. This leaves as
the only major issues the reconstruction of ℭ, ℭfree, ℭcnd, and log. When a real-
world party’s corruption is requested, the simulator corrupts the corresponding
ideal-world party. This allows the simulator to extract when the party received,
transfers in the ideal world, all of which are guaranteed to be unspent, aswell as
the plaintexts corresponding to the ciphertext of subtransactions addressed to
the party.

At these points, a transfer, or generic transaction will have also been made
in the real world. This transaction is either a real transaction, in which case
the simulator can extract its content from its simulated FFwEnc. The corrupted
party can only be the recipient ψr of such transactions (as this is the only party
which may read it). There is one commitment in the transaction that is created
for a new coin of this party, and one encryptedFFwEnc message that encrypts the
corresponding secret values used to control it. The simulator randomly samples
ρc

∗ {0, 1}ℓprf, and retrieves pkCOIn
c and vc from the corresponding ideal-world

transaction.
As the ideal-world transaction is valid,weknow pkCOIn

c must be a valid ID for
the corruptedparty, inwhich case the simulatorprovided it andknows the corre-
spondingsecretkey skCOIn

c . It thenopens the commitment cmc to pk
COIn
c ‖ vc ‖ ρc,

with the opening randomness rc. This allows the simulator to populate ℭ, ℭfree,
andℭcndwith coins generatedby transfer transactions, dependingon their stage
of confirmation. We further note that the FFwEnc ciphertext can now be opened
to the appropriate encryption if necessary. Finally log is populated, by recording
the corresponding log action for each of these transactions.

This almost completes the simulator, with the exception of how to handle
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coins that were used in leadership proofs. Recall that the simulator is aware of
which slots the newly-corrupted party was a leader. It is not, however, aware of
which coin won in these slots. For each leadership proof of the corrupted party,
the simulator computes theprobabilityof eachof theparty’s coinsbeing thewin-
ning coin in the given slot, and samples from this distribution a single coin c. It
thenensures this coin is appropriatelyupdated–computing skCOIn

c′ = prfevlskCOIn
c

(1)
and ρc′ = prfevlskCOIn

c
(ρc), opening cmc′ , the commitment in the corresponding real-

world leadership proof to pkCOIn
c′ ‖ vc ‖ ρc′ , with the resulting randomness being

rc. This is added toℭ, with thepreimagebeing removed. As theadversary cannot
find the preimage of skCOIn

c′ , or ρc′ , the adversary cannot perform consistency
checks involving the previous coin, such as checking serial numbersmatchwhat
they should.

As the state of the party handed to the simulator is correct, and any sampled
value in it is eitherpurely random, ororiginates fromtheequivocal commitment
scheme, the adversary cannot distinguish the corrupted party’s state from the
real party’s state.

Step 3. We conclude from Theorem 5.2, and our observations in Step 1 and
Step 2, combined with the fact that S1 and S2 differ only in simulating trans-
actions and corruption, that Theorem 5.3 holds.

5.6 Performance Estimation

Coin transfers are modelled after Zerocash’s [BCG+14] pour transactions. This
enables us to reuse much of the existing implementation work invested on opti-
mising the performance critical SNARKoperations by the Zcash project in their
Sapling upgrade [HBHW18].

Like Zerocash, our transfer transactions pour two old coins into two new
coins. In contrast, a leadership transaction only updates a single coin. The
additional costs incurred are two evaluations of a PRF to compute ρc2 and skCOIn

c2
for updating the coin in a deterministicmanner, two evaluations ofMUPRF, and
one range-proof to determine thewinners of the leadership election lottery. We
approximate ϕf using a linear function as in Bitcoin. The PRF is implemented
using a SHA-256 compression function. The MUPRF requires variable base
group exponentiations. As we require equivocal commitments, we replace the
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SHA-256 coin commitments ofZerocash that require 83,712 constraintswith the
Pedersen commitments of Sapling [HBHW18]which require only approximately
2,542 constraints. Purely for performance reasons, we also replace the original
SHA-256 Merkle tree of Zerocash with the Pedersen hash-based tree used in
Sapling.

In total, see Table 5.2, the multiplication count of a leadership SNARK rela-
tion is smaller than a transfer relation by about 42K constraints. Furthermore,
thenumberof constraintsusedbyour transfer relations iswithina smallmargin
of those used in an equivalent Sapling transfer relation. While we have not fo-
cusedonoptimising thisprocessasSaplinghas, byparallelising theNIZKproofs,
we emphasise that even unoptimised, CrYPSInOUS would have a proving time
only around double that of Sapling.

Primitive Approx. constraints
SHA-256 27, 904
Exponentiation (variable base) 3, 252 [HBHW18, page 128]
Hidden range proof 256
Pedersen commitment 1, 006 + 2.666 per bit5

Table 5.1: Number of multiplicative constraints in SNARK relations

We note in passing that the forward-secure encryption scheme is needed
only for transfers and does not affect the SNARK relations we need to prove
which is dominating performance. Likewise, the usage of a simulation secure
NIZK will increase proving time and proof lengths. Nevertheless, in both
cases, the performance penalty is not intrinsic to the POS setting and it would
equally affect a POW-based protocol like Zerocash if one wanted to make it
simulation-secure in the adaptive corruption setting.

A second performance concernmay be the cost ofmaintaining and updating
Merkle trees of secret keys. There is a trade-offhere– larger trees aremore effort
to maintain and use, while smaller ones may have all their paths depleted and
hence require a refresh in the sense ofmoving the funds to a new coin. For a rea-
sonable value of 𝑅 = 224, this is of little practical concern. Public keys are valid
for 224 slots – approximately five years – and employing standard space/time
trade-offs, keyupdates takeunder 10,000hashes,with less than500KiBstorage

5https://github.com/zcash/zcash/issues/2634
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Constraint count RXFEr RLEAD

Check pkCOIn
ci 2 × 27, 904 27, 904

Check ρc2 , sk
COIn
c2 2 × 27, 904

Path for cmci 2 × 43, 808 43, 808
(1 layer of 32) (1, 369) (1, 369)
Path for rootskCOIn

ci
34, 225

(1 layer of 24) (1, 369)
(leaf preimage) (1, 369)
Check snci 2 × 27, 904 27, 904
Check cmci 4 × 2, 542 2 × 2, 542
Check v1 + v2 = v3 + v4 1
Ensure that v1 + v2 < 264 65
Check y, ρ 2 × 3, 252
Check (approx.) y < ord(𝐺)ϕf(v) 256
Total 209, 466 201, 493

Table 5.2: Number of constraints per SNARK statement

requirement. Themost expensive part of the process, key generation, still takes
less than aminute on amodern CPU.
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6 PrIVACY In SmArT
COnTrACTS

--.--
This chapter is based on “KACHInA – Foundations of Private Smart Con-
tracts” [KKK21b], to appear at the 2021 IEEE Computer Security Founda-
tions Symposium, primarily authored by Thomas Kerber, and co-authored by
Aggelos Kiayias andMarkulf Kohlweiss.

DECEnTrALISEDcomputation, as providedby smart contracts is seemingly
inherently limited to being entirely non-private, as it encompasses repli-

cated computation. This apparent contradiction can be bypassed through the
usage of cryptography – hiding information in plain sight – as has been done in
Chapter 5, and as other privacy-preserving smart contract systems describe in
Subsection 2.6.3. The approaches these different systems suggest are fractured
however – each fitting a niche and solving a part of the larger problem. This
larger problem, arbitrary decentralised private computation, is essentially fully
distributed and universal, multi-party computation, which with current algo-
rithms is too costly to run at a large scale. The motivating question behind this
chapter is then:

Is it feasible to achieve a privacy-preserving and general-purpose smart
contract functionality under the same availability and decentralisation char-
acteristics exhibited by Nakamoto consensus?

This chapter carves out a large class of distributed computations that we
express as smart contracts, which we collectively refer to as “KACHInA core
contracts”. In particular, this includes contracts with privacy guarantees, which
can be implemented without additional trust assumptions beyond what is
assumed for Nakamoto consensus1. This class allows us to express the pro-
tocol logic of dedicated privacy-preserving, ledger-based protocols such as

1The existence of a securely generated common reference string is also required, which by
the results of Chapter 4 also reduces to Nakamoto consensus.
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Zerocash [BCG+14] as smart contracts. Existing smart contract systems such
as Zexe [BCG+20], Hawk [KMS+16], Zether [BAZB19], Enigma [ZNP15], Arbi-
trum [KGC+18], and zkay [SBG+19] can be expressed, preserving their privacy
guarantees, as KACHInA contracts. These protocols mainly rely on either
zero-knowledge or signature authentication for their security. KACHInA is flexible
enough to allow contract authors to express each of these systems, together
with a concise description of the privacy they afford. It does not supersede these
protocols, but rather gives a common foundation onwhich one canbuild further
privacy-preserving systems.

Distributed ledgers put forth a new paradigm for deploying online services
beyond the classical client-server model. In this new model, it is no longer the
responsibility of a single organisation or a small consortium of organisations
to provide the platform for deploying relevant business logic. Instead, services
can take advantage of decentralised, “trustless” computation to improve their
transparency and security as well as reduce the need for trusted third parties
and intermediaries.

We make four contributions to the area of privacy-preserving smart con-
tracts:

a) Wemodel privacy-preserving smart contracts.

b) We realise a large class of such contracts.

c) We enable concurrent interactions with smart contracts, without com-
promising on privacy.

d) We demonstrate a general methodology to efficiently and composably
build smart contract systems.

Combined, they provide amethod for both reasoning about privacy in smart
contracts, and construct an expressive foundation to build smart contracts with
good privacy guarantees upon.

Our model. We provide a universally composable model for smart contracts
in the form of an ideal functionality that is parameterised to model contracts
bothwith andwithout privacy, capturing a broad range of existing systems. The
expressiveness and relative simplicity of ourmodel lends itself to further analy-
ses of smart contracts and their privacy. Moreover, existing privacy-preserving

Chapter 6. Privacy in Smart Contracts 213



systems benefit from themodel as ameans to define their security and contrast
their security with other systems.

We consider a smart contract to be specified by a transition function Δ and
a leakage function Λ, which parameterise the smart contract functionalityFΔ,Λ

SC .
Δ models the behaviour of the contract, were it to be run locally or by a trusted
party. It is a program that updates a shared state, and has its inputs provided
by and outputs returned to, the calling party. FΔ,Λ

SC models network, ledger, and
contract specific “imperfections” that also exist in the ideal world by interacting
with aGLedger-GUC functionality [CDPW07] and captures the fundamental ideal-
world leakage through the parameterising function Λ.

Some combinations of Δ and Λ are not obviously realisable, in particular
the more restricted the leakage becomes. They are able to capture existing
smart contract systems however, both privacy-preserving and otherwise. For
instance, a leakage function which leaks the input itself corresponds closely to
Ethereum [Woo14], while a leakage function returning no leakage makes many
transition functions hard or impossible to realise. This chapter focuses on a
more interesting middle ground. By defining the ideal behaviour to interact
with GLedger, we avoid having to duplicate the complex adversarial influence
of ledger protocols. We make few assumptions about this ledger, requiring
only the common prefix property, and interfaces for submitting and reading
transactions to be well defined.

Our protocol. We construct a practical protocol for realising many privacy-
preserving smart contracts, utilising only non-interactive zero-knowledge. The
primary goal of this protocol is to provide a sufficiently low-level and general
purpose basis for further privacy-preserving systems, without requiring the un-
derlying system to be upgraded with each new extension or change. We focus
on the Nakamoto consensus setting of a shifting, untrusted set of parties. The
protocol’s core idea is to separate a smart contract’s state into a shared, on-chain,
public state, and an individual, off-chain, private state for each party. Parties then
prove in zero-knowledge that they update the public state in a permissible way:
That there exists a private state and input for which this updatemakes sense.

Dealing with concurrency in a privacy-preserving manner. There exists
a fundamental conflict between concurrency and privacy that needs to be ac-
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counted for to remain true to our objective of providing a smart contract func-
tionalityasdecentralisedasNakamotoconsensus. To illustrate, supposean ideal
smart contract is at a shared private state ω and two parties wish to each apply
a function f and g respectively to this state. They wish (in this specific case) the
result to be independent of the order of application – i.e. f(g(ω)) = g(f(ω)) = ω′.
In any implementation of the above in which parties do not coordinate, the first
party (resp. the second) should take into account the publicly known encoding
[ω] ofω and facilitate its replacement with an encoded state [f(ω)] (resp. [g(ω)])
as it results from the application of the desired transition in each case. It follows
that the encoded states [f(ω)], [g(ω)] must be publicly reconciled to a single en-
coded state [ω′]which necessarilymust leak some information about the transi-
tions f and g. Being able to achieve this type of public reconciliationwhile retain-
ing someprivacy requires amechanismthat enablesparties topredict transition
conflicts and specify the expected leakage.

We achieve this through the novel concept of state oracle transcripts, which are
records of which operations are performed on the contract’s state, when inter-
acting with it through oracle queries. These allow contract authors to optimise
when transactions are in conflict: ensuring minimal leakage occurs while still
allowing reorderings. We provide a mechanism for analyzing when reordering
transactions is safewith respect to auser’s individual private state, by specifying
a sufficient condition for when transactionsmust be declared as dependencies.

Efficient modular construction. KACHInA is designed to be deployed at
scale: Previous works using zero-knowledge do not explicitly maintain a con-
tract state. If such a state ω was modelled anyway, (for instance, as inputs to
these systems), the zero-knowledge proofs involved would scale poorly, with
a proving complexity of Θ(|ω|) before any computation is performed. A naive
approach to state cannot scale to handle systems with a large state – such as a
privacy-preserving currency contract, without these being handled as special
cases. Our abstracting of state accesses solves this problem.

Regardless of the size of our state, the state is never accessed directly, but
only through oracles specified by the contract. As a result the complexity of
what must be proven is under the full control of the contract author and can
be optimised for. A proving complexity of Θ(|Tρ| + |Tσ|) prior to performing any
computation can be expected in KACHInA, where Tρ is the oracle transcript for
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the private state and Tσ is the one for the public state. This constitutes a clear
improvement, as the state of smart contracts deployed in practice may be very
large, however transcripts, similar to the inputsandoutputsof traditionalpublic
contracts, are generally short. This increase in efficiency allows us to construct
an entire smart contract system, akin to Ethereum [Woo14], as a KACHInA con-
tract in Section 6.7.

Not all contracts a user wishes to write will directlymatch the requirements
for realising a smart-contract with the KACHInA core protocol. However, our
model is sufficiently flexible to allow direct application of the transitivity of UC-
emulation to solve this: If the originally specified “objective” contract (Δ,Λ) is
not in the class of KACHInA core contracts, the author can find an equivalent
(Δ′, Λ′) which is. The author can provide a proof that FΔ′,Λ′

SC UC-emulates FΔ,Λ
SC

and, by the transitivity of UC-emulation, can use the KACHInA core protocol to
realise (Δ,Λ). We facilitate such proofs by including adversarial inputs and leak-
ages in our model, which allow the simulator limited control over the objective
smart contract. This method to develop private smart contracts is illustrated in
Figure 6.1. It is further showcased by the implementation of the salient features
of Zerocash [BCG+14] as a KACHInA contract in Section 6.5 and the proof that it
UC-emulates amuch simpler ideal payments contract.

6.1 Technical Overview

We first informally establish our goals and core technical ideas of this chapter.
We will discuss each of our contributions in turn and discuss how, combined,
they present a powerful tool for constructing privacy-preserving smart contract
systems.

Our model. We model smart contracts as reactive state machines, which users
interact with by submitting transactions to a distributed ledger. A user submits
a transaction,with the intention to issue somehigh-level command to the smart
contract, for instance, to cast a vote, or withdraw funds. Once the transaction
is confirmed by the distributed ledger, the user obtains information about the
results of this high-level command: bothwhether it has beenprocessed, and any
information it may have computed using the contract’s state.

As multiple users can interact with the same smart contract system concur-
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Figure 6.1: An overview of the KACHInA method to develop private smart con-
tracts: 1) An intuitive description of the objective smart contract is developed in
the formofFΔ,Λ

SC . 2) AKACHInA compatibleFΔ′,Λ′
SC , from the set of all equivalent

contractsFΔi,Λi
SC is selected and the equivalence proven. 3) Theorem6.1 is applied

to obtain its realisation.

rently, users cannot always predict the effect of their actions; a vote may end
before a user’s voting transaction is processed, for instance. As a result the user
may not be able to predict the outcome of the command, or even if it can be
carried out.

To capture privacy, the act of creating a transaction to post on the distributed
ledger is the only point atwhichwepermit privacy leakage. As a usermay go off-
line at any point, any private information they reveal – a bid during an opening
phase of an auction, for instance –must be revealed in the on-chain transaction
itself. Formally, we model this with a leakage function Λ, which describes what
information is leaked if a user, seeing a specific contract state, issues a specific
command. This function can also fix choices that an interactionmaymake – for
instance if the command is “send a coin to Bob”, it may decidewhich coin to send
to Bob. To give users full control over their privacy, even when these decisions
are complex or randomised, we ask them to sign off on a description of the leak-
age before the transaction is broadcast. The leakage in KACHInA captures infor-
mation which a user purposely decides to reveal, as the functionality they gain
by doing so is worth whatever damage they take to their private information. It
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is further worth noting that nothing prevents amalicious contract fromfinding
clever ways to leak information without being observable. This highlights the
importance of interacting only with trustworthy contracts and the importance
of the leakage descriptor being accurate.

Similarly to the leakage function, the semantics of the contract itself is
largely dictated by a transition function Δ. It describes how the state of a smart
contract evolves given a command and a few auxiliary inputs (such as the choice
of coin alluded to above).

The core protocol idea. The KACHInA core protocol restricts itself to con-
tracts which divide their state into a public state σ and, for each party ψ, a
private state ρψ. These correspond to the shared ledger and a party’s local
storage respectively. Transition functions are over pairs (σ, ρψ) instead of over
all private states – a party may only change their own private state. Honest
users maintain their own private state in accordance with the contracts’ rules,
while the contract must anticipate that dishonest parties may set it arbitrarily
(this can be circumvented by committing to private states, as descripted in
Subsection 6.6.1, although it comes at the cost of increased public state sizes
and loss of anonymity).

A natural construction to achieve privacy in smart contracts utilising zero-
knowledge proof systems is apparent: On creating a transaction, a user ψ evalu-
ates the transition function against the current contract state (σ, ρψ), resulting
in a state (σ′, ρ′ψ). He creates a zero-knowledge proof that σ ↦ σ′ is a valid
transition of public states (that is, there exists a corresponding private state and
input such that this transition takes place) and posts the proof and transition as
a transaction. Locally, the user updates his private state to ρ′ψ.

We can also clearly describe the leakage of this sketched protocol: The tran-
sition σ ↦ σ′ is precisely the information which is revealed!

State oracles. The core protocol sketched above has twomajor problems:

1. Due to each transaction containing a proof of transition from one state to
another, concurrent transactions will almost certainly fail once the state
is changed.

2. The size of the statement being proved, and therefore the size of transac-
tions, grows linearly with the overall size of the contract’s state.
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These drawbacks are especially notable in systems with many users and a
high frequency of transactions: On Ethereum a transaction is almost certainly
applied aftermany other transactions the author never knew about, nor should
need to know about. The state the contract will be in once it executes a trans-
action, is something the transaction’s author cannot predict accurately. In the
naive system proofs only succeed in the state they were originally created for,
as Figure 6.2 suggests. Instead of capturing a transition from σ ↦ σ′, we would
rather want to capture a (partial) function from states to successor states.

∅ σo

σπ σn

σπ σn

σ1 7
σ2 7

⋯

σπ↦σn

σπ↦σn

σπ↦σn

σπ↦σn

⋯ ⋯⋯⋯

Transaction creation Transaction
application(s)

Figure 6.2: Direct state-transition based transactions can be applied only in the
state σπ they were proven for.

To solve these issues,we adda layer of indirection for accessing andupdating
contract states: Instead of the state being a direct input to the transition func-
tion, the contract has access to oracles operating on the public and private states.
The contract makes queries to these oracles: functions which update the state
and return information about it. To prove the interaction with the public state
correct, users capture the queries theymade and the responses they expect, in a
sequence ((q1, r1),… , (qn, rn)): a transcript of oracle interactions. The user proves
that, given the responses expected, they know an input which will make this
series of queries.

Conversely, a user validating this transcript can verify this proof and eval-
uate the queries in turn against the public state, ensuring the responses match.
This defines a partial function over public states, which is defined wherever the
responses recorded in the transcript match the results obtained by evaluating
the queries on the current state.

Selectingwhat queries a contractmakes provides a great deal of control over
the domain of the function: a query which has an empty response will always
succeed! In limiting queries to returning only essential information, many con-
flicts can be avoided. Transcripts can also be concise about what changes are
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made, assuming thequeries are encoded ina sufficiently succinct language, such
asmost Turing-complete languages.

While not all conflicts are resolved through this as the responses may not
match those expected, it allows theproof to focuson the relevantparts of the state,
being compatible withmore concurrent transactions, as pictured in Figure 6.3.

∅ σo

σπ σn

σπ σn

σ1 σ′1
σ2 7

⋯

T

T

T

T

⋯ ⋯⋯⋯

Transaction creation Transaction
application(s)

Figure 6.3: Oracle-transcript based transactions can be applied in any compati-
ble state. The transcript T defines a partial function {σπ ↦ σn,σ1 ↦ σ′1,…}.

In order to be able to model partial transaction success, which is crucial for
modelling transaction fees, we allow for a special query to be made, COmmIT.
COmmIT queries mark checkpoints in a transaction’s execution, such that if an
error occurs after it, the execution up to this point is still meaningful. This ef-
fectively partitions the transcript into atomic segments. We primarily use this
to construct transaction fees within a smart contract itself, the details of which
can be seen in Subsection 6.7.5.

High-level usage. Even when using state oracles, this protocol is limited to
contractswhichhave their state fit neatly into accessing only shared public state
and localprivate state. Thenaturaldescriptionofmanycontractsdoesnotmatch
this. For instance: aprivate currency contract ismostdirectlydescribed through
a shared private state tracking the balances of all parties.

However, it is simple to express the Zerocash [BCG+14] protocol in terms of
interactionswith sharedpublic and local private states. Thisprovides apractical
means to achievewhatwe can describe using a shared private state. It is important
to have both the most natural description of a contract and the realisation. The
former provides a good understanding of the features and security properties of
a contract, while the latter realises it.

This idea is nothing but the notion of simulation-based security itself! We
use multiple stages of UC-emulation: First moving from our objective contract
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(a private payments contract) to a contract within the KACHInA constraints on
state (aZerocash contract), and secondmovingon to theKACHInAcoreprotocol.
Due to the transitivity of UC emulation, we may therefore use this “KACHInA
method” to construct the objective of private payments. This process is outlined
in Figure 6.1.

Our model is designed to facilitate this usage. Specifically for modelling ob-
jective contracts themodel allows the adversary to provide an additional adver-
sarial input to each transaction. This input allows the simulator to control some
parts of the ideal behaviour similar to the simulator’s influence on an ideal func-
tionality, for instance to ensure ideal world addresses match real-world public
keys.

6.2 Defining Smart Contracts

Smart contracts are typically implemented as replicated state machines. If a
replicated state machine is the implementation, the natural model is that of the
state machine itself. Inputs are drawn from a ledger of transactions and passed
to this state machine.

This definition is unsuitable for privacy-preserving smart contracts: If the
statemachine’s behaviour is knownand its inputs are on a ledger, there is no pri-
vacy. A simple tweak can solve this: Inputs are replaced with identifiers on the
ledger, with the smart contract functionality trackingwhat their corresponding
inputs are.

6.2.1 Interactive Automata Interpretation

Smart contracts are a form of reactive computation: Parties supply an input to the
contract, the latter internally performs a stateful computation and returns a re-
sult to theoriginal caller. The result is returnedasynchronouslyandmaydepend
on interactions with other users. This is quite close to the concept of a trusted
third party, although real-world systems have caveats:

• They leak information about the computation performed.

• They allow some adversarial influence, partly due to relying on the transac-
tion ordering of an underlying ledger.
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• They may carry some impure execution context: A transaction may depend
onwhat the state is at the time it is created, for instance.

Oftenwhen talking about smart contracts, only the “on-chain” component is
considered. This is insufficient for privacy, as by its nature, everything on-chain
is public. We thereforemodel the off-chain component of the interaction aswell.
This can be as simple as placing inputs directly on the ledger, but can involve
more complex pre-computation. Evenwithout the need for privacy, the need to
model off-chain computation of smart contracts had been observed [CKM+19]
and we believe a formal model should account for it.

To represent a contract, we use a transition function, operating over the con-
tract’s state. We denote the initial state as ∅. Transition functions are deter-
ministic, although limited nondeterminism can be simulated by including ran-
domness in the execution context. Notably, such randomness is fixed on trans-
action creation, allowing the creator to input (potentially biased) randomness,
which is subsequently used in the (replicated) execution of the contract’s state
machine. Potential uses include the creation of randomised ciphertexts or com-
mitments. The transition function will also output if a transaction should be
considered “confirmed” or not, with the latter indicating failure or only partial
success, which dependant transactions should not build on.

A contract transition function Δ is a pure, deterministic function with the for-
mat (ω′, c, y) ← Δ(ω,ψ,w, z, a), with the following inputs and outputs:

• The current stateω
• The calling party ψ
• The inputw
• The execution context z

• The adversarial input a
• The successor stateω′

• The confirmation state c
• The output y

In addition to the transition function, it is necessary to capturewhat leakage
an interaction with the contract has. The two are separated due to the asyn-
chronous nature of smart contracts – a transaction is made and leaks informa-
tion before the corresponding transition function is run on-chain.

The leakage is captured by a leakage function, which receives the same input,
and in addition receives the creating userψ’s “view”ω of the contract as an input.
ω = (ℓ, 𝑈ψ, 𝑇 ,ω) consists of four items: a) The length of ψ’s view of the ledger ℓ.
b) ψ’s unconfirmed transactions 𝑈ψ. c) A map 𝑇 from tx ∈ 𝑈ψ to (ψ,w, z, a,𝐷).
These are Δ’s inputs and the transaction’s dependencies, which we will intro-
duce shortly, 𝐷. d) The contract’s state according to ψ’s view of the ledger, ω.
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This “view” may be used to avoid attempting double-spends by selecting a coin
to spend which no other unconfirmed transaction uses, for instance. For this
purpose the leakage function can also abort by returning ⊥, refusing to create a
transaction. The function returns a leakage value lkg, which is passed to the ad-
versary, adescriptionof the leakagewhichoccurred,desc, a list of transactions to
depend on, 𝐷, and the context z. While lkgmay be arbitrary, it is important that
desc provides an accurate and readable description of this leakage. Its primary
purpose is to allow parties to decide not to go ahead with a transaction if they
notice the leakage is more than expected. With complex contracts, anticipating
what will be leaked should not be relied upon. The usage of a descriptor high-
lights that Λ should not be maliciously supplied and facilitates simulation, as
shown in Section 6.5.

It is worth emphasising that the leakage discussed in this chapter is deliber-
ate; this is not leakage observed over a network, which can be hard to identify,
but is instead informationwhichusers accept to reveal. For instance, a leakage in
Zerocash [BCG+14] is the length of the ledger at the time a transaction is created,
with the security of the protocol guaranteeing that this – but nothing more – is
revealed to an adversary.

The list of dependencies 𝐷 is a list of transactions, which must occur in the
same order before the newly created transaction can be applied. This can be
used to enforce basic ordering constraints between transactions. Finally, the
context z allows information about the state at the time of transaction creation
to be passed to the transition function. This may include the current state, un-
confirmed transactions, and a source of randomness. Its content is left arbitrary
at this point.

A leakage function Λ is a pure, non-deterministic function with the format
(desc, lkg,𝐷, z) ← Λ(ω,ψ,w), with the following inputs and outputs:

• ψ’s contract viewω
• The calling party ψ
• The inputw
• The leakage descriptor desc

• The leaked data lkg
• The tx dependencies𝐷
• The context z

We consider the pair (Δ,Λ) to define a smart contract. The ideal world inter-
action with a smart contract follows the below pattern:

1. A party submits a contract inputw.
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2. The corresponding context and leakage are computed.

3. The party agrees to the leakage description, or cancels (in the latter case,
the transaction never takes place and no information is revealed).

4. The adversary is given (lkg,𝐷) and provides the adversarial input a.

5. The submitting party can retrieve the output of Δ (if any), while other par-
ties can interact with themodified state.

The level of privacy guaranteed depends greatly on the leakage functionΛ: A
leakage functionwhich returns its input directly as leakage provides no privacy,
while one which returns no leakage at all provides almost total privacy (notably
the fact some interactionwasmade is still leaked). By tuning this, the privacy of
Ethereum, Zerocash, and everything in between can be captured.

Ourmodel reliesonusersquerying the result of transactionsmanually– they
are not notified of the acceptance of a transaction and can not modify it once
made. If a transaction is not yet confirmed by the ledger, the user gets the result
nOT-FOUnD; if the transaction depends on failed transactions, ⊥ is returned;
and otherwise the result is provided by the contract itself (which may also in-
form of partial success).

6.2.2 UC Specification

The ideal smart contract functionality FΔ,Λ
SC captures the notion of a contract as a

leakystatemachinewhose inputsaredrawnfroma ledger. It isparameterisedby
the transition function Δ and the leakage function Λ, and it operates in a hybrid
world with a global ledger functionality GLedger. A candidate for such a ledger is
GSimpleLedger, as introduced in Subsection 2.4.3.1, although any compatible func-
tionality is sufficient. Its privacy guarantees stem fromonly revealing explicitly
leaked data, i.e. lkg, and only allowing the creator of a transaction to access the
result.

FunctionalityFΔ,Λ
SC

The smart contract functionality FΔ,Λ
SC allows parties to query a deterministic state

machine determined by Δ and Λ in a ledger-specified order. The exact semantics
of the call is subject to adversarial influence, which is provided some leakage, as
defined in Λ.
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State variables and initialisation values:

Variable Description
𝑇 ≔ ∅ Mapping from transactions to their executing components.
𝑈ψ ≔ ε Sequence of unconfirmed transactions, for all parties ψ

When receiving amessage (POST-QUErY,w) from an honest party ψ:

let Σψ ← updateState(ψ)
letω ← (|Σψ|, 𝑈ψ, filter(λ(tx, ⋅): tx ∈ 𝑈ψ, 𝑇 ), execState(Σψ))
let (desc, lkg,𝐷, z) ← Λ(ω,ψ,w)
if desc = ⊥ then

return rEJECTED

send (LEAK, desc) to ψ and receive the reply b
if b then

queryAwith (TrAnSACTIOn, lkg,𝐷) and receive the reply (tx, a),
satisfying 𝑇 (tx) = ⊥ ∧ tx ≠ ⊥, else sampling from ({0, 1}κ ,⊥)

let 𝑇 (tx) ← (ψ,w, z, a,𝐷); 𝑈ψ ← 𝑈ψ ‖ tx
send (SUBmIT, tx) to GLedger on behalf of ψ
return (POSTED, tx)

else
return rEJECTED

When receiving amessage (CHECK-QUErY, tx) from an honest party ψ:

let Σψ ← updateState(ψ)
if tx ∈ Σψ then

if 𝑇 (tx) = (ψ,…) then
return execResult(prefix(Σψ, tx))

else return ⊥
else returnnOT-FOUnD

Helper procedures:

procedure updateState(ψ)
send rEAD to GLedger through ψ and

receive the reply Σψ

let 𝐶 ← execConfirmed(Σψ)
let 𝑈 ′

ψ ← 𝑈ψ
repeat

let 𝑈ψ ← 𝑈 ′
ψ

for tx in 𝑈ψ do
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let (…,𝐷) ← 𝑇 (tx)
if 𝐷 ⊈ (𝐶 ∪ 𝑈ψ) ∨ (𝐷 ∩ 𝐶) ⋢ Σψ then

let 𝑈 ′
ψ ← 𝑈 ′

ψ \ {tx}
until 𝑈ψ = 𝑈 ′

ψ

return Σψ

procedure execState(Σ)
let (ω, ⋅, ⋅) ← exec(Σ) in returnω

procedure execResult(Σ)
let (⋅, y, ⋅) ← exec(Σ) in return y

procedure execConfirmed(Σ)
let (⋅, ⋅, 𝐶) ← exec(Σ) in return 𝐶

procedure exec(Σ)
letω ← ∅; y ← ⊥; 𝐶 ← ∅
for tx in dedup(Σ) do

if 𝑇 (tx) = ⊥ then
queryAwith (InPUT, tx) and receive the reply x = (ψ,w, z, a,𝐷),

satisfying ψ ∉ H, else sampling from {nOnE}
if 𝑇 (tx) = ⊥ then

let 𝑇 (tx) ← x

y ← ⊥
if 𝑇 (tx) = nOnE then continue

let (ψ,w, z, a,𝐷) ← 𝑇 (tx)
if 𝐷 \ 𝐶 ≠ ∅ ∨ 𝐷 ⋢ Σ then continue

let (ω′, c, y) ← Δ(ω,ψ,w, z, a)
if ω′ ≠ ⊥ then letω ← ω′

if c then let 𝐶 ← 𝐶 ∪ {tx}
return (ω, y, 𝐶)

6.3 The KACHInA Protocol

Asmentioned in Section 6.1, a naive construction divides a contract’s state into a
shared public state and a local private state for each party. Specifically, the ideal
stateω is defined as the tuple (σ, ρ), where ρ consists of ρψ for eachpartyψ. A user
proves the validity of anypublic state transition– that there exists aprivate state
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and input, such that this transition takes place. This clearly does not scale well,
as it assumes that the ledger state does not change between the submission and
processing of a transaction, and requires zero-knowledge proofs about poten-
tially large states – hundreds of Gigabytes in systems like Ethereum [Eth19]!

In reality, a user’s query may not be evaluated immediately and the ledger
may change drastically in the meantime. Simply proving a direct state transi-
tion would lead to a high proportion of queries being rejected. To solve both
problems, we require contracts to access their state through a layer of abstrac-
tion which both tolerates reordering interactions and allows for more efficient
proofs. We further allow for partial transaction success, by introducing transac-
tion checkpoints. Our primary purpose for this notion is to be able to capture the
payment of transaction fees, such as gas. We detail our approach to do this in
Subsection 6.7.5.

6.3.1 State Oracles and Transcripts

We introduce state oracles and state oracle transcripts to abstract interaction with
a contract’s state. We choose this abstraction primarily for its flexibility, and
manyother approaches are possible, such as byte-levelmemory accesses, or spe-
cific data structures such as set of unspent transactions. These can be seen as
instances of state oracles. Wemake use of the notation [a, b, c] to denote a list of
a, b, and c, with the concatenation operator ‖ and the empty list ε. We use the
function last to retrieve the last element of a list and𝐿[i] to denote the ith element
of the list 𝐿.

An example. To better motivate the need to abstract interactions with a con-
tract’s state, we will use a representative example smart contract, and discuss
how different abstractions of its state will affect it.

Our example is a sealed bid auction contract2, which we assume has some
meansof interactingwith twoon-chainassets, onepublic andoneprivate. These
may be constructed similarly as in Section 6.5, however should be holdable and
spendable by other contracts. We do not go into detail of this construction;
this idea is fleshed out in detail in Zether [BAZB19]. The auction is opened by
the seller party and multiple buyer parties may bid on it. The auction has three

2This contract isdesigned tomakeagoodexample, notagoodauction–wedonot recommend
using it as presented.
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stages: Bidding, opening, and withdrawing. The auction contract allows for the
following interactions:

• At initialisation, the seller transfers ownership of the public asset𝐴 to the
auction contract.

• In Stage 1, buyers submit their bids, transferring some amount of the pri-
vate asset 𝐵 to the auction contract, which remains anonymous.

• In Stage 2, buyers reveal their bid. If the buyer’s bid exceeds the currently
maximum revealed bid, they reveal their committed asset, increase the
maximum bid and they record themselves as the winning bidder. Oth-
erwise, they withdraw their bid from the contract without revealing its
value.

• In Stage 3, buyers withdraw any assets they own after the auction – either
their (losing) bids, or the sold asset (for thehighest bidder). The sellerwith-
draws the highest bid, or the original asset if no bids weremade.

• In Stage 1 and 2, the seller may advance the stage.

This contract needs tomaintain in its state:

• The current stage the auction is in.
• A reference to the asset being sold.
• A set of bids made.
• The winning bid, its value, and whomade it, during the reveal phase.
• A set of losing bids, which have not yet beenwithdrawn, during the reveal
phase.

• Privately, a user remembers which bids are theirs and how to reveal them.

Suppose we adopted a naive approach to state transitions, and proved the
transitioning fromone state to another directly, with no abstraction of any kind.
During the bidding phase it is easily possible for multiple users to attempt to
bid simultaneously (especially considering the delay until transactions become
confirmed by an underlying ledger). In this case, only one of these transactions
will succeed – as soon as this transaction changes the state by adding its ownbid,
the proof of any other simultaneous transaction becomes invalid.
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The simple abstraction of byte-level access would allow a buyer and a seller
towithdraw concurrently, as theirwithdrawals affect different parts of the state.
It does not do sowell in allowing concurrent bids to bemade, however. If the set
is implementedwith a linked list, for instance, twousers attempting to add their
ownbid simultaneouslywill change the samepart of the state: the pointer to the
next element.

A smart abstraction should realise that whichever user bids first, the result-
ing set of bids is the same, even if its binary representation may not be. Even
if the order of the interactions matters, a smart abstraction may allow concur-
rent interactions. When claiming the maximum bid in the auction, Alice may
increase it to 5, while Bobmay increase it to 7 concurrently. It should notmatter
to Bob’s transaction if the maximum bid is currently 3, or 5 – although Alice’s
must be rejected if the bid is increased to 7 first.

General-purpose state oracles. The abstraction we propose is that of pro-
grams. Appending a value to a linked list can be encoded as a program which a)
traverses to the end of the current list, b) creates a new cell with the input value,
and c) links this from the end of the list. Formally, these programs are executed
by a universal machine called a state oracle with access to the current (public or
private) state α and potentially an additional context z.

Definition 6.1. A state oracleO = U(α0, z), given an initial state α0 and context
z, is an interactive machine internally maintaining a state α, a transcript T , and
a vector of fallback states α⃗ (initially set to the input α0, ε, and [α0], respectively),
which permits the following interactions:

• Given a COmmIT query, set α⃗ ← α⃗ ‖ [α] and append COmmIT to T .
• Given a query qwhile α is ⊥, return ⊥.
• Otherwise, givenaquery q, compute (α′, r) ← q(α, z). Updateα toα′, append
(q, r) to T and return r.

• state(O) returns (α⃗ ‖ [α], T ).

The context z is empty (∅) for state oracles operating on the public state and
is used in state oracles operating on the private state for fine-grained read-only
access to the stateduring transactioncreation, for instance, to allowprivate state
oracles to read the public state. Specifically, the oracle operating on the private
state can read both the public and private states for: a) the confirmed state at
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the time the transaction was created (σo and ρo), and b) the projected state, an
optimistic state generated at the time the transaction was created by executing
all of the user’s unconfirmed transactions. It is made of up the pair σπ and ρπ.
This can be used to make sure new transactions do not conflict with pending
ones: Selecting which coin to spend uses the confirmed state to ensure the coin
can be spent and the projected state to ensure a coin is not double spent. The context
is also used to provide a source of randomness η to the private state oracle. In
total, the context of the private state oracle is (σo, ρo,σπ, ρπ, η). The context to the
public state oracle is empty (∅) and wewill sometimes omit it.

We say that the oracle aborts if it sets its state to ⊥. The state will then be
rolled back to a safe point, specifically to the last COmmIT where the state was
non-⊥. Looking forward,wewill decompose the transition functionΔ into three
components: Anoracleoperatingon thepublic stateσ, anoracleoperatingonψ’s
private state ρψ, and a “core” transition function Γ. This process is described in
detail in Subsection 6.3.4, with an overview of the interactions of Γ with public
and private state oracles given in Figure 6.4.

U Γ U

qσ1
rσ1

qσn

rσn

qρ1
rρ1

qρn

rρn

z ρ w σ

σ′ρ′ y

⋮⋮

Private

Trusted

Figure 6.4: The interaction of the core contract Γ, with two universal machines
U , acting as state oracles over the public state σ and the private state ρ, together
with the context z.

The notion of oracle transcripts is crucial in the functioning of KACHInA, as it
provides a means to decouple the part of a transaction which is proven in zero-
knowledge from both the public and private states entirely: We prove only that
given some input and a sequence of responses recorded in the public state tran-
script, the smart contract must havemade the recorded queries.
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Revisiting our example. As an illustration, we show how our auction exam-
ple interacts with state oracles. We define the auction’s states more precisely
first, where users are identified by public keys, denoted with pk:

• The current stage: stage ∈ {1, 2, 3}
• A reference to the asset being sold and who is selling it: a, pks
• A set of bids made: 𝑆
• The winning bid, its value, and whomade it: b, v, pkb
• A set of not yet withdrawn losing bids: 𝑅
• Privately, a user remembers openings to their bids, the committed bid it-
self, and its value: bidOpen, bidComm, v

Overall, the public state is defined as σ ≔ (stage, pks, a, b, v, pkb, 𝑆,𝑅) and the
private state is defined as ρ ≔ (bidOpen, bidComm, v). The public state is ini-
tialised by the seller to (1, pks, a, ∅, 0, ∅, ∅, ∅).

The oracle queries corresponding to each interaction with the contract are
given as closures, that is, sub-functionswhichmake use of some of their parents
local variables. To clarify where this is the case, we place such variables in the
subscript of the function name. These functions are passed to either the public
or private state oracle as the input q, as specified in Definition 6.1.

• Bidding: Given an asset opening bidOpen, with value v, corresponding to
an asset commitment bidComm, which has been bound to the auction con-
tract, Γ first makes the following public oracle query:

functionmakeBidbidComm((stage, pks, a, b, v, pkb, 𝑆,𝑅))
assert stage = 1
return ((stage, pks, a, b, v, pkb, 𝑆 ∪ {bidComm} ,𝑅),⊤)

Further, it makes the following private oracle query:

function recordBidbidOpen,bidComm,v(⋅, ⋅)
return ((bidOpen, bidComm, v),⊤)

• Revealing: Given a public key to redeem the funds in case of losing the
auction, Γfirstmakes a private oracle query to retrievewhich bid is owned:

function retrieveBid((bidOpen, bidComm, v), ⋅)
return ((bidOpen, bidComm, v), (bidOpen, bidComm, v))

Next, the contract makes a further private oracle query for the expected
maximum bid, to determine if the buyer’s bid is higher:
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function projMax(ρ, z = (⋅, ⋅,σπ = (…, v′,…), ⋅, ⋅))
return (ρ, v′)

If this query returns v′ < v, the contract attempts to claim the maximum
bid with the public oracle query3:

function claimMaxbidOpen,bidComm,v,pk(σ)
let (stage, pks, a, bo, vo, pko, 𝑆,𝑅) ← σ
assert bidComm ∈ 𝑆 ∧ v > vo ∧ stage = 2
return ((stage, pks, a, bidOpen, v, pk, 𝑆 \ {bidComm},𝑅 ∪ {(bo, pko)}),⊤)

If the original value test fails, on theotherhand, instead the contract trans-
fers the ownership of bidComm via the underlying asset system to pk and
runs the public oracle query:

function claimLossbidComm((stage, pks, a, b, vo, pko, 𝑆,𝑅))
assert bidComm ∈ 𝑆 ∧ stage = 2
return (⊤, (stage, pks, a, b, vo, pko, 𝑆 \ {bidComm} ,𝑅))

• Withdrawing: Given a public key pk, which the caller knows the corre-
sponding secret key for, the contract will make an oracle query to deter-
mine which assets to transfer ownership of and to un-record them in a
public oracle query:

functionwithdrawpk((stage, pks, a, b, v, pkb, 𝑆,𝑅))
assert stage = 3
if pk = pks ∧ b ≠ ∅ then

return ((stage, ∅, a, ∅, ∅, pkb, 𝑆,𝑅), (𝐵, b))
else if pk = pkb ∧ a ≠ ∅ then

return ((stage, pks, ∅, b, v, ∅, 𝑆,𝑅), (𝐴, a))
else if ∃c: (c, pk) ∈ 𝑅 then

return ((stage, pks, a, b, v, pkb, 𝑆,𝑅 \ {(c, pk)}), (𝐵, c))

• Advancing the stage: The seller (given their public key pk) may advance
the contracts stage from 1 or 2 to 2 or 3, respectively, with a public oracle
query:

function advanceStagepk((stage, pks, a, b, v, pkb, 𝑆,𝑅))
assert pk = pks ∧ stage ∈ {1, 2}
return ((stage + 1, pks, a, b, v, pkb, 𝑆,𝑅),⊤)

3Note that the claimmay fail if themaximumbid increased from theoneprojected at the time
of transaction creation.
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This example does not handle corner cases (such as buyers bidding multiple
times) and is not intended for practical use. Instead, its purpose is to illustrate
the advantages state oracles provide: Thequery an interactionwillmake and the
response it will receive, are often not affected by other interactions. Concurrent
bids do not conflict, for instance. The representation of data is also not crucial,
as the state oracles may themselves interact with abstract data types.

We complete our example by specifying the core transition function Γ, under
the assumptions that a means to call into a separate asset management system
(a contract that permits transferring ownership of assets between public keys),
such as presented in Subsection 6.7.4, exists. We also assume that a user’s public
key can be retrieved with a shared “identity” contract.

Transition Function Γauction
A simple private auction contract.

When receiving an input (BID, v):
send (BInD, v, Γauction) to Γ𝐵 and

receive the reply (bidOpen, bidComm, v)
sendmakeBidbidComm toOσ and receive the reply ⊤
send recordBidbidOpen,bidComm,v toOρ and

receive the reply ⊤
When receiving an inputrEVEAL:

send retrieveBid toOρ and
receive the reply (bidOpen, bidComm, v)

send IDEnTITY to Γid and receive the reply pk

send projMax toOρ and receive the reply v′

if v′ < v then
send (ASSErTVALIDFOr, bidOpen, bidComm, v, pk, Γauction) to Γ𝐵
send claimMaxbidOpen,bidComm,v,pk toOσ and

receive the reply ⊤
else

send (UnBInD, bidOpen, pk) to Γ𝐵
send claimLossbidComm toOσ and receive the reply ⊤

When receiving an inputWITHDrAW:

send IDEnTITY to Γid and receive the reply pk
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sendwithdrawpk toOσ and receive the reply (𝑋 , x)
if 𝑋 = 𝐴 then

send (TrAnSFEr, x, pk) to Γ𝐴
else

send (UnBInD, x, pk) to Γ𝐵

When receiving an inputADVAnCE-STAGE:

send IDEnTITY to Γid and receive the reply pk

send advanceStagepk toOσ and receive the reply ⊤

Using transcripts. KACHInA relies on a few key observations on how tran-
scripts relate to the original state oracle execution. To begin with, we define a
fewways in which transcripts may be used.

Definition6.2. Astateoracle transcriptT maybeapplied toa stateα ina context
z. We write α⃗ ← T (α, z), or if z = ∅, α⃗ ← T (α), the operation of which is defined
through the following loop:

function T (α, z)
letO ← U(α, z)
for (qi, ri) in T do

send qi toO and receive the reply r
if r ≠ ri then return ⊥

let (α⃗, ⋅) ← state(O)
return α⃗

If a transcript is malformed (that is, cannot be parsed into a sequence of query
and response pairs), applying it will result in [α,⊥].

Observe that the application of a transcriptmimics the execution of the orig-
inal oracle, diverging only if it returns⊥ at somepoint. This allowsusers to repli-
cate the effect other users’ queries have on the public state,without knowingwhy
these queries weremade.

Lemma 6.1. For all α, z, T , where:

letO ← U(α, z)
for (q, ⋅) in T do

send q toO

let (α⃗, ⋅) ← state(O)
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let α⃗′ ← T (α, z)
Any prefix of α⃗′ not containing a⊥will match the same length prefix of α⃗.

Definition 6.3. A sequence of transcripts and contexts𝑋 = ((T1, z1),… , (Tn, zn))
is applied by applying each transcript in order. We write T ∗

𝑋 (α), which has the
recursive definition:

• T ∗
ε (α) ≔ α

• T ∗
𝑋 ‖ [(T ,z)](α) ≔ T ∗

𝑋 (last(T (α, z)))

Definition 6.4. A transcript T = ((q1, r1),… , (qn, rn)) (potentially including
COmmITmessages) induces a transcript oracleO(T ), which behaves as follows:

• Recorded COmmITmessages are ignored.

• For the ith query q′i , return ri if q′i = qi, otherwise abort by returning ⊥ for
this and all subsequent queries.

• When consumed(O) is queried, return ⊤ if exactly n queries were made,
otherwise return ⊥.

If in an interaction with the oracle, consumed holds, the transcript was minimal
for this interaction.

If the transcript oracleO(T ) does not abort when used as an oracle in some
function, then it behaves identically to the original universal oracle that was
used to generate the transcript. We use this fact to generate zero-knowledge
proofs about transactions – we prove that each oracle query in a transcript was
made and that the behaviour is correct, given the responses the transcript claims. We
also prove that consumed(O) holds, ensuring the transcript does not just start
with the queries an honest execution would make, but that it matches them ex-
actly.

These are used together to define how a transaction is made and how it is
applied: Alice generates a transcript for the oracle accesses her transaction will
perform and proves this transcript both correct and minimal. She sends the
transcript and proof to Bob, who is convinced by the proof of correctness and
minimality, and can therefore reproduce the effect of the transaction by apply-
ing the transcript to the state directly.
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Inherent conflicts. Abstracting the interaction with the state has many ben-
efits, but it is not a panacea. Some conflicts are inherent and unavoidable – a
contract may operate on a first-come first-serve basis, and no trick will ease the
pain of coming second. A contract may also simply be badly designed, not mak-
ing gooduse of the abstractionsprovided–at themost extreme, it canmakeonly
queries retrievingor setting theentire state, negatingall benefitofusingoracles.

6.3.2 Interaction between Smart Contracts

The example in Subsection 6.3.1, makes the natural assumption (in the setting
of smart contracts), of being able to interact with other components – in this
casewith anasset system. Most interesting applicationsof smart contracts seem
premised on such interactions. We consider how multiple contracts may inter-
act in Subsection 6.7.3, however we stress that a full treatment is left as future
work.

Inparticular, howvarious contracts canbe independently proven secure and
composed in a general system alongside other, potentially malicious contracts,
is not handled in this chapter. Instead, where we assume interaction, we limit
ourselves to a closed smart contract system with a small set of non-malicious
contracts, such as the auction contract and the asset system in Subsection 6.3.1.

While it is tempting to delegate such interactions to the native composition-
ality and interactiveness of UC, this does not reflect the reality of smart con-
tract interactions, where the executions of multiple contracts are atomically in-
tertwined. While related issues of interaction with the environment have been
considered in the literature, for instance in [CEK+16, CDT19], they do not fully
address our scenario, in which multiple branches can be executed in projection.
We thereforebelieve that studying the interactionandcompositionof smart con-
tract transition and leakage functions requires furtherwork,with thiswork pro-
viding a foundation.

6.3.3 The Challenge of Dependencies

If a transaction tx1 moves funds from Alice to Bob and tx2 moves funds from
Bob to Charlie, the order tx2 … tx1 maynot be valid, if tx2 relies on the funds Bob
received fromAlice. When a dependency like this is violated in interactingwith
the public state, attempting to apply the dependent transactionfirstwill fail and
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the transaction is rejected.
How such interactions affect a user’s private state is more tricky to handle.

While two different parties cannot conflict with each other on private state
changes due to domain separation, partiesmay encounter internal dependencies.

A party starting with the private state ρ1, makes a transaction tx1 which ad-
vances their private state to ρ2. Afterwards, theymake the transaction tx2, their
private state ending up as ρ3. If these transactions are made shortly after each
other, tx2 may be placed before tx1 on the ledger. It is possible that tx2 uses
information from tx1, such as a secret key, and that it makes no sense without
it.

Should a user ignore the reordering and stick with the state ρ3? This can
introduce inconsistencies between the public state and private state. Should the
user apply the private state transcript of tx2 and hope for the best – but risk a
catastrophic failure if it cannot be applied? Neither are ideal. Instead, we pro-
pose that tx2 should publicly declare that it depends on tx1, and rely on on-chain
validation to ensure they are applied in the correct order.

If a user has a set of unconfirmed transactions 𝑈 and is adding the new trans-
action tx in the ledger state, dependencies should ensure that any permutation
of 𝑈 ∪ {tx} results in a consistent interaction with the user’s private state – that
is, result in a non-⊥ private state. Furthermore, this should even be the case if
these transactionsareonlypartially successful– regardlessas towhichCOmmIT
point was reached.

An overeager approachwould be to ensure all unconfirmed transactions are
dependencies, and are in the order that they were made. With domain separa-
tion and sufficiently abstract interactions it is likely that only few transactions
actually depend on each other. This can be application specific, and to account
for this we allow for contracts to specify a function dep to declare dependencies.
We constrain how this function may behave, and provide the all-purpose fall-
back of all unconfirmed transactions.

For most practical cases that we have observed, private state oracles do not
conflict or enter into complex dependencies with each other. Most often, their
state management is simple: sampling and storing secrets. The formal machin-
erypresented in this section is to allow this intuition that the transactionsdonot
depend on each other to be justified inmany cases.

Chapter 6. Privacy in Smart Contracts 237



Formal definition. The formal definition of dependency functions is com-
plex; we begin by introducing somemathematical notations. In addition to this
notation, we make use of the following functions: a) the higher-order function
map. b) an index function, which returns the index of an element in a list, idx. c)
the tuple projection functions proji, which return the ith element of a tuple. d)
the list flattening function flatten, which, given a list of lists, returns a list of the
inner lists concatenated. e) the function take, which returns the prefix of a list
containing a specified number of items. f) the function zip, which combines n
lists into a list of n-tuples.

Definition 6.5. For any finite set𝑋 , 𝑆𝑋 is the set of all permutations of𝑋 , where
each permutation is represented as a list.

Definition 6.6. The subsequence relation 𝑋 ⊑ 𝑌 indicates that each element of the
list 𝑋 is present in 𝑌 , in the same order:

𝑋 ⊑ 𝑌 ≔ 𝑋 ⊆ 𝑌 ∧ (∀a, b ∈ 𝑋 : idx(𝑋 , a) < idx(𝑋 , b)
⟹ idx(𝑌 , a) < idx(𝑌 , b))

Wedefineanexpansionof transactions intouseful components: Asa transaction
has no private data within it, we use this to refer to this data.

Definition6.7. AtranscriptT ’s corresponding commit-separated transcript T⃗ is a
list of listsofquery/responsepairs, corresponding tosplittingT at eachCOmmIT.
Wewrite T⃗ = split(T , COmmIT).

Definition 6.8. A secret-expanded transaction is a tuple (τ, T⃗ , z,𝐷), consisting
of the transaction object τ, the commit-separated private state transcript T⃗ , the
context z, and the dependencies𝐷.

We define the format of transactions handled by the dependency function. We
make use of “confirmation depth”, the vector of which is denoted c⃗. This is a
vector of natural numbers, representing how many parts of the corresponding
commit-separated transcript executed successfully.

Definition 6.9. A list 𝑋 of secret-expanded transactions’ dependencies may be
satisfied given a set of still unconfirmed transaction 𝑈 and a list of confirmation
depths c⃗, denoted by sat(𝑋 , c⃗, 𝑈 ), which is defined formally below. Informally,
it states that each transaction in 𝑋 must be preceeded by its dependencies, in
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order, and that each of these dependencies should have executed fully, rather
than partially.

• sat(ε, c⃗, 𝑈 ) ≔ ⊤

• sat(𝑋 ‖ (⋅, ⋅, ⋅,𝐷), c⃗ ‖ ⋅, 𝑈 ) ≔ sat(𝑋 , c⃗, 𝑈 ) ∧ (𝐷 ∩ 𝑈 ) ⊑ map(proj1,𝑋) ∧ ∀d ∈
𝐷, T⃗ , z,𝐷′, i: (d, T⃗ , z,𝐷′) = 𝑋[i] ⟹ |T⃗ | = c⃗[i]

Wewrite sat∗(𝑋 , 𝑈 ) as a shorthand for the case where c⃗ are maximal, that is,
c⃗[i] = |proj2(𝑋[i])|.

We definewhat transcripts will actually be executed for a given sequence of con-
firmation levels.

Definition 6.10. The effective sequence of transcripts (denoted 𝐸𝑆(𝑋 , c⃗)), given a
list of secret-expanded transactions and a list of confirmation depths of equal
length, is the sequence of confirmed transcript parts, along with their contexts,
defined as:
𝐸𝑆(𝑋 , c⃗) ≔ flatten(map(λ((⋅, T⃗ , z, ⋅), c):map(λT : (T , z), take(T⃗ , c)), zip(𝑋 , c⃗)))

Wewrite𝐸𝑆∗(𝑋)asashorthand for thecasewhere c⃗aremaximal: i.e.proji(c⃗) =
|proj2(proji(𝑋))|.

We define the central invariant the dependencies must preserve: The private
state can always be advanced.

Definition 6.11. The dependency invariant 𝐽 (𝑋 , ρ), given a set 𝑋 of secret-
expanded transactions, states that any permutation of a subset of 𝑋 ’s private
state transcripts which have their dependencies satisfied can be successfully ap-
plied to ρ. 𝐽 (𝑋 , ρ) ≔ ∀𝑌 ⊆ 𝑋 ,𝑍 ∈ 𝑆𝑌 , c⃗: sat(𝑍 , c⃗,map(proj1,𝑋)) ⟹ T ∗

𝐸𝑆(𝑍 ,c⃗)(ρ) ≠ ⊥

Finally, we define the constraints on the dependency function.

Definition6.12. Adependency functiondep(𝑋 , T , z) is a pure function taking as
inputs a set of secret-expanded unconfirmed transactions𝑋 , a newprivate state
transcript T , and a new context z, returning a list of transaction objects. It must
satisfy the following conditions:

1. If called with non-honestly generated transcripts or contexts, no con-
straints need to hold.
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2. The result must be a subsequence of the transactions in 𝑋 : dep(𝑋 , T , z) ⊑
map(proj1,𝑋)

3. When adding a new transaction tx, with the corresponding private state
transcript T (where its commit-separated form is T⃗ ) and context z, the de-
pendency invariant 𝐽 is preserved: let 𝑌 = 𝑋 ‖ (tx, T⃗ , z = (⋅, ρo, ⋅, ⋅, ⋅), dep(𝑋 ,
T , z)) in T ∗

𝐸𝑆∗(𝑌 )(ρo) ≠ ⊥ ∧ 𝐽 (𝑋 , ρo) ⟹ 𝐽(𝑌 , ρo)

The dependency function dep(𝑋 , T , z) = map(proj1,𝑋) can always be used, as
itmaximally constraints thepossiblepermutationswhichsatisfydependencies.

6.3.4 The Contract Class

The core KACHInAprotocol can realise a class of smart contracts, with each con-
tract being primarily defined by a restricted transition function Γ. This tran-
sition function is given oracle access to the calling user’s private state ρψ and
the shared public state σ, as described in Definition 6.1. In addition to these
oracle accesses, Γ canmake (COmmIT, y)queries, which a) sendCOmmIT to both
oracles, and b) record the value y in a vector of partial results y⃗. We write y⃗ ←
ΓOσ,Oρ(w) as running the transition function against input w, with oracles Oσ

andOρ, returning thevector ofpartial results y⃗. Thefinal output of Γ is appended
to y⃗when it terminates. The adversary can program its ownprivate state oracle –
it corresponds to local computation, after all! Twominor functions are also used
to define the corresponding ideal contract:

• The leakage descriptor desc, which receives the time t, the sequence of
secret-expanded unconfirmed transactions 𝑋 , transcripts Tσ, Tρ, original
inputw, and context z of new transactions as inputs and returns a descrip-
tion of what leakage this interaction will incur.

• A dependency function dep satisfying Definition 6.12.

Definition 6.13. ℂKACHInA is the set of all pairs (ΔKACHInA(Γ), ΛKACHInA(Γ, desc,
dep)), for any parameters Γ, desc and dep, satisfying Definition 6.12.

ΔKACHInA and ΛKACHInA operate as follows; we assume the set of honest parties
H – in the idealworld, this is knownby the functionality, while in the real world
we assume each party ψwill useH = {ψ}.
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Transition Function ΔKACHInA(Γ)
The KACHInA transition function, running an internal transition function Γ with
oracle access to the public contract state and the private state of the party making
the query. The query has an associated context z, which the private state oraclemay
access, and an associated public state transcript Tσ, which must be consistent with
the current public state in order for the query to run successfully.

When receiving an input ((σ, ρ),ψ,w, (Tσ, z), ⋅):
let (σ⃗, ⋅, ρ⃗, ⋅, y⃗) ← run-Γ(σ, ρ[ψ],w, z,ψ ∈ H)
let σ′ ← σ; y ← ⊥; T⃗ ← split(Tσ, COmmIT); 𝐶 ← ⊤
for (T ′,σ″, ρ′, y′) in zip(T⃗ , σ⃗, ρ⃗, y⃗) do

let σ′ ← T ′(σ′)
if σ′ = ⊥ ∨ ρ′ = ⊥ ∨ σ′ ≠ σ″ then

let 𝐶 ← ⊥
break

let σ ← σ″; ρ[ψ] ← ρ′; y ← y′

return ((σ, ρ), 𝐶, y)

Helper procedures:

function run-Γ(σ, ρ,w, z, h)
Oσ ← U(σ, ∅);Oρ ← U(ρ, z)
if ¬h then letOρ ← z

y⃗ ← ΓOσ,Oρ(w)
(σ⃗, Tσ) ← state(Oσ); (ρ⃗, Tρ) ← state(Oρ)
return (σ⃗, Tσ, ρ⃗, Tρ, y⃗)

Leakage FunctionΛKACHInA(Γ, desc, dep)
The KACHInA leakage function reveals the public state transcript generated by Γ
during the projected transition. This projected transition takes the state of the con-
tract as theparty currently sees it, andfirst replays all currently unconfirmed trans-
actions from the same party. Both the initial (latest confirmed) contract state, as
well as the projected state, and a randomness stream are considered the transac-
tion’s context.

When receiving an input (ω = (ℓ, 𝑈 , 𝑇 ,ω = (σo, ρo)),ψ,w):
let (σπ, ρπ) ← (σo, ρo[ψ])
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for u in 𝑈 do
let (ψ′,w′, (Tσ, z), ⋅, ⋅,𝐷) ← 𝑇 (u)
if Tσ(σπ) = ⊥ then

return (⊥,⊥,⊥,⊥,⊥)
let (σ⃗, ⋅, ρ⃗, T , ⋅) ← run-Γ(σπ, ρπ,w′, z,ψ′ ∈ H)
let σπ ← last(σ⃗); ρπ ← last(ρ⃗)
let 𝑋 ← 𝑋 ‖ (u, T , z,𝐷)

let η be a randomness stream.
let z ← (σo, ρo[ψ],σπ, ρπ, η)
let (σ⃗, Tσ, ρ⃗, Tρ, ⋅) ← run-Γ(σπ, ρπ,w, z,⊤)
if last(σ⃗) = ⊥ ∨ last(ρ⃗) = ⊥ then

return (⊥,⊥,⊥,⊥,⊥)
else

let𝐷 ← dep(𝑋 , Tρ, z)
return (desc(t,𝑋 , Tσ, Tρ,w, z), Tσ,𝐷, (Tσ, z))

6.3.5 The Core KACHInA Protocol

The construction of the core protocol itself is now fairly straightforward. Weuse
non-interactive zero-knowledge to prove statements about transition functions
interacting with an oracle. When creating a transaction, users prove that the
generated transcript is consistent with the transition function and initial input.
Instead of evaluating transactions, users apply the public (and, if available, pri-
vate) state transcripts associated with them.

Formally, the relationR of the NIZK used is defined as follows, for any given
transition function Γ: ((Tσ, ⋅), (w, Tρ)) ∈ R if and only if, where Oσ ← O(Tσ),
and Oρ ← O(Tρ), last(ΓOσ,Oρ(w)) ≠ ⊥, and after it is run, consumed(Oσ) ∧
consumed(Oρ) holds. This is efficiently provable provided that Tσ, w, and Tρ are
short, and Γ itself is efficiently expressible in the underlying zero-knowledge
system.

Protocol KACHInA
TheKACHInAprotocol realises the ideal smart contract functionalitywhen param-
eterisedbya transition functionΓ, a leakagedescriptordesc, andadependency func-
tion dep, such that the corresponding (Δ,Λ) pair is in ℂKACHInA. It operates in the
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(FR
NIZK,GSimpleLedger)-hybridmodel, whereR is defined below.
((Tσ, ⋅), (w, Tρ)) ∈ R if and only if, where Oσ ← O(Tσ) and Oρ ← O(Tρ),

last(ΓOσ,Oρ(w)) ≠ ⊥ and after it is run, consumed(Oσ) ∧ consumed(Oρ) holds.

State variables and initialisation values:

Variable Description
𝑇 ≔ ∅ Mapping from transactions to their private state transcripts and con-

texts.
𝑌 ≔ ∅ Mapping from transactions to their outputs.
𝑈 ≔ ε Sequence of unconfirmed transactions.

When receiving amessage (POST-QUErY,w) from a party ψ:

let Σ ← updateState(ψ)
let (σo, ρo) ← execState(Σ)
let σπ ← σo; ρπ ← ρo;𝑋 ← ε
for u = (Tσ,𝐷, ⋅) in 𝑈 do

let (Tρ, z) ← 𝑇 (u)
let σπ ← Tσ(σπ); ρπ ← Tρ(ρπ, z)
let 𝑋 ← 𝑋 ‖ (u, split(Tρ, COmmIT), z,𝐷)

let η be a randomness stream.
let z ← (σo, ρo,σπ, ρπ, η)
let (σ⃗, Tσ, ρ⃗, Tρ, y⃗) ← run-Γ(σπ, ρπ,w, z)
if last(σ⃗) = ⊥ ∨ last(ρ⃗) = ⊥ then

return rEJECTED

let𝐷 ← dep(𝑋 , Tρ, z)
send (LEAK, desc(|Σ|,𝑋 , Tσ, Tρ,w, z)) to ψ and

receive the reply b
if b then

send (PrOVE, (Tσ,𝐷), (w, Tρ)) toFR
NIZK and

receive the reply π
let tx ← (Tσ,𝐷, π)
let 𝑇 (tx) ← (Tρ, z); 𝑌 (tx) ← y⃗; 𝑈 ← 𝑈 ‖ tx
send (SUBmIT, tx) to GSimpleLedger

return (POSTED, tx)
else

return rEJECTED
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When receiving amessage (CHECK-QUErY, tx) from a party ψ:

let Σ ← updateState(ψ)
if tx ∈ Σ then return execResult(prefix(Σ, tx))
else returnnOT-FOUnD

Helper procedures:

procedure updateState(ψ)
send rEAD to GSimpleLedger and receive the reply Σ
let 𝐶 ← execConfirmed(Σ)
let 𝑈 ′ ← 𝑈
repeat

let 𝑈 ← 𝑈 ′

for tx = (⋅,𝐷, ⋅) in 𝑈 do
if 𝐷 ⊈ (𝐶 ∪ 𝑈 ) ∨ (𝐷 ∩ 𝐶) ⋢ Σ then

let 𝑈 ′ ← 𝑈 ′ \ {tx}
until 𝑈 = 𝑈 ′

return Σ
procedure execState(Σ)

let (σ, ⋅, ⋅) ← exec(Σ) in return σ

procedure execResult(Σ)
let (⋅, y, ⋅) ← exec(Σ) in return y

procedure execConfirmed(Σ)
let (⋅, ⋅, 𝐶) ← exec(Σ) in return 𝐶

procedure exec(Σ)
let σ ← ∅; ρ ← ∅; y ← ⊥; 𝐶 ← ∅
for tx = (Tσ,𝐷, π) in dedup(Σ) do

if tx ∈ 𝐶 then continue
let y ← ⊥
send (VErIFY, (Tσ,𝐷), π) toFR

NIZK and
receive the reply b

if ¬b then continue
if 𝐷 \ 𝐶 ≠ ∅ ∨ 𝐷 ⋢ Σ then continue

let 𝐶 ← 𝐶 ∪ {tx}
if 𝑇 (tx) ≠ ⊥ then

let parts ← zip(split(Tσ, COmmIT), split(𝑇 (tx), COmmIT), 𝑌 (tx))
for (T ′

σ , Tρ, y′) in parts do
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if T ′
σ (σ) = ⊥ then
let 𝐶 ← 𝐶 \ {tx}
break

let σ ← T ′
σ (σ); ρ ← Tρ(ρ); y ← y′

else
for T ′

σ in split(Tσ, COmmIT) do
if Tσ(σ) = ⊥ then

let 𝐶 ← 𝐶 \ {tx}
break

let σ ← T ′
σ (σ)

return ((σ, ρ), y, 𝐶)

6.4 Security Analysis

The security of KACHInA is given through a standard UC security statement:

Theorem 6.1. For any contract (Δ,Λ) ∈ ℂKACHInA, KACHInA UC-emulatesFΔ,Λ
SC , in

theFR
NIZK-hybrid world, in the presence of GSimpleLedger.

This is proven through a detailed case-analysis of any action an environment,
in conjunction with the dummy adversary, may take. We define an invariant
𝐼 between the real and ideal executions in the UC security statement, roughly
encoding that “the real and ideal states are equivalent”. This ranges from sim-
ple equivalences, such as them having the same ledger states, or the same NIZK
proofs considered valid, to complex invariants, such as all unconfirmed honest
transactions satisfying the sub-invariant 𝐽 of Definition 6.11. This invariant is
used to argue that the environment, in combination with a dummy adversary,
cannot distinguishing between the real and idealworlds. Specifically, for any ac-
tion the environment takes, 𝐼 is preserved, and from 𝐼 holding, we can conclude
that the information revealed to it, or the dummy adversary, is insufficient to
distinguish the twoworlds.

The simulator for KACHInA is quite straightforward; it simply creates simu-
lated NIZK proofs for all honest transactions and forces the adversary to reveal
witnesses to the simulated NIZK functionality in time for these to be input to
the ideal smart contract. Fundamentally, the security proof relies on state tran-
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scripts being interchangeablewith full state oracles in the same setting, and this
setting being enforced by both the protocol and functionality.

While a lot of factors must be formally considered, this is derived from re-
ceiving NIZK proofs as part of valid transactions, which prove precisely that if
the preconditions for the transaction aremet, then the update performed on the
public state is the same. The private state is a littlemore tricky, but is guaranteed
by the dependency invariant 𝐽 holding for honest parties. This lets us similarly
argue that theprivate state transcriptwill have the sameeffect as the ideal-world
execution.

Proof. If an environment can distinguish between the ideal and real executions
in presence of our simulator (see Subsection 6.4.1), then there must exist some
polynomial sequence of interactions permitting it to distinguish with a non-
negligible advantage. Broadly, each of the environment’s actions falls into
one of three categories: a) Honestly interacting with the protocol. b) Honestly
interacting with the ledger. c) Commanding the adversary to perform some
action in the real world. Wewill consider the responses the environmentmakes
to queries given to the dummy adversary separately, in each case at the point
where the query is made.

We will consider in parallel two random variables of the state of the ideal
world execution and that of the real world execution at any time. We leave out of
our analysis the “stack” of partial executions (as described in Subsection 2.3.4),
except to show that the flow of each party – that is, when it is waiting for which
query to be answered – is the same in both worlds. In particular, the state of the
ideal world has the following functionalities’ states as a part of it: 1. the state of
the simulator,S, 2. the stateof the smart contract functionality,FΔ,Λ

SC , andfinally
3. the state of the ledger, G i

L. In the real world, for each ψ ∈ H, ψ’s protocol state,
which we refer to asϕψ, is part of the state, along with the (shared) NIZK hybrid
functionalityFR,r

NIZK and the real-world ledger,Gr
L. For convenience,wewill often

talk about these states as concrete variables and not random variables.
Wewill prove inductively that any action the environment takes will do two

things: First, it will preserve an invariant 𝐼 , which holds after the state of both
worlds at any point during the two experiments. Second, if the invariant holds,
the environment gains at most negligible advantage in distinguishing from its
next action. To begin, we will specify the simulator, the invariant 𝐼 , followed by
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a few lemmas helpful in the proof. Finally, wewill perform the induction itself.

6.4.1 The Simulator

The simulator for KACHInA has fairly little work to do. Firstly, it creates sim-
ulated transactions by creating a simulated NIZK proof and attaching it to the
leakage x. Secondly, when presented with an unknown transaction and asked
for the corresponding input, it attempts to extract the input from the simulated
zero-knowledge functionality.

Simulator SKACHInA
The simulator SKACHInA has twomain points of interaction in the ideal world: First,
it gets notified of the leakage of honest submissions, in the form of the new public
state σ′, and decides their format on the ledger. Second, it gets queried when an
adversarial transaction is seen on the ledger, and must assign meaning to them.
Furthermore, it simulates the non-global functionalityFR

NIZK, which the adversary
may interact with.

State variables and initialisation values:

Variable Description
FR
NIZK Simulation ofFR

NIZK

When receiving amessage (TrAnSACTIOn, Tσ,𝐷) fromFΔ,Λ
SC :

queryAwith (PrOVE, (Tσ,𝐷)) and
receive the reply π,
satisfying π ≠ ⊥ ∧ (⋅, π) ∉ FR

NIZK.Π ∧ (x, π) ∉ FR
NIZK.Π, else

sampling from {0, 1}κ , on behalf of FR
NIZK

letFR
NIZK.Π ← FR

NIZK.Π ∪ {((Tσ,𝐷), π)}
return ((Tσ,𝐷, π), ∅)

When receiving amessage (InPUT, (Tσ,𝐷, π)) fromFΔ,Λ
SC :

simulate sending (VErIFY, (Tσ,𝐷), π) toFR
NIZK and receive the reply b

if b ∧ ∃w, Tρ:FR
NIZK.𝑊((Tσ,𝐷), π) = (w, Tρ) then

return (A,w, (Tσ,O(Tρ)), ∅,𝐷)
else

returnnOnE

Forward all queries toFR
NIZK to the simulated instance. Forward all queries to global function-

alities directly.
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6.4.2 The Invariant 𝐼
Definition6.14. The invariant 𝐼 is theconjunctionofall of theconstraintsbelow,
over the state variables of a UC experiment on a pair of matching real and ideal
worlds:

(1) The ledgers are indistinguishable:

G i
L.Σ = Gr

L.Σ ∧ ∀ψ ∈ H:G i
L.𝑀(ψ) = Gr

L.𝑀(ψ)

(2) The simulated and real NIZKs consider the same statement/proof pairs
valid and invalid:

S .FR
NIZK.Π = FR,r

NIZK.Π ∧ S .FR
NIZK.Π = FR,r

NIZK.Π

(3) Real world witnesses have a corresponding ideal world witness:

∀Tσ,𝐷, π: ∃Tρ,w:FR,r
NIZK.𝑊(((Tσ,𝐷), π)) = (Tρ,w) ⟹

S .FR
NIZK.𝑊(((Tσ,𝐷), π)) = (Tρ,w) ∨

[∃ψ ∈ H, z = (σo, ρo,σπ, ρπ, η):
ϕψ.𝑇 ((Tσ,𝐷, π)) = (Tρ, z) ∧
FΔ,Λ
SC .𝑇 ((Tσ,𝐷, π)) = (ψ,w, (Tσ, z), ∅,𝐷) ∧

run-Γ(σπ, ρπ,w, z,⊤) = (⋅, Tσ, ⋅, Tρ,ϕψ.𝑌 ((Tσ,𝐷, π)))]

(4) Recorded transactions are proven, and only adversarial witnesses are
known by the simulator:

∀Tσ,𝐷, π,ψ:FΔ,Λ
SC .𝑇 ((Tσ,𝐷, π)) = (ψ,…) ⟹

((Tσ,𝐷), π) ∈ FR,r
NIZK.Π ∧

(ψ ∉ H ⟺ ((Tσ,𝐷), π) ∈ S .FR
NIZK.𝑊)

(5) Honest parties record transactions correctly:

∀ψ ∈ H, tx:
(tx ∈ ϕψ.𝑇 ⟺ tx ∈ ϕψ.𝑌 ⟺ FΔ,Λ

SC .𝑇 (tx) = (ψ,…)) ∧
(tx ∈ ϕψ.𝑈 ⟹ tx ∈ ϕψ.𝑇 )

(6) All recorded transactions respect dependencies and transcripts:

∀tx ∈ FΔ,Λ
SC .𝑇 :

FΔ,Λ
SC .𝑇 (tx) = nOnE ∨

(∃T ,𝐷, π: tx = (T ,𝐷, π) ∧
FΔ,Λ
SC .𝑇 (tx) = (⋅, ⋅, (T , ⋅), ∅,𝐷))
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(7) Recorded as rejected transactions are disproven:

∀Tσ,𝐷, π:FΔ,Λ
SC .𝑇 ((Tσ,𝐷, π)) = nOnE ⟹ ((Tσ,𝐷), π) ∈ FR,r

NIZK.Π

(8) The dependency invariant 𝐽 holds for all honest unconfirmed transac-
tions: ∀ψ ∈ H, let Σ be the longest prefix of Gr

L.𝑀(ψ) such that Σ ∩
ϕψ.𝑈 = ∅; define 𝑋(u = (⋅,𝐷, ⋅)) ≔ let (T , z) = ϕψ.𝑇 (u) in (u, split(T ,
COmmIT), z,𝐷) and ((⋅, ρ), ⋅, 𝐶) ≔ ϕψ.exec(Σ). Then 𝐽 (map(𝑋 ,ϕψ.𝑈 ), ρ) ∧
sat(map(𝑋 ,ϕψ.𝑈 ),ϕψ.𝑈 ) ∧ ∀(⋅,𝐷, ⋅) ∈ ϕψ.𝑈 :𝐷 \ 𝐶 \ ϕψ.𝑈 = ∅ holds.

(9) Transactions owned by an honest party and not in their view of the ledger,
are considered unconfirmed, or cannever be accepted: Let Σ be the longest
prefix of Gr

L.𝑀(ψ) such that ∀tx ∈ Σ: tx ∈ FΔ,Λ
SC .𝑇 .

∀ψ ∈ H, tx ∉ Σ:FΔ,Λ
SC .𝑇 (tx) = (ψ,…) ⟹

tx ∈ ϕψ.𝑈 ∨ (∄Σ′ ≻ Gr
L.𝑀(ψ): tx ∈ FΔ,Λ

SC .execConfirmed(Σ′ ‖ tx)

(10) All results and state updates are consistent with the input and transcripts:

function transcriptConsistent(σ0, ρ0,w, z, Tσ, Tρ, 𝑌 )
let (σ⃗, ⋅, ρ⃗, y⃗) ← run-Γ(σ0, ρ0,w, z,⊤)
let T⃗ σ ← split(Tσ, COmmIT)
let T⃗ ρ ← split(Tρ, COmmIT)
let σ ← σ0; ρ ← ρ0
let parts ← zip(σ⃗, ρ⃗, T⃗ σ, T⃗ ρ, y⃗, 𝑌 )
for (σ′, ρ′, T ′

σ , T ′
ρ , y1, y2) ← parts do

let σ ← Tσ(σ); ρ ← Tρ(ρ)
if σ = ⊥ then break
else if σ ≠ σ′ ∨ ρ ≠ ρ′ ∨ y1 ≠ y2 then return ⊥

return ⊤

∀ψ ∈ H, Tσ, tx = (Tσ, ⋅, ⋅),w, z:FΔ,Λ
SC .𝑇 (tx) = (ψ,w, z, ∅, ⋅) ⟹

[∃Tρ:ϕψ.𝑇 (tx) = (Tρ, z) ∧ ϕψ.𝑌 (tx) = ΓO(Tσ),O(Tρ)(w) ∧
[∀σ, ρ: transcriptConsistent(σ, ρ,w, z, Tσ, Tρ,ϕψ.𝑌 (tx))]]

(11) Execution results should be equivalent for prefixes and extensions of the
ledger state containing no new adversarial transactions:

∀Σ,ψ ∈ H: ((Σ ≺ Gr
L.Σ ∨ Gr

L.Σ ≺ Σ) ∧ ∀tx ∈ Σ:
FΔ,Λ
SC .𝑇 (tx) ≠ ⊥) ⟹
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let ((σi, ρi), yi, 𝐶 i) ← FΔ,Λ
SC .exec(Σ);

((σr, ρr), yr, 𝐶r) ← ϕψ.exec(Σ);
in σi = ρi ∧ ρi[ψ] = ρr ∧ 𝐶 i = 𝐶r ∧

ifFΔ,Λ
SC .𝑇 (Σ[−1]) = (ψ,…) then yr = yi else yr = ⊥

(12) Recorded transactions which are canonically preceeded by a (yet) un-
recorded transaction, are honest and considered unconfirmed by their
owner:

∀tx ∈ (FΔ,Λ
SC .𝑇 ∩ Gr

L.Σ), tx′ ∈ (Gr
L.Σ \ FΔ,Λ

SC .𝑇 ),ψ ∈ H:
idx(Gr

L.Σ, tx
′) < idx(Gr

L.Σ, tx) ∧ FΔ,Λ
SC .𝑇 (tx) = (ψ,…) ⟹

tx ∈ ϕψ.𝑈 ∨ (∄Σ′ ≻ Gr
L.Σ: tx ∈ FΔ,Λ

SC .execConfirmed(Σ′ ‖ tx))

(13) The ledger is ahead of any party’s ledger:

∀ψ ∈ H:Gr
L.𝑀(ψ) ≺ Gr

L.Σ

(14) The same transactions are unconfirmed in both worlds:

∀ψ ∈ H:ϕψ.𝑈 = FΔ,Λ
SC .𝑈ψ

(15) NIZK proofs have witnesses:

∀x, π: (x, π) ∈ FR,r
NIZK.Π ⟺

∃w:FR,r
NIZK.𝑊((x, π)) = w ∧

S .FR
NIZK.𝑊((x, π)) ∈ {w,⊥} ∧

(x,w) ∈ R

(16) Recorded transactions are either on the ledger, considered unconfirmed
by an honest party, or can never be satisfied:

∀tx ∈ FΔ,Λ
SC .𝑇 : tx ∈ GL.Σ ∨

(∃ψ ∈ H: tx ∈ ϕψ.𝑈 ∧ FΔ,Λ
SC .𝑇 (tx) = (ψ,…)) ∨

(∄Σ′ ≻ GL.Σ: tx ∈ FΔ,Λ
SC .execConfirmed(Σ′ ‖ tx))

Often many of these parts of the invariant are trivially preserved due to the
state variables constrained in them being left unchanged. Such trivial cases will
be omitted in our analysis.
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6.4.3 Supporting Lemmas

Both FΔ,Λ
SC and KACHInA have exec functions, which executes an entire ledger

state given to it. Lemma6.2 is a generalisation of invariant (11), and simply states
that this executionwill preserve the invariant and return the same values in the
real and ideal world.

Lemma6.2. Foranyψ ∈ H, ΣwhereΣ ≺ Gr
L.Σ∨G

r
L.Σ ≺ Σ, andafter sending themessage

(EXTEnD, Σ \ Gr
L.Σ) to GL, ((σi, ρi), yi, 𝐶 i) is the result of running exec(Σ) in FΔ,Λ

SC and
((σr, ρr), yr, 𝐶r) is the result of running exec(Σ) in ϕψ, these interactions preserve 𝐼 and the
returned values are equivalent: σi = σr ∧ ρi[ψ] = ρr. If the last transaction tx inΣ is owned
by ψ (i.e. ,FΔ,Λ

SC .𝑇 (tx) = (ψ,…)), then yi = yr, otherwise yr = ⊥.
Proof. First, we consider the EXTEnD call. This will only extend if Σ is longer
than GL.Σ – otherwise it extends with ε, which is a no-op. This call preserves 𝐼 ,
as demonstrated in Subsection 6.4.4.

We prove the lemma by induction over Σ. In the base case, Σ = ε. The in-
variant is trivially satisfied and the returned values are equivalent (when ∅ is
interpreted as public/private state pairs). In the induction step, we proceed by
case analysis for the new transaction tx = (T ,𝐷, π):

Case 1. The tx ∈ FΔ,Λ
SC .𝑇 and all processed transactions so far have also been

recorded (are inFΔ,Λ
SC .𝑇 ). If so, then by (11), the return values are equivalent. Fur-

thermore, this iteration does not change the state in the ideal world. By (4) and
(7), we also know that the transaction is either in FR,r

NIZK.Π, or FR,r
NIZK.Π. As a re-

sult, no state changes will be made in the real-world execution either, trivially
preserving 𝐼 .

Case 2. tx ∉ FΔ,Λ
SC .𝑇 , but ((T ,𝐷), π) ∈ FR,r

NIZK.Π. In this case, the real world will
skip this transaction and set y to ⊥. In the ideal world, the simulator will ensure
thatFΔ,Λ

SC .𝑇 (tx) is set to nOnE and equally this transaction is skipped, with y set
to ⊥. This affects and preserves the following invariants:

(3) As by (15), tx has no witness.

(4) AsFΔ,Λ
SC .𝑇 (tx) = nOnE, not satisfying the precondition.

(5) As tx was not in FΔ,Λ
SC .𝑇 in the induction hypothesis and is not associated

with an honest party.
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(6) ByFΔ,Λ
SC .𝑇 (tx) being nOnE, satisfying the postcondition.

(7) Due to ((T ,𝐷), π) ∈ FR,r
NIZK.Π.

(9) AsFΔ,Λ
SC .𝑇 (tx) = nOnE, not satisfying the precondition.

(10) As tx was not in FΔ,Λ
SC .𝑇 in the induction hypothesis, it cannot be in any

ϕψ.𝑌 , by (5).

(11) By the output equivalence part of the induction step holding.

(12) By tx being previously unrecorded, further restricting the quantification
domain andFΔ,Λ

SC .𝑇 (tx) = nOnE, not satisfying the precondition.

(16) By the newly recorded transaction being in the ledger state, as this has
been extended if necessary.

Case 3. tx ∉ FΔ,Λ
SC .𝑇 , but ((T ,𝐷), π) ∈ FR,r

NIZK.Π. In this case, by (15) a witness
must be recorded and by (3) this witness must be accessible to the simulator.
As a result, the simulator will ensure that 𝑇 (tx) is set to (A,w, (Tσ,O(Tρ)), ∅,𝐷).
As this is an adversarial transactions, the ρ-value of the adversary is not con-
strained and neither is the output y-value. As a result, to show the execution
equivalenceholds, it suffices to showthatbothworldswillhave the sameσ-value
after this new transaction. In the real world, the commit-separated form of Tσ
is applied to σ in parts, with the last non-⊥ state being adopted. In the ideal
world, the Tσ is recomputed and the parts compared with those passed as in-
puts. The confirmation depth is derived from howmany parts match before the
computed and input transcripts diverge, or the result is ⊥. The ideal world runs
run-Γ(σ, T ′

σ ,w,O(Tρ),⊥). Since ((Tσ,𝐷), (Tρ,w)) ∈ R (by (15)), we know that the
public state oracle in run-Γ can be replaced with O(Tσ), up to the confirmation
depth, after which the executionsmay diverge. As a result, the σ returned in the
idealworld – σ⃗ indexed at the confirmation depth –matches that returned in the
real world. AsFΔ,Λ

SC .𝑇 is set, the following parts of the invariant are affected and
preserved:

(3) By the left hand side of the disjunction already being satisfied.

(4) By the transaction being recorded in theNIZK, and the simulator knowing
its witness.
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(5) As tx was not in FΔ,Λ
SC .𝑇 in the induction hypothesis and is not associated

with an honest party.

(6) By the newly recorded transaction satisfying the postcondition.

(7) By the newly recorded transaction not being recorded as rejected.

(9) By the newly recorded transaction not being honestly owned, not satisfy-
ing the precondition.

(10) As tx was not in FΔ,Λ
SC .𝑇 in the induction hypothesis, it cannot be in any

ϕψ.𝑌 , by (5).

(11) By the output equivalence part of the induction step holding.

(12) By tx being previously unrecorded, further restricting the quantification
domain andFΔ,Λ

SC .𝑇 (tx) = (A,…), not satisfying the precondition.

(16) By the newly recorded transaction being in the ledger state, as this has
been extended if necessary.

Case 4. The transaction has not been previously seen – that is, tx ∉ FΔ,Λ
SC .𝑇 and

((T ,𝐷), π) ∉ FR,r
NIZK.Π ∪ FR,r

NIZK.Π. In this case, both the real and ideal worlds will
attempt the same NIZK verification (simulated in the ideal world). By (2), they
will both query the adversary for a NIZK witness in the same way, handing off
execution. By the inductionhypothesis, 𝐼 holds as thepoint of execution transfer
and, as the query made is the same in both worlds, the environment gains no
means to distinguish.

As NIZK verification is the first thing done in both worlds and NIZK veri-
fication is agnostic as to which party is verifying, this is equivalent to the en-
vironment first manually verifying the same statement/proof pair. As will be
shown in Subsection 6.4.4, this preserves the invariant and returns the same
result inbothworlds. Therefore, Case4 is equivalent to eitherCase2 (if theNIZK
verification failed), or Case 3 (if the NIZK verification succeeded), as if the NIZK
verification were done externally beforehand, the statement/proof pairmust be
either inFR,r

NIZK.Π, or inFR,r
NIZK.Π.
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Case 5. tx ∈ FΔ,Λ
SC .𝑇 , however (11) cannot be applied, as other transactions have

since been added. By (12), we know that tx belongs to an honest party ψ′ and
that tx ∈ ϕψ′ .𝑈 . We will use (8) to argue that, where (Tρ, z) = ϕψ′ .𝑇 (tx), either
Tρ(ρi[ψ′], z) ≠ ⊥, or the transaction is skipped in both worlds.

First, we consider the possibility that tx ∉ ϕψ′ .𝑈 . By (9) we know that tx can-
not ever be confirmed by a suffix of the ledger state referred to in the invariant.
As this is a prefix of Gr

L.Σ, such that it contains no unrecorded transactions, the
current induction is necessarily a suffix of it. As a result, we know that the ideal
world execution will fail. As transactions are rejected in both worlds under the
sameconditions–due todependenciesnotbeing satisfied–wecanconclude that
these transactions are also skipped in the real world, preserving 𝐼 as no state
variables are changed and satisfying all conditions by the induction hypothesis.
Wewill now focus on the case that tx ∈ ϕψ′ .𝑈

Next, we determine that, given tx ∈ ϕψ′ .𝑈 , the longest prefix Σ∗ referred to
in (8) is a prefix of the ledger state Σwe are currently performing induction over.
We know it to be a prefix of GL.𝑀(ψ′), such that this prefix contains none of the
transactions inϕψ′ .𝑈 . As tx ∈ ϕψ′ .𝑈 and is either a prefix or extension of Gr

L.Σ, of
which Gr

L.𝑀(ψ′) is itself a prefix by (13), we can conclude that Σ∗ ≺ Σ.
To apply (8), we are only concernedwith theparty’s private state ρ, we canob-

serve all transactions in Σ \Σ∗ are either not owned byψ′, will not be accepted in
any context, or are inϕψ′ .𝑈 . We can ignore the first possibility, as the real world
executionof themwill not affect ρ, regardless. The second can also be ignored, as
these will be skipped by the ideal world execution and, by induction hypothesis,
by the real world execution as well. Next, we consider which of the transaction
in Σ \ Σ∗ owned by ψ′ have been successfully processed. exec provides replay
protection, ensuring that each unconfirmed transaction has been processed at
most once. By induction hypothesis, the sequence 𝐴 of such transactions that
have results associated for this party is the same in bothworlds. As execwill not
set the state to ⊥, we know that there exists a confirmation depth vector c⃗, such
that T ∗

𝐸𝑆(map(ϕψ′ .𝑇 ,𝐴),c⃗)(ρ
∗[ψ′]) ≠ ⊥ is the result of applying these transactions in

the realworld. Here, ρ∗ is taken tobe theprivate state corresponding to theprefix
Σ∗ in the ideal world.

Now that tx is processed, we know by (8) that its dependencies are either in
confirmed, and in order, in Σ∗, or in ϕψ′ .𝑈 . In either case, tx is skipped in both
worlds if it is a replayed transaction.
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As tx ∈ ϕψ′ .𝑈 and is not a replay, 𝐵 = 𝐴 ‖ tx is a permutation of a subset
of ϕψ′ .𝑈 . As a result, by (8), we know that T ∗

𝐸𝑆(map(ϕψ′ .𝑇 ,𝐵),c⃗ ‖ ⋅)(ρ
∗[ψ′]) ≠ ⊥. As we

havepreviously established thisholds for𝐴, bydefinitionofT ∗, this implies that
applyingTρ to ρ[ψ′]i to any confirmationdepth is non-⊥, where ρ[ψ′]i is the same
as the idealworldprivate state for the inductionhypothesis, by repeated applica-
tion of (10). Likewise, (10) allows us to conclude that σi will also be non-⊥, as the
update applied to it will be equivalent to applying Tσ to the same confirmation
depth, which by definition of confirmation depth is not ⊥.

If the transaction is skipped in bothworlds, the inductionhypothesis still ap-
plies. Otherwise, up to the confirmationdepth, applyingbothpublic andprivate
state transcript parts is non-⊥. As previously noted in Subsection 6.3.1, this is
equivalent to partial oracle executions to this confirmation depth and therefore
the ideal and real world states match. Likewise, (10) applies (as by (5), ϕψ′ .𝑌 (tx)
is set) and we know the ideal-world result yi = ϕψ′ .𝑌 (tx)[c], where c is the confir-
mation depth.

Ifψ = ψ′, by (5),ϕψ.𝑇 is defined and, as a result, the sameupdate is carried out
to ρ in the realworld, as to ρi[ψ] in the idealworld. Furthermore, itwill return the
same result yr as the ideal world, as projc(ϕψ.𝑌 (tx)) = yi. If ψ ≠ ψ′, the ideal world
update does not affect ρi[ψ] and the correctness of the returned private state is
guaranteed by the induction hypothesis. yr = ⊥ is returned, which satisfies the
requirements. Finally, in both cases, if the confirmation depth is maximal, the
transaction is added to 𝐶, ensuring the returned 𝐶 is the same in both worlds.
Neither worldmakes any state updates, trivially preserving 𝐼 .

Lemma6.3. If 𝐼 holds, then for all ψ ∈ H, runningupdateState(ψ) inFΔ,Λ
SC and running

updateState in ϕψ preserves 𝐼 .

Proof. Tobeginwith, bothworlds retrieve thesamevalueΣ /Σψ fromGL, due to (1).
As seen in Subsection 6.4.4, this preserves 𝐼 . Next, by Lemma 6.2, both worlds
receive the same value 𝐶 and the execConfirmed call preserves 𝐼 . Theworlds now
iterate overϕψ.𝑈 andFΔ,Λ

SC .𝑈ψ, respectively, which by (14) are equal in value. The
operations performed are almost identical, with the exception of the real world
deconstructing u = (⋅,𝐷, ⋅) for each u ∈ 𝑈 , while the ideal world extracts (…,𝐷) =
FΔ,Λ
SC .𝑇 (u) instead. By (6), if u ∈ FΔ,Λ

SC .𝑇 , the two are equivalent and, by (5), as
u ∈ ϕψ.𝑈 , it is also in both ϕψ.𝑇 and FΔ,Λ

SC .𝑇 . We conclude that both worlds per-
form the same operations. Updated is only ϕψ.𝑈 and FΔ,Λ

SC .𝑈ψ, respectively. The
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following parts of the invariant are affected and preserved:

(5) By reducing the scope ofϕψ.𝑈 .

(8) This consists of three sub-parts: The satisfaction of 𝐽 , that of sat and that
𝐷 \𝐶 \𝑈 = ∅. Thefirst is trivial: 𝐽 makes a statement about all permutations
of subsets. A smaller initial set merely reduces the scope of the quanti-
fiers. The second holds due to updateState ensuring that if a transaction is
removed from𝑈 , any transactions thatdependon it are also removed,with
the remaining transactions being in the same order as before. As a result,
a previously satisfied transaction is either removed itself, or still satisfied,
as it does not depend on any removed transactions and dependencies still
in𝑈 being in the sameorder as before. Finally,𝐷 \𝐶 \𝑈 = ∅ is alsopreserved
due to the recursive removal. Specifically, if 𝐷 ⊈ (𝐶 ∪ 𝑈 ) the correspond-
ing transaction is removed. As a result, only transactions satisfying this
condition will remain.

(9) As the removed transactions either fail confirmation directly (it depends
on a transaction rejected in Σψ, or a different transaction order than got
enforced), or depends on a transactionwhich fails. In either case, any state
Σ′, of which Σψ is a prefix, cannot accept these for the same reasons.

(12) As in (9).

(14) By equal update.

6.4.4 Proof of Theorem 6.1

Weproceed with themain inductive proof of Theorem 6.1. We consider the base
case of the system initialisations in the real and ideal worlds. The induction
hypothesis is that after k < 2κ interactions with any environment, the state of
both worlds satisfy the invariant 𝐼 and the environment has not gained a non-
negligible advantage in distinguishing. We will assume, without loss of gener-
ality, the adversary being a dummy adversary. We provide a concrete list of
actions the environmentmay takebefore taking the induction step. Wenote that
as at any point the environment cannot distinguish, we can assume that it takes
the same action in both worlds without loss of generality.
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Base Case.

Proof. Most base cases hold either due to equal initialisation of variables con-
strained to be equal, or due to initialisation leaving forall quantifiers to quantify
over the empty set. The former is the case for: (1), (2), (5), and (14). The latter is
the case for: (3), (4), (6), (7), (9), (10), (12), and (16). The remaining hold for the
following reasons:

(8) At initialisation, the only prefix of Gr
L.𝑀(ψ) is ε. ϕψ.execState(ε) = (∅, ∅).

The base case therefore holds iff 𝐽 (∅, ∅)holds. This in turnholds iffT ∗
ε (∅) ≠

⊥, or ∅ ≠ ⊥.

(11) At initialisation, the only ledger state Σ which satisfies the condition that
∀tx ∈ Σ:FΔ,Λ

SC .𝑇 (tx) ≠ ⊥ is ε. For this, as both worlds are initialised to
equivalent contract states, the outputs of execwill be equal.

(13) By the reflexivity of ≺.

Induction Step.

Proof. We observe that the environment is capable of the following queries:

• ∀ψ ∈ H,w:4 Sending (POST-QUErY,w) toFΔ,Λ
SC or KACHInA.

• ∀ψ ∈ H, tx: Sending (CHECK-QUErY, tx) toFΔ,Λ
SC or KACHInA.

• ∀ψ ∈ P , tx: Sending (SUBmIT, tx) to GL.
• ∀ψ ∈ P : Sending rEAD to GL.
• ∀Σ′: Sending (EXTEnD, Σ′) to GL.
• ∀ψ, Σ′: Sending (ADVAnCE,ψ, Σ′) to GL.
• ∀ψ ∈ P \H: Sending (PrOVE, x,w) toFR

NIZK.
• ∀ψ ∈ P :5 Sending (VErIFY, x, π) toFR

NIZK.

We will prove that 𝐼 is preserved across any of these queries and that they
reveal the same information in both worlds.

4We omit without loss of generality the environment’s ability to make honest queries with
corruptedparties. Theenvironmentmaysimulate running thehonestprotocol to replicate these.

5Technically, as in PrOVE, the environment can only instruct corrupted parties to verify. As
verification for honest parties preserves the invariant as well, and is a useful lemma, we prove
themore general statement.
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Case (POST-QUErY,w). We proceed by sub-case analysis. We identify the fol-
lowing cases: 1. The transaction is rejected by the contract. 2. The transaction
is rejected by the user. 3. The transaction is posted. In all cases, updateState is
first run. By Lemma 6.3, this preserves the invariant and also ensures that the
returned value Σψ = GL.𝑀(ψ) is the value returned in both worlds (by (1)). In the
ideal world, Λ is called. The real world largely emulates the same, computing
most of the samevalues identically. Of note are the valuesσo and ρo/ρo[ψ], which
are computed in both worlds using execState(Σψ). By Lemma 6.2, this preserves
the invariant and returns the same values.

The only place where the two worlds diverge in their computation is in han-
dling theunconfirmed transactions – the idealworld executes run-Γandupdates
σπ, ρπ, and𝑋 according to the confirmation depth, while the real world partially
applies Tσ and Tρ to the confirmation depth. Before we go into the main three
cases, we will argue that, if the transaction is not rejected by the contract, then
these two approaches will yield the same result and that they will reject equally.

To begin with, in the ideal world the confirmation depth is derived from the
number of transcript parts matching between the newly generated and input
transcripts. As a transcript application is non-⊥ if and only if it can be generated
in the same way in the current state, this ensures that the confirmation depth
matches in the twoworlds.

Furthermore, we observe that in the real world, the final value of ρπ cannot
be ⊥ – to begin with, updateState guarantees that Σψ ∩ ϕψ.𝑈 = ∅. This in turn,
alongwith (8) ensures that 𝐽 (𝑋) holds, as well as that sat∗(𝑋 , 𝑈 ) holds. It follows
T ∗(ρo) ≠ ⊥, where T ∗ performs the same repeated applications of Tρ(ρ, z) as the
loop in themainprotocol, using the samevalues. Furthermore, by (3) and (4), we
can conclude that the transcripts Tρ and contexts z are the same in both worlds.
By (10) , we can conclude that the final ρπ values are also the same in bothworlds.
Furthermore, as Tρ and z are equal in both worlds and, by (6) both 𝐷 and the
sequence 𝑋 are also equal in real and ideal worlds. Subsequently, σ, ρ, and 𝐷
are computed equivalently in both worlds.

We now consider the main case analysis: If the contract rejects the transac-
tion in the ideal world, the returned description is ⊥. This happens if and only
if last(σ⃗) = ⊥ ∨ last(ρ⃗) = ⊥, the same condition as the real world protocol has for
rejecting the transaction before querying the user. If the transaction is rejected,
no variables are modified, preserving 𝐼 , and the same value is returned in both
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worlds, giving the environment nomeans to distinguish.
If the contract does not automatically reject the query, the leakage descriptor

is computed equally in both worlds and sent to the party to acknowledge. The
party has the opportunity to accept the described leakage, or cancel the trans-
action. At the point of handing over execution to the environment, no state has
beenmodified, triviallypreserving 𝐼 and, as the same leakagedescriptor is given,
it has nomeans to distinguishing.

In the case of the environment subsequently cancelling the transaction, both
worlds immediately returnwith rEJECTED, again trivially preserving 𝐼 and giv-
ing nomeans to distinguish.

Finally, if the environment accepts the leakage, both worlds obtain the
transaction identifier tx: The simulator ensures that the real-world adversary is
queried for the sameNIZKproofas it is in the real-worldand that the transaction
format matches that of real-world transactions. At the time of the proof query,
no state has been modified, trivially preserving 𝐼 . As the same statement is
queried for, the environment gains no information to distinguish.

Subsequently, both worlds record the transaction’s information (in FΔ,Λ
SC .𝑇

and ϕψ.𝑇 ) and note it as unconfirmed (in FΔ,Λ
SC .𝑈 and ϕψ.𝑈 ). In the real world,

the result is further recorded in ϕψ.𝑌 . The following parts of 𝐼 are affected and
preserved (including the PrOVE query):

(2) By ((Tσ,𝐷), π) being added to both worlds’ Π equally.

(3) As ϕψ.𝑇 , FΔ,Λ
SC .𝑇 , and ϕψ.𝑌 are appropriately set to satisfy the RHS of the

disjunction.

(4) As for the newly added transaction,ψ ∈ H and ((Tσ,𝐷), π) ∉ S .FR
NIZK.𝑊 (by

the uniqueness of statement/proof pairs).

(5) As the newly added transaction is added to all of ϕψ.𝑇 , ϕψ.𝑈 , and FΔ,Λ
SC .𝑇 ,

where it is associated with ψ.

(6) As the newly added transaction does consist of transcript, dependencies
and proof, and the former two are recorded in FΔ,Λ

SC .𝑇 correctly and S re-
turns ∅ for a.

(7) As the newly recorded transaction is not recorded as nOnE.
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(8) By 𝐽 being preservedwhen appending a new transaction, 𝐽 holds after the
induction step (as ρ remainsunaffected). satholds by inductionhypothesis
and as 𝐷 ⊑ 𝑈 \ {tx}. For the new transaction, 𝐷 \ 𝐶 \ ϕψ.𝑈 = ∅ as 𝐷 ⊆ ϕψ.𝑈 ;
for previously transactions this still holds, asϕψ.𝑈 is expanded.

(9) As the newly added transaction is also unconfirmed by the owning party.

(10) By Tσ, Tρ, and y⃗having been extracted from run-Γ, operating in the context
ofw, z, and some σ, ρ, with these values being recorded in the correspond-
ing state variables (except σ and ρ). As the transcripts are transcripts of
oracle evaluations against w and y⃗ is the result of Γ operating with these
oracles, executing ΓO(Tσ),O(Tρ)(w) has the same effect. Furthermore, as the
transcripts accurately reproduce the state change in the original state con-
text, by definition of transcript execution, if the sequence of transcripts
up to the confirmation depth can be applied to be non-⊥, they are indistin-
guishable frommaking the original queries to the state oracle. Combined
with the sequence of queries made depending only on w and the state ora-
cle itself, we can conclude that the transcript applications are the same as
executing against the state oracles up to the confirmation depth, regard-
less of which initial state the transcript could be successfully applied to.

(11) As a new transaction has been recorded, we must now additionally con-
sider transaction sequences Σwhich contain this new transaction at some
point. We cannot directly use Lemma 6.2, however we can make use of
its induction: If we can show that any Σ ending with the new transaction
tx satisfies the execution equivalences, then induction from Lemma 6.2
can apply on that as a base case (in particular, the precondition for Case 5
applies for all subsequent transactions). The execution equivalence holds
for this newbase case, aswe know that this new transaction is both honest
and considered unconfirmed for this party. Therefore, the argument for
Case 5 holds for tx itself as well. As the execution equivalence defined in
Lemma 6.2 is the same as that of (11), this part of the invariant is preserved.

(12) By the newly added transaction being unconfirmed, it satisfies any quan-
tificationwhere tx is set to it. By nowbeing recorded, the range of quantifi-
cations for tx′ is restricted, relaxing the condition.

(14) By equal update.
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(16) By the newly recorded transaction being considered unconfirmed by an
honest party.

Finally, both worlds submit to the ledger the same transaction tx, which
is simply sent to the adversary. At this point 𝐼 holds as argued above and,
as the same transaction is sent, the environment cannot distinguish. Finally,
(POSTED, tx) is returned, giving the environment no information to distinguish
for the same reasons.

Case (CHECK-QUErY, tx). After runningupdateState, Lemma6.3preserves the
invariant, but also ensures that Σψ = GL.𝑀(ψ), where Σψ is the value returned in
both worlds (by (1)).

We consider three cases: 1. tx ∉ Σψ, 2. F
Δ,Λ
SC .𝑇 (tx) = (ψ,…), and 3. otherwise.

InCase 1, bothworlds returnnOT-FOUnDwithoutupdatingany state, not allow-
ing the environment to distinguish and preserving 𝐼 . In Case 2, both worlds run
execResult(prefix(Σψ, tx)), preserving 𝐼 according to Lemma 6.2, and returning
the same value in both worlds, giving the environment no information to dis-
tinguish. Finally, in Case 3, only the real world runs execResult, while the ideal
world returns ⊥. As previously in updateState the sub-function execConfirmed

was run, we know that all NIZK-verifications performed in this exec call have
previously been made – as a result the call modifies no state and preserves 𝐼 .
Furthermore, by Lemma 6.2, it returns ⊥, as in the ideal world, giving the en-
vironment no information to distinguish.

Case (SUBmIT, tx). In both worlds tx is handed to the adversary and no other
action is taken. As the same information is relayed, the environment cannot
distinguish and, as no state is changed, 𝐼 is preserved.

CaserEAD. By (1), both worlds will return the same result; therefore the envi-
ronment cannot distinguish. As no state is changed, 𝐼 is preserved.

Case (EXTEnD, Σ′). As nothing is returned, the environment gains no infor-
mation allowing it to distinguish. By (1), the updates done are the same in both
worlds. The parts of the invariant affected and preserved are the following:

(1) By equal update.
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(11) Extending GL.Σ further constrains the possible Σ values quantified over.

(12) Without loss of generality, we can assume single-transaction appends to
Gr
L.Σ. If a newunrecorded transaction is added, it (at first) does not precede

any transactions, leaving the quantification unchanged and relaxing the
non-existence quantifier. If a recorded honest transaction is added, then
by (9) and (13), this transaction satisfies the conditions.

(13) By the append-only nature of EXTEnD.

(16) By relaxing the constraint.

Case (ADVAnCE,ψ, Σ′). As nothing is returned, the environment gains no in-
formation allowing it to distinguish. By (1), the updates done are the same in
bothworlds. The parts of the invariant affected and preserved are the following:

(1) By equal update.

(8) Without loss of generality, we can assume single-transaction advances. If
GL.𝑀(ψ) ∩ ϕψ.𝑈 ≠ ∅, or the newly added transaction tx ∈ ϕψ.𝑈 , this is
preserved as the longest prefix remains equal. Otherwise, Σ in the induc-
tion step is that of the induction hypothesis, with one transaction tx ∉
ϕψ.𝑈 appended. If tx is not owned by ψ, by (5), ϕψ.𝑇 (tx) = ⊥ and therefore
execState(Σ ‖ tx) returns the same ρ as execState(Σ), preserving the invari-
ant. If tx is owned by ψ, by (9), this transaction will be rejected, likewise
returning the same ρ. Furthermore, as 𝐷 \ 𝐶 \ 𝑈 is already ∅ for all depen-
dency lists 𝐷 and extending Σ can only lead to 𝐶 growing, this condition
remains satisfied.

(9) By further restricting all-quantification and non-existance quantification.

(13) By condition that Gr
L.𝑀(ψ) ≺ Gr

L.Σ.

Case (PrOVE, x,w). In the ideal world, this query is handled by the simulated
functionality S .FR

NIZK. If (x,w) ∉ R the call returns immediately with ⊥ in both
worlds andno variables aremodified, giving the environment no information to
distinguish and preserving 𝐼 . Otherwise, the adversary is immediately queried
with (PrOVE, x) in bothworlds. Again, at this point no variables have beenmod-
ified, preserving 𝐼 , and the information handed to the adversary is the same in
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both worlds, giving the environment no information to distinguish. The adver-
sarywill eventually respondwith a proof π, which is verified against constraints
in both worlds and randomly sampled if it does not meet them. By (2), the con-
straints are identical in both worlds. Finally Π and 𝑊 are set and π returned
in both worlds, giving no distinguishing information to the environment. The
following parts of the invariant are affected and preserved:

(2) By equal update.

(3) By equal insertion intoFR,r
NIZK.𝑊 and S .FR

NIZK.𝑊 .

(4) By relaxing the constraint.

(9) As the possible results of executing transactions consisting of unrecorded
statement/proof pairs is constrained – the environment can no longer de-
cide if they should be processed or not.

(11) As in (9).

(12) As in (9).

(15) As onlymembers ofR are recorded.

(16) As in (9).

Case (VErIFY, x, π). The flow for verification is only slightly more complex
than that for proving. At a high level, the adversary may be given a chance to
produce a last-moment witness for the statement being verified. If it refuses to
do so, the proof is recorded as definitively invalid. We consider three sub-cases:
1. The statement/proof pair is recorded as either valid or invalid. 2. The adver-
sary returns a valid witness. 3. The adversary does not return a valid witness.

In Case 1, VErIFY returns the same value in both worlds by (2), giving the
environment no means to distinguish. Case 2 is equivalent to the adversary
first sending a PrOVE query for the given statement, supplying it with the
corresponding proof, and then running the VErIFY query. We therefore refer to
Case 1 and the case of PrOVE. In Cases 1 and 2, no state is changed, preserving 𝐼 .
Finally, for Case 3, FR,r

NIZK.Π is updated equally in both worlds and ⊥ is returned
in both worlds, giving the environment no information to distinguish. In this
case, the following parts of the invariant are affected and preserved:
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(2) By equal update.

(7) By relaxing the condition onFR,r
NIZK.Π.

(9) As the possible results of executing transactions consisting of unrecorded
statement/proof pairs is constrained – the environment can no longer de-
cide if they should be processed or not.

(11) As in (9).

(12) As in (9).

(16) As in (9).

As the environment cannot distinguish with non-negligible probability be-
tween the real and idealworld inanysingle action if 𝐼 is preservedand, as 𝐼 is pre-
served with overwhelming probability across each action by the environment
and holds at protocol initialisation, we conclude that the environment cannot
win the UC game.

6.5 A Case Study: Private Payments

To demonstrate the versatility of KACHInA, we take a closer look at the (private)
token contract,which is prone to the scalability issuesKACHInAaddresses. Pub-
lic token contracts arewell understood and standardised [VB15], with the typical
implementation being to maintain a mapping of “addresses” (hashes of public
keys) to balances in the contract’s public state. We write the first provably private
token contract to demonstrate the expressive power of KACHInA.

A private token contract also implies that currency is not a primitive – it can
be built as a contract, a key factor in simplifying ourmodel, as it does not need to
encode currency as a special case. It provides an asset to build contracts around
in the first place, as well as a means of denial-of-service mitigation, through
transaction fees. Bad feemodelshave resulted indevastatingDoSattacks [Wil16],
highlighting the necessity of well-chosen transaction fees.

We detail how to construct a feemodel in Subsection 6.7.5. The fundamental
ideaof this construction is to embed the transition functionΓ inawrapperwhich
performs the following steps:
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1. In the private state oracle, estimate the cost of transaction fees.
2. Given an input gas price and this estimate, pay these fees using a desig-

nated currency contract.
3. Commit this as a partial execution success.
4. Execute Γ with a modified Oσ, which deducts from available gas for each

operation and aborts if this runs out.
5. Transfer any remaining gas back to the transaction author.

6.5.1 Indirect Construction

Following the design of Zerocash [BCG+14], we write a contract that maintains
the necessary Zerocash secrets: coin randomnesses, commitment openings,
and secret keys. The private state oracle computes the off-chain information
required to make a Zerocash transaction: Merkle-paths to your own commit-
ments, the selection of randomness for new coins, and the encryption of the
secret information of these coins. This information is handed to the central,
provable core of the contract, which computes a coin’s serial number, verifies
theMerkle-path, and verifies the integrity of the transaction. Finally, the serial
number and new commitment are sent to the public state oracle, which ensures
the former is new and adds the latter to the current tree.

This design is not self-evidently correct and is not the objective itself. Speci-
fying what goal it achieves, in terms of an ideal leakage and transition function,
allows us to build a clean ideal world, with a clear private token contract. This
idealworld is constructed in two steps: First showing that the Zerocash contract
UC-emulates it, and second showing that the Zerocash contract is in turn UC-
emulated by KACHInA.

6.5.2 Ideal Private Payments

To simplify the external interface, we only use single denomination coins. The
same approach can be applied to the full Zerocash protocol, with some caveats
on coin selection and leakage.

We formally specify the private token contract through its transition and
leakage functions, Δpp and Λpp. The contract supports the following inputs:

• InIT, giving a party a unique public key
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• (SEnD, pk), sending a coin to the public key pk

• mInT, creating a new coin for the calling party
• BALAnCE, returning the current balance

Transition Function Δpp

The state transition function for a private payments system. Parties have associated
public keys and balances. The payments system allows for parties without a public
key to generate one, and for parties to transfer andmint single-denomination coins,
as well as query their own balance.

State variables and initialisation values:

Variable Description
𝐾 ≔ ∅ Mapping of parties to public keys

𝐵 ≔ λψ: 0 Mapping of parties to their spendable coins

When receiving an input (ω,ψ, InIT, ⋅, pk):
if ω.𝐾(ψ) = ⊥ then

while ∃ψ′: pk = ω.𝐾(ψ′) ∨ pk ∈ {∅,⊥} do
let pk ∗ {0, 1}κ

letω.𝐾(ψ) ← pk

return (ω,⊤, pk)
else

return (⊥,⊥,⊥)
When receiving an input (ω,ψ, (SEnD, pk) , ⋅, a):

if ψ ∉ H ∧ a ≠ ∅ then
let pk′ ← a
assert ∄ψ′ ∈ H: pk′ = ω.𝐾(ψ′)

else if ω.𝐾(ψ) ≠ ⊥ then let pk′ ← ω.𝐾(ψ)
else return (⊥,⊥,⊥)
if ω.𝐵(pk′) > 0 then

letω.𝐵(pk′) ← ω.𝐵(pk′) − 1
letω.𝐵(pk) ← ω.𝐵(pk) + 1
return (ω,⊤,⊤)

else return (⊥,⊥,⊥)
When receiving an input (ω,ψ,mInT, pk, ⋅):

letω.𝐵(pk) ← ω.𝐵(pk) + 1
return (ω,⊤,⊤)
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When receiving an input (ω,ψ, BALAnCE,𝐵, ⋅):
return (ω,⊤,𝐵)

Leakage FunctionΛpp

Each operation on Δpp has minimal leakage, revealing only which operation was
performed, and, in the case of a transfer, the time and the recipient – if and only if
the recipient is corrupted.

When receiving an input (ω = (ℓ, 𝑈 , 𝑇 ,ω),ψ,w):
letωπ ← ω
let 𝐵− ← 0
for u in 𝑈 do

let (⋅,w′, z, a, ⋅, ⋅) ← 𝑇 (u)
if w′ = (SEnD, ⋅) then let 𝐵− ← 𝐵− + 1

let (ωπ, ⋅) ← Δpp(ωπ,ψ,w′, z, a)
if w = InIT then

if ω.𝐾(ψ) = ωπ.𝐾(ψ) = ⊥ then
return (InIT, InIT, ε, ∅)

else return (⊥,⊥,⊥,⊥)
else if ∃pk:w = (SEnD, pk) then

let c ∗ {0, 1}κ
if ω.𝐵(ω.𝐾(ψ)) − 𝐵− > 0 ∧ ω.𝐾(ψ) = ωπ(ψ) ≠ ⊥ then

let lkg ← t
if ∄ψ′ ∈ H: pk = ω.𝐾(ψ′) then let lkg ← (ℓ, pk)
return ((SEnD, ℓ, pk) , lkg, ε, ∅)

else return (⊥,⊥,⊥,⊥)
else if w = mInT ∧ ω.𝐾(ψ) ≠ ⊥ then

return (mInT,mInT, ε,ω.𝐾(ψ))
else if w = BALAnCE ∧ ω.𝐾(ψ) ≠ ⊥ then

return (BALAnCE, BALAnCE, ε,ω.𝐵(ω.𝐾(ψ)) − 𝐵−)
else

return (⊥,⊥,⊥,⊥)
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6.5.3 The Zerocash KACHInA Contract

The contract implementing Zerocash, whichwewill use to realise the private to-
ken contract, follows its source protocol closely, albeitwith single denomination
coins.

Transition Function Γzc
The state transition function for a Zerocash-based token contract. In blue are parts
run in the public state oracle, in red are parts run in the private state oracle.

Public state variables and initialisation values:

Variable Description
cms ≔ ∅ Public coin commitment set
sns ≔ ∅ Public serial number set
𝑅 ≔ ε Vector of commitmentMerkle tree roots
�⃗� ≔ ε Vector of encryptedmessages

Private state variables and initialisation values:

Variable Description
i ≔ 0 Index of �⃗� processed.
𝐶 ≔ ε Vector of coins available.

𝐾e ≔ ⊥ Encryption secret key.
𝐾z ≔ ⊥ Zero-knowledge secret key.

When receiving an input InIT:

send InIT toOρ and receive the reply pk

return pk

When receiving an input (SEnD, (pkz, pke)):
send (SEnD, pke) toOρ and

receive the reply (p, r,𝐾z, p′, r′, rt, path,𝑀)
assert path is a validMerkle tree path with root rt, to the element

commr((prfpk𝐾z
(1), p))

let sn ← prfsn𝐾z
((p, r))

let cm ← commr′(pkz, p′)
send (SPEnD, sn, rt) toOσ

send (mSG,𝑀) toOσ

send (mInT, cm) toOσ

return ⊤
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When receiving an inputmInT:

sendmInT toOρ and receive the reply cm

send (mInT, cm) toOσ

return ⊤
When receiving an inputBALAnCE:

send BALAnCE toOρ and receive the reply 𝐵
return 𝐵

When receiving a private oracle query InIT:

assert ρπ.𝐾e = ⊥ ∧ ρπ.𝐾z = ⊥
let ρ.𝐾z

∗ {0, 1}κ
let (ρ.𝐾e, pke) ← keyGen(1κ)
return (prfpkρ.𝐾z

(1), pke)
When receiving a private oracle query (SEnD, pke):

let ρo ← update(ρo,σo)
let ρπ ← update(ρπ,σπ)
let ρ ← update(ρ,σπ)
assert (ρo.𝐶 ∩ ρπ.𝐶) ≠ ε
let (p, r) ← (ρo.𝐶 ∩ ρπ.𝐶)[0]
let ρ.𝐶 ← ρ.𝐶 \ {(p, r)}
let rt ← merkleroot(σo.cms)
let path ← merklepath(commr((prfpkρo.𝐾z

(1), p)), rt)
let (p′, r′) ∗ {0, 1}κ × {0, 1}κ
let𝑀 ← enc((r′, p′), pke)
let 𝐾z ← ρo.𝐾z

return (p, r, ρo.𝐾z, p′, r′, rt, path,𝑀)
When receiving a private oracle querymInT:

assert ρo.𝐾e ≠ ⊥ ∧ ρo.𝐾z ≠ ⊥
let (p, r) ∗ {0, 1}κ × {0, 1}κ
let cm ← commr(prfpkρo.𝐾z

(1), p)
let ρ.𝐶 ← ρ.𝐶 ‖ (p, r)
return cm

When receiving a private oracle queryBALAnCE:

let ρo ← update(ρo,σo)
let ρπ ← update(ρπ,σπ)
return |ρo.𝐶 ∩ ρπ.𝐶|
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When receiving a public oracle query (SPEnD, sn, rt):
assert sn ∉ σ.sns
assert rt ∈ σ.𝑅
let σ.sns ← σ.sns ∪ {sn}

When receiving a public oracle query (mSG,𝑀):
let σ.�⃗� ← σ.�⃗� ‖ 𝑀

When receiving a public oracle query (mInT, cm):
let σ.cms ← σ.cms ∪ {cm}
let σ.𝑅 ← σ.𝑅 ‖ merkleroot(σ.cms)

Helper procedures:

function update(ρ,σ)
let �⃗� ← σ.�⃗�[ρ.i:]; ρ.i ← max(ρ.i, |σ.�⃗�|)
for𝑀 ∈ �⃗� do

if ∃r, p: (r, p) = dec(𝑀 , ρ.𝐾e) then
if commr((prfpkρ.𝐾z

(1), p) ∉ σ.cms then continue

if prfsnρ.𝐾z
(p) ∈ σ.sns then continue

let ρ.𝐶 ← ρ.𝐶 ‖ (r, p)
return ρ

function depzc(𝑋 , T , z)
return ε

function desczc(t, ⋅, ⋅, ⋅,w, ⋅)
if w = InIT then return InIT
else if ∃pk:w = (SEnD, pk) then return (SEnD, t, pk)
else if w = mInT then returnmInT
else if w = BALAnCE then return BALAnCE
else return ⊥

Lemma 6.4. Γzc and depzc satisfy Definition 6.12, and therefore the pair (Δzc, Λzc) ≔
(ΔKACHInA(Γzc), ΛKACHInA(Γzc, desczc, depzc)) is in the setℂKACHInA.

Proof (sketch). Transcripts generated by run-Γ fall into three categories: They set
a private key (initialisation), they insert a coin (minting), or they remove a coin
and insert some number of coins (sending).

Chapter 6. Privacy in Smart Contracts 270



Consider first a new initialisation transaction. It does not affect the be-
haviour of unconfirmed minting and sending transactions, as these do not use
the current private state’s secret key. Furthermore, it cannot co-exist with an-
other unconfirmed initialisation transaction, as this would initialise the private
keys, ensuring an abort, which violates the preconditions of dependencies.

If the new transaction is a minting or balance transaction, this functions in-
dependently of other transactions, not having any requirements on the current
private state. Likewise for sending transactions, the state transcript itself only
depends on ρ{o,π}, not the dynamic ρ. The only thing varying is which coins get
added and removed from the set of available coins, but this information is not
directly used – its purpose is to reduce the necessary re-computation the next
time around.

We can observe that (with some help from the simulator) the ideal Zerocash
contract, given by (Δzc, Λzc) = (ΔKACHInA(Γzc), ΛKACHInA(Γ, desczc, depzc)), is
equivalent to the ideal private payments contract (Δpp, Λpp). Formally, we
instantiate two instances of FΔ,Λ

SC , as presented in Subsection 6.2.2 and show
that any attack against (Δzc, Λzc) can be simulated against (Δpp, Λpp).

6.5.4 Security analysis

Wecanobserve that (with somehelp fromthe simulator), the idealZerocash con-
tract, given by (Δzc, Λzc) = (ΔKACHInA(Γzc), ΛKACHInA(Γ, desczc, depzc)), is equiva-
lent to the ideal private payments contract (Δpp, Λpp). Formally, we instantiate
two instances ofFΔ,Λ

SC , as presented in Subsection 6.2.2, and show that any attack
against (Δzc, Λzc) can be simulated against (Δpp, Λpp).

Theorem 6.2. FΔpp,Λpp

SC is UC-emulated byFΔzc,Λzc
SC in presence of GSimpleLedger.

Corollary 6.1. FΔpp,Λpp

SC is UC-emulated byKACHInA, parameterised byΓzc, depzc, and
desczc, in theFR

NIZK-hybrid world, in the presence of GSimpleLedger.

This proof can also be carried out via invariants. Here the invariant tracking is
simple: The real and idealworld have the same coins ownedby the sameusers at
any time. Our simulator, describedbelow, has a lot of book-keeping todo,mostly
to conjure up fake commitments and encryptions for the real-world adversary,
and replicating them in the real world.
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Simulator Szc
The fully detailed Zerocash simulator.

State variables and initialisation values:

Variable Description
𝐵 ≔ ∅ Unspent adversarial coins.
𝐾 ≔ ∅ Honest public/private key pairs.
𝑇 ≔ ∅ Mapping of transactions to created coin commitments.

When receiving amessage (TrAnSACTIOn, x,𝐷) fromFΔpp,Λpp

SC :

if x = InIT then
let Tσ ← ε
queryAwith (TrAnSACTIOn, Tσ,𝐷) and

receive the reply (tx, ⋅),
satisfying 𝑇 (tx) = ⊥ ∧ tx ≠ ⊥, else
sampling from ({0, 1}κ ,⊥)

let (𝐾e, pke) ← keyGen(1κ)
let 𝐾z

∗ {0, 1}κ
let pkz ← prfpk𝐾z

(1)
let 𝐾 ← 𝐾 ∪ {((𝐾z,𝐾e), (pkz, pke))}
let 𝑇 (tx) ← ∅
return (tx, (pkz, pke))

else if x = (SEnD, t, (pkz, pke)) then
let p ∗ {0, 1}κ ; r ∗ {0, 1}κ
let sn ∗ prfsn{0,1}κ({0, 1}

κ × {0, 1}κ)
let rt ← root(t)
let cm ← commr(pkz, p)
let 𝐵 ← 𝐵 ∪ {(pkz, pke, cm)}
let𝑀 ← enc((r, p), pke)
let Tσ ← ((SPEnD, sn, rt) , ∅) ‖ ((mSG,𝑀) , ∅) ‖

((mInT, cm) , ∅)
queryAwith (TrAnSACTIOn, Tσ,𝐷) and

receive the reply (tx, ⋅),
satisfying 𝑇 (tx) = ⊥ ∧ tx ≠ ⊥, else
sampling from ({0, 1}κ ,⊥)

let 𝑇 (tx) ← {cm}
return (tx, ∅)
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else if x = (SEnD, t) then
let (⋅, pk) ∗ keyGen(1κ)
let rt ← root(t)
let cm ∗ comm{0,1}κ(prfpk{0,1}κ(1), {0, 1}

κ)
let sn ∗ prfsn{0,1}κ({0, 1}

κ × {0, 1}κ)
let𝑀 ∗ enc(({0, 1}κ , {0, 1}κ), pk)
let Tσ ← ((SPEnD, sn, rt) , ∅) ‖ ((mSG,𝑀) , ∅) ‖

((mInT, cm) , ∅)
queryAwith (TrAnSACTIOn, Tσ,𝐷) and

receive the reply (tx, ⋅),
satisfying 𝑇 (tx) = ⊥ ∧ tx ≠ ⊥, else
sampling from ({0, 1}κ ,⊥)

let 𝑇 (tx) ← {cm}
return (tx, ∅)

else if x = mInT then
let cm ∗ comm{0,1}κ(prfpk{0,1}κ(1), {0, 1}

κ)
let Tσ ← ((mInT, cm) , ∅)
queryAwith (TrAnSACTIOn, Tσ,𝐷) and

receive the reply (tx, ⋅),
satisfying 𝑇 (tx) = ⊥ ∧ tx ≠ ⊥, else
sampling from ({0, 1}κ ,⊥)

let 𝑇 (tx) ← {cm}
return (tx, ∅)

else if x = BALAnCE then
let Tσ ← ε
queryAwith (TrAnSACTIOn, Tσ,𝐷) and

receive the reply (tx, ⋅),
satisfying 𝑇 (tx) = ⊥ ∧ tx ≠ ⊥, else
sampling from ({0, 1}κ ,⊥)

return (tx, ∅)
else abort
return (tx, a′)

When receiving amessage (InPUT, tx) fromFΔpp,Λpp

SC :

send (InPUT, tx) toA and
receive the reply (ψ,w, (Tσ,Oρ), ⋅,𝐷)

if 𝑇 (tx) ≠ ⊥ then returnnOnE
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let 𝑇 (tx) ← ∅
if w = (SEnD, (pkz, ⋅)) then

if Tσ = ((SPEnD, sn, rt) , ∅) ‖ ((mSG,𝑀) , ∅) ‖ ((mInT, cm′) , ∅) then
send (SEnD, pke) toOρ and

receive the reply (p, r,𝐾z, p′, r′, rt′, path,𝑀 ′)
let cm ← commr((prfpk𝐾z

, p))
let b ← ⊤
send rEAD to GLedger and receive the reply Σ
if ∄t: 0 ≤ t ≤ |Σ| ∧ rt = root(t) ∧ ∃tx: (𝑇 (tx) = cm ∧ tx ∈ Σ[:t]) then

let b ← ⊥
if sn ≠ prfsn𝐾z

((p, r)) ∨ rt ≠ rt′ ∨𝑀 ≠ 𝑀 ′ then
let b ← ⊥

if cm′ ≠ commr′(pkz, p′) then let b ← ⊥
if ¬b then returnnOnE
// We now know the transaction is valid.

// We must determine if 𝑀 can be

// honestly decrypted, and which

// adversarial coin is being spent.

if ∃((⋅,𝐾e), (pkz, pke)) ∈ 𝐾 then
let d = dec(𝑀 ,𝐾e)
if d = (r′, p′) then

letw ← (SEnD, (pkz, pke))
else

letw ← (SEnD, (SImKEY,⊥))
else

let 𝐵 ← 𝐵 ∪ {(SImKEY,⊥, cm′)}
letw ← (SEnD, (SImKEY,⊥))

if ∃(pk′z, pk′e, cm) ∈ 𝐵: pk′z = prfpk𝐾z
then

let a ← (pk′z, pk′e)
else abort
let 𝑇 (tx) ← {cm′}
let z ← ∅

else returnnOnE
else if w = mInT ∧ Tσ = ((mInT, cm) , ∅) then

let 𝐵 ← 𝐵 ∪ {(SImKEY,⊥, cm)}
let 𝑇 (tx) ← {cm′}
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let z ← (SImKEY,⊥); a ← ∅
else returnnOnE
return (ψ,w, z, a,𝐷)

Helper procedures:

procedure root(t)
let cms ← ∅
send rEAD to GLedger and receive the reply Σ
for tx ∈ Σ[:t] do

let cms ← cms ∪ 𝑇 (tx)
returnmerkleroot(cms)

Proof (sketch, of Theorem 6.2). To begin with, observe that from the collision resis-
tance of PRFs, commitments, and sampling from {0, 1}κ, all coin commitments,
serial numbers, and public keys will be unique with overwhelming probability.

The environment can perform the following primary actions: a) For anyhon-
est party, run (POST-QUErY,w). b) For any honest party, run (CHECK-QUErY,
tx). c) For any party, run (SUBmIT, tx) against GL. d) For any party, run rEAD
againstGL. e)Run (ADVAnCE, p, Σ′)againstGL, and f) foranyparty, run (EXTEnD,
Σ′) against GL.

All but the first two of these are trivial. The simulator forwards all queries to
GL and the state of GL depends on no other functionality (transactions “submit-
ted” in the ideal functionality are only passed to the adversary). As a direct re-
sult, the state and return value ofGL follow the same distribution in bothworlds,
giving the environment nomeans to distinguish.

During the running of CHECK-QUErY the environment does have a signif-
icant additional means of input, in the form of being able to assign meaning
to adversarial transactions as they get executed for the first time. It is sufficient to
show the following: a) From the ideal-world leakage, the simulator can create
indistinguishable real-world leakage. b) Ideal-world transactionshave the same
leakage descriptions sent to the environment (and are rejected under the same
conditions). c) An invariant holds between the ideal and real-world contract
state, such that it is preserved across both honest and adversarial transactions’
transition function executions.

We omit the full detail of this invariant. To sketch the idea behind it, wemust
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prove that the following arepreserved: Thepublic keys recorded in the ideal con-
tract state and the simulatormust correspond directly to secret keys recorded in
the real contract state and the samepublic keys are returned by the real contract.
Furthermore, the coinsheldbyhonestparties in the real contract shouldbevalid
at any time and correspond directly to the balance of the same party in the ideal
contract. Honest unconfirmed transactions in both the real and ideal contracts
should still be valid when they are finally executed (also implying they do not
conflict with each other).

These are preserved across honest InIT calls, as the simulator ensures the
keys it stores and the public keys returned in the ideal contract are generated in
the same way as in the real contract. They are preserved across honest SEnD
calls, as they remove one commitment from an honest party’s coins and poten-
tially add it to the respective recipient party. Furthermore, the leakage function
ofhonestSEnDs in the real contract ensures the samecoincannotbe spentagain.
They are preserved across honest mInTs, as again the balance is incremented
alongside a new coin being recorded. For adversarial transactions, as the simu-
lator has all honest private keys, it can, and does, check if an honest partywould
register receiving a new coin. If a coin is sent, but no honest party receives it,
the simulator records it as adversarial – even if it may not be spendable by the
real-world adversary. Furthermore, the simulator manages which real-world
coin commitments are associated with which adversarial public key in the ideal
world. This ensures the simulator can always spend a corresponding ideal coin
towhateverwas spent in the realworld (assuming the realworld adversary does
not spend a coin they do not own, violating the one-wayness of the PRF).

Transactions remaining valid in the ideal world is guaranteed by ensuring
thebalanceof aparty cannot fall belowzero–byassuming theworst case of only
balance removing transactionsbecoming confirmed. Likewise, in the realworld,
the coins eligible for spending are those received in confirmed transactions, but
not spent inunconfirmedones, ensuring theywill not conflict. Inboth cases, key
generationwill be refused if one is currently unconfirmed. mInT and BALAnCE
queries both only require initialisation to have taken place in either world.

To observe that the simulator creates indistinguishable leakage, wefirst note
that the leakage for real-world InIT transactions is an empty transcript, which
the simulator indeed recreates. For SEnD transactions, the simulator creates a
public state transcript following the same structure of one in the real contract
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execution – spending a coin, creating a new one, and sending a message. Here
there are two cases: either the recipient is adversarial, or they are honest. In the
case of an honest recipient, the simulator does not know the exact public key of
the recipient. Fortunately, however, the environment does not know their secret
keys for the same reason. As a result, it is sufficient to commit to an arbitrary
coin and encrypt arbitrary secrets. Due to the hiding of the commitments and
the key-privacy of the encryption scheme, the environment cannot distinguish
this from a real transaction. The simulator creates a random serial number –
revealingnothingdue to collision resistance–and fromthe leakageof the length
of the ledger, can reconstruct the correspondingMerkle tree root, revealing the
same root as the corresponding real-world transaction.

If the adversary is the recipient, the simulator is given the actual public keys
– and can use these directly as in the real protocol, creating a valid spendable
commitment and amessage the adversary can decrypt. Minting is similar to the
case of sending to an honest party – except no message is encrypted. For the
same reason, the leakage is indistinguishable. Finally, honest balance queries
have no leakage in the real world.

Forhonestparties, the leakagedescriptor theenvironment is asked tosignoff
on is identical – for InIT,mInT, and BALAnCE consisting of just this string, and
for SEnD, it is (SEnD, t, pk), where pk is the recipient, if it is adversarial, and oth-
erwise is omitted. In each case, assertionsmade about the current and projected
states are satisfied in either both worlds, or neither, ensuring the transaction is
rejected or posted equally in bothworlds. Specifically, all have tests for whether
keys are initialised (asserting negatively in InIT andpositively everywhere else).
During spending, a positive spendable balance is also asserted in both worlds.
These holding simultaneously is guaranteed by the invariant holding.

Finally, the transaction outputs the environment receives are the same in
both worlds: For InIT, the simulator ensures it sees equally distributed public
keys. For BALAnCE, the equal distribution is guaranteed by the invariant. For
all other messages, it will only see if they are in the ledger state – as the honest
transactions cannot fail and return nothing.

6.6 Expansions to KACHInA

KACHInA is intended as a basis to build more complex systems on. By itself it
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has many limitations, however it presents a more flexible basis to interact with
than the entirely public statemachines of traditional smart contract systems. In
this sections a few expansions are sketched, notably how the adversary’s ability
to arbitrarily set its private state can be constrained and how to model transac-
tions which go beyond a single atomic interaction. This section also explores
potential future work, discussing how the two-state model of KACHInA might
be expanded.

6.6.1 Enforcing Private State Consistency

Theprotocol presented so far allows anadversary to arbitrarily set their ownpri-
vate state. Often it may be desirable to ensure that parties must follow the rules
of the contract, evenwhen it comes to theprivate state, however. This is possible,
although it also introduces extra costs andhas the caveat of not functioningwith
nondeterminism.

The core idea is to store commitments toprivate stateswithin thepublic state
of the contract. The contract itself can then verify that the private state is con-
sistent with this commitment, update it, and then re-commit to the new state,
proving the correctness of every step along theway. Clearly this addsmorework
to be verified about the contract, however amore worrying change is that again
the contract needs to be able to process the entirety of the private contract state.
Fortunately using slightly more complex updateable cryptographic datastruc-
tures, such as Merkle trees, can mitigate this problem – although it cannot be
eliminated entirely, as computation which aggregates the entire private state
will still be as costly.

6.6.2 Non-Atomic Executions

Smart contracts are typically closely linked to transactions made on the under-
lying ledger and indeed we explicitly make the same link in this chapter. That
being said, there are numerous applications which do not rely on a single trans-
action per interaction with a contract, from Hawk [KMS+16], which requires at
least two transactions per roundof interaction, to state channels [DFH18], which
have many of the same properties of smart contracts, but may (under optimal
conditions) not require transactions at all.

While the model of smart contracts presented in Section 6.2 technically ex-
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cludes both of these, and a full treatment of both would require further work, it
is nonetheless worth considering how they can be – albeit imperfectly – embed-
ded in this model. First, let us consider contract queries which require multiple
on-chain interactions to “complete”. As an example from Hawk, consider Alice
posts a query to a Hawk-style contract. Naturally, this will not immediately re-
turn – even if Alice’s transaction has made it on-chain. Instead, the transaction
could return a “future object” – a concept oftenused in concurrent programming
design, essentially just being a reference ID and a promise to associate some
data with it later. Both Alice and the manager party would have to regularly
poll the contract – for instance, send a contract query POLL every 10 minutes.
On the manager’s next POLL query, he would update the Hawk private state,
and encrypt and post the result for Alice. Finally, when Alice next polls, she
would retrieve the result and associate it with the previous “future object” as an
output. This sketches a protocol running on top ofKACHInA, which achieves this
style of interaction. It is worth noting that this requirement for end-users to
interact is also a limitation of the underlying model of universal composability:
The environment must manually instruct parties to resume, or messages to be
forwarded by the adversary.

In a similar vein, we can observe that some transactions need not be placed
on a ledger. In particular, if the shared, public state is not used, the transaction
is essentially “offchain” and there is no need to publicly post it. Furthermore,
if the public state is used for message passing (such as in the construction of a
Zerocash contract above), this part of the transaction need not be on-chain –
sending an out of band message is cheaper. Using the same UC-based approach
described above, it would therefore be possible, for example, to first define an
idealpayment-channel contractandprove that this isUC-emulatedbyacontract
implementing, for instance, Perun [DEFM19]. Finally, we can argue that most
transactions in this contract can be omitted from the ledger, as they are just two-
party channel interactions. This is a rather roundabout means of constructing
off-chain communication, however it brings a crucial guarantee with it, namely
that it behaves the sameunder ledger reorderings as apurely on-chain contract.
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6.6.3 Meta-Parties and Alternative TrustModels

So far we have presented and argued for, a model of smart contracts with clear
black-and-white privacy: Users have their own perfectly private local state and
access to a perfectly public shared state. While we believe this to be the best
starting point for approaching the issue of privacy in smart contracts, reality is
not so simple: Often users havemore complex relations with each other.

To consider this more carefully, we can consider that any piece of data in a
smart contract must have a set of owners 𝕆, who can interact with it. Further-
more, in any real system, there are parties which can, together, decipher the
actual data itself and break the privacy of it. Let us refer to the set of all combi-
nations of parties able to decipher the data as𝕋. While not strictly necessary, in
general it is reasonable to assume that the owners are also the users able to break
privacy, that is 𝕋 ⊆ 2𝕆. While clearly there are many possible combinations
here, a few stand out as interesting, and we observe that they all relate to some
interpretation of privacy-preserving smart contracts:

• 𝕆 = P , 𝕋 = 2P : This is the setting of Ethereum and of the σ used in this
work. Data is public, but can be interacted with by all.

• 𝕆 = {ψ}, 𝕋 = {ψ}: This is the setting of ρ used in this work. Data is private,
but cannot be interacted with by anyone else.

• 𝕆 = P , 𝕋 is all subsets of P with a resource majority (regardless of work,
stake, or what other honest majority assumption is being made): This set-
ting is feasible by runningMPC across the honestmajority of the underly-
ing consensus protocol.

• 𝕆 is a fixed-size set,𝕋 = {m}: This is the setting ofHawk [KMS+16], inwhich
a single party is trusted with privacy.

• 𝕆 is a fixed-size set,𝕋 = {𝕆}: This is the setting of privacy-preserving state-
channels, in which parties runMPC out-of-band to agree on updates.

• 𝕆 is a fixed-size set, 𝕋 = 2𝕆: This is the setting of public state-channels,
in which parties run Arbitrum-like protocols out-of-band to agree on up-
dates.
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In particular, this work only directly concerns itself with the first two of
these. It is clear, however that different problems call for different solutions,
and ideally a smart contract systemwould encode all of these trust systems, not
just one, or a few. Part of the reason for the choice of the first two is that they are
sufficient for constructing the rest, being the exteremes of the spectrum.

The case ofHawk, for instance,was alreadydescribed inSubsection6.6.2. We
will sketch how state channelsmight bemodelled on top of KACHInA, although
we stress that a full formal treatment of this and other settings will be left for
future work.

A state channel between two users can be interpreted as the two users con-
stituting a “metaparty” – a single entity consisting of multiple parties. This is
subject to some access control forwhen the constituent parties can act on behalf
of both – commonly requiring agreement from all constituent parties. If Alice
and Bob open a new state channel, this can be seen as creating a new combined
party of (Alice, Bob).

InKACHInA, thispartyagainhas itsownprivate state, and for state channels,
this can track the most recent update of the channel. Updates are now oper-
ations that only affect the private state of this combined party and as argued
in Subsection 6.6.2 can be left off the ledger entirely. Interestingly, the access
structure for closing channels and reading the current state is more permissive
inmost state or payment channels – requiring only one user to initiate it.

Given a state channel system, most of it can be implemented in a KACHInA
smart contract. It is not new for state or payment channels to use smart con-
tracts, however this is typically only for the opening and closing of the channel.
We observe that in KACHInA the update of the channel can also bemodelled.

This approach of metaparties is useful, but not optimal. For instance, a con-
tract cannot interact with both Alice’s private state and the state channel be-
tween Alice and Bob at the same time, as presented here. Furthermore, how the
constituents of a metaparty reach consensus on whether an action is permitted
or not is unclear and varies from case to case. We leave as future work how to
give first-class treatment to data owned bymultiple parties.
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6.7 Smart Contract Systems

To construct complex systems of multiple smart contracts, no additional ma-
chinery is required. In this section, we incrementally construct a complex sys-
temwith similar functionality to Ethereum [Woo14]. We begin by multiplexing
between a fixed set of transition functions, and expand this with the ability to
allow new transition functions to be registered, transition functions to call each
other, registered contracts to hold and transfer funds, and combine in a setting
where computation has an associated cost, whichmust be paid by the caller. We
finally show how access to the underlying ledgermay bemodelled.

It is worth noting that we concern ourselves only with the “real world” of
KACHInA core contracts. A reasonable question is how to transfer a proof such
as the one we presented in Section 6.5 into this setting. While we do not go
into the details here, we observe that (with one exception for the specific token
contract used), only the smart contract’s own transition function affects its
state. Running a multiplexed smart contract is equivalent to running many
small smart contracts independently – only interpreting the ledger differently.
This is no longer true once contracts may call each other – in which case it is
sufficient to reason about the closure of contracts able to call each other instead.

In this section we will assume that the (sub-)contracts do not make use of
COmmITmessages. While this mechanism can be accounted for, it is simpler to
present without it, and the primary purpose of COmmITs in the first place is to
enable gas payments – which this section does.

6.7.1 Multiplexing Contracts

The basic multiplexing contract takes n different sub-contracts as inputs. Each
party supplies not only the input, but the index i of the contract they wish to
call. The public andprivate states of themultiplexer consist of the product of the
corresponding sub-contract states and oracle queries are re-written to address
the correct part of the state. To do some, new oraclesO′

σ andO′
ρ are constructed,

which rewrite queries made to them. Then, the requested transition function is
run with these oracles, instead of the original ones.

Chapter 6. Privacy in Smart Contracts 282



Transition Function Γmux

The multiplexing transition function Γmux is parameterised by n transition func-
tions Γ1,… , Γn and allows a user to address any one of them.

Public state variables and initialisation values:

Variable Description
σi ≔ ∅ Public states for each sub-contract

Private state variables and initialisation values:

Variable Description
ρi ≔ ∅ Private states for each sub-contract

When receiving an input (i,w):
assert i ∈ ℤn

letO′
σ ← λq:Oσ(muxPubOracle(i, q))

letO′
ρ ← λq:Oρ(muxPrivOracle(i, q))

return Γi,O′
σ,O′

ρ
(w)

Helper procedures:

functionmuxPubOracle(i, q,σ, ∅)
let σ′ ← σ.σi

let (σ′, y) ← q(σ′, ∅)
if σ′ = ⊥ then return (⊥, y)
else

let σ.σi ← σ′

return (σ, y)
functionmuxPrivOracle(i, q, ρ, (σo, ρo,σπ, ρπ, η))

let ρ′ ← ρ.ρi
let z′ ← (σo.σi, ρo.ρi,σπ.σi, ρπ.ρi, η)
let (ρ′, y) ← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else

let ρ.ρi ← ρ′

return (ρ, y)

We assume the existence of unmuxPubOracle and unmuxPrivOracle, which
take an oracle transcript to an Oracle produced by a multiplexed oracle and
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return the pair (i, T ′), where i is the address used in the original multiplexing
and T ′ is the equivalent un-multiplexed transcript.

function unmuxZmux((σo, ρo,σπ, ρπ, η), i)
return (σo.σi, ρo.ρi,σπ.σi, ρπ.ρi, η)

function unmuxXmux(𝑋 , i)
let 𝑋 ′ ← ε
for (u, T , z,𝐷) in 𝑋 do

if ∃T ′: unmuxPrivOracle(T ) = (i, T ′) then
let 𝑋 ′ ← 𝑋 ′ ‖ (u, T ′, unmuxZmux(z, i),𝐷)

return 𝑋 ′

function descmux(t,𝑋 , Tσ, Tρ, (i,w), z)
let (⋅, T ′

σ ) ← unmuxPubOracle(Tσ)
let (⋅, T ′

ρ ) ← unmuxPrivOracle(Tρ)
let 𝑋 ′ ← unmuxXmux(𝑋 , i); z′ ← unmuxZmux(z, i)
return “Calling sub-contract i: ”+desci(t,𝑋 ′, T ′

σ , T ′
ρ ,w, z′)

function depmux(𝑋 , Tρ, z)
if Tρ = ε then return ∅
else

let (i, T ′
ρ ) ← unmuxPrivOracle(Tρ)

let 𝑋 ′ ← unmuxXmux(𝑋 , i); z′ ← unmuxZmux(z, i)
return depi(𝑋 ′, T ′

ρ , z′)

6.7.2 Multiplexingwith Registration

To allow registering new contracts in the multiplexer, it is possible to include
the full contract’s description as part of its address 𝐴. In practice it may make
moresense tomaintainamapping fromaddresses tocontract code, however this
is not required. The only other large change is that, since contracts are created
on the fly, we cannot rely on their states to have been initialised at any point.
Therefore, this initialisation takesplace at anypointwhere themultiplexed state
is accessed.

function forceInitMaps(((𝑀1,… ,𝑀n), k, v))
for i ∈ {1,… , n} do

if k ∉ 𝑀i then let𝑀i(k) ← v

return (𝑀1,… ,𝑀n)
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Transition Function Γregmux

The multiplexing with registration transition function Γregmux allows addressing
any pair of address and sub-transition function (𝐴, Γ). It uses the specified transi-
tion function on whatever state is associated with this pair, or a new, empty state
for the first use.

Public state variables and initialisation values:

Variable Description
Σ ≔ ∅ Mapping from address pairs to public states

Private state variables and initialisation values:

Variable Description
Ρ ≔ ∅ Mapping from address pairs to private states

When receiving an input (𝐴 = (i, Γ, desc, dep),w):
letO′

σ ← λq:Oσ(muxPubOracle(𝐴, q))
letO′

ρ ← λq:Oρ(muxPrivOracle(𝐴, q))
return ΓO′

σ,O′
ρ
(w)

Helper procedures:

functionmuxPubOracle(𝐴, q,σ, ∅)
if 𝐴 ∉ σ.Σ then let σ.Σ(𝐴) ← ∅

let σ′ ← σ.Σ(𝐴)
let (σ′, y) ← q(σ′, ∅)
if σ′ = ⊥ then return (⊥, y)
else

let σ.Σ(𝐴) ← σ′

return (σ, y)
functionmuxPrivOracle(𝐴, q, ρ, (σo, ρo,σπ, ρπ, η))

let (ρ.Ρ,σo.Σ.ρo.Ρ,σπ.Σ, ρπ.Ρ) ← forceInitMaps(
(ρ.Ρ,σo.Σ, ρo.Ρ,σπ.Σ, ρπ.Ρ),𝐴, ∅)

let ρ′ ← ρ.Ρ(𝐴)
let z′ ← (σo.σi, ρo.ρi,σπ.σi, ρπ.ρi, η)
let (ρ′, y) ← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else

let ρ.Ρ(𝐴) ← ρ′
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return (ρ, y)

We assume the existence of unmuxPubOracle and unmuxPrivOracle, which
take an oracle transcript to an Oracle produced by a multiplexed oracle and re-
turn the pair (𝐴, T ′), where𝐴 = (i, Γ, desc, dep) is the address used in the original
multiplexing and T ′ is the equivalent un-multiplexed transcript.

function unmuxZregmux((σo, ρo,σπ, ρπ, η),𝐴)
let (σo.Σ, ρo.Ρ,σπ.Σ, ρπ.Ρ) ← forceInitMaps(

(σo.Σ, ρo.Ρ,σπ.Σ, ρπ.Ρ),𝐴, ∅)
return (σo.Σ(𝐴), ρo.Ρ(𝐴),σπ.Σ(𝐴), ρπ.Ρ(𝐴), η)

function unmuxXregmux(𝑋 ,𝐴)
let 𝑋 ′ ← ε
for (u, T , z,𝐷) in 𝑋 do

if ∃T ′: unmuxPrivOracle(T ) = (𝐴, T ′) then
let 𝑋 ′ ← 𝑋 ′ ‖ (u, T ′, unmuxZregmux(z,𝐴),𝐷)

return 𝑋 ′

function descregmux(t,𝑋 , Tσ, Tρ, (𝐴 = (⋅, ⋅, desc, ⋅),w), z)
let (⋅, T ′

σ ) ← unmuxPubOracle(Tσ)
let (⋅, T ′

ρ ) ← unmuxPrivOracle(Tρ)
let 𝑋 ′ ← unmuxXregmux(𝑋 ,𝐴); z′ ← unmuxZregmux(z,𝐴)
return “Calling sub-contract𝐴: ”+desc(t,𝑋 ′, T ′

σ , T ′
ρ ,w, z′)

function depregmux(𝑋 , Tρ, (σo, ρo,σπ, ρπ, η))
if Tρ = ε then return ∅
else

let (𝐴 = (…, dep), T ′
ρ ) ← unmuxPrivOracle(Tρ)

let (σo.Σ.ρo.Ρ,σπ.Σ, ρπ.Ρ) ←
forceInitMaps((σo.Σ, ρo.Ρ,σπ.Σ, ρπ.Ρ),𝐴, ∅)

let z′ ← (σo.Σ(𝐴), ρo.Ρ(𝐴),σπ.Σ(𝐴), ρπ.Ρ(𝐴), η)
let 𝑋 ′ ← ε
for (u, Tρ, (σo, ρo,σπ, ρπ, η),𝐷) in 𝑋 do

if ∃T ′
ρ : unmuxPrivOracle(Tρ) = (𝐴, T ′

ρ ) then
let (σo.Σ.ρo.Ρ,σπ.Σ, ρπ.Ρ) ← forceInitMaps(

(σo.Σ, ρo.Ρ,σπ.Σ, ρπ.Ρ),𝐴, ∅)
let 𝑋 ′ ← 𝑋 ′ ‖

(u, T ′
ρ , (σo.σi, ρo.ρi,σπ.σi, ρπ.ρi, η),𝐷)

return dep(𝑋 ′, T ′
ρ , z′)

Chapter 6. Privacy in Smart Contracts 286



6.7.3 LoopbackMultiplexing

Smart contract systems truly become interesting when contracts are allowed to
call each other. This is not a technically difficult operation: Contracts simply need
tohave anadditional exit and entrypoint to allownewqueries to other contracts
to be made, and these queries to be responded to. Specifically, we require con-
tracts to either return (rETUrn, y), or (CALL,𝐴,𝑀), with the latter invoking a
separate contract. Weassociate a special returnvalue structurewith indicating a
newcontract address and input to call, and require contracts toprocess a specific
rESUmEmessage.

As for thefirst time, it is possible formultiple separate contracts to get called,
we domain-separate the randomness source η.

function unmuxZloopmux((σo, ρo,σπ, ρπ, η),𝐴)
let (σo.Σ, ρo.Ρ,σπ.Σ, ρπ.Ρ) ← forceInitMaps((σo.Σ, ρo.Ρ,σπ.Σ, ρπ.Ρ),𝐴, ∅)
Letη′ bearandomness sourcedeterminsticallyandcollision-resistantallyderived

from the pair (η,𝐴).
return (σo.Σ(𝐴), ρo.Ρ(𝐴),σπ.Σ(𝐴), ρπ.Ρ(𝐴), η′)

Transition Function Γloopmux

Themultiplexingwith registration and loopback transition function Γloopmux allows
addressing any pair of address and sub-transition function (𝐴, Γ). These sub-
transition functions may return values of either (CALL,𝐴,𝑀), or (rETUrn, y). In
the former case, a different sub-transition function is invoked and the value it even-
tually returns is fed back into the original one, by re-invoking it with (rESUmE, y).

Public state variables and initialisation values:

Variable Description
Σ ≔ ∅ Mapping from address pairs to public states

Private state variables and initialisation values:

Variable Description
Ρ ≔ ∅ Mapping from address pairs to private states

When receiving an input (𝐴 = (i, Γ, desc, dep),w):
letO′

σ ← λq:Oσ(muxPubOracle(𝐴, q))
letO′

ρ ← λq:Oρ(muxPrivOracle(𝐴, q))
repeat
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let y ← ΓO′
σ,O′

ρ
(w)

if ∃𝐴′,𝑀 : y = (CALL,𝐴′,𝑀) then
letw ← (rESUmE, Γloopmux,Oσ,Oρ((𝐴′,𝑀)))

until ∃y′: y = (rETUrn, y′)
return y′

Helper procedures:

functionmuxPubOracle(𝐴, q,σ, ∅)
if 𝐴 ∉ σ.Σ then let σ.Σ(𝐴) ← ∅

let σ′ ← σ.Σ(𝐴)
let (σ′, y) ← q(σ′, ∅)
if σ′ = ⊥ then return (⊥, y)
else

let σ.Σ(𝐴) ← σ′

return (σ, y)
functionmuxPrivOracle(𝐴, q, ρ, z)

let z′ ← unmuxZloopmux(z,𝐴)
if 𝐴 ∉ ρ.Ρ then let ρ.Ρ(𝐴) ← ∅

let ρ′ ← ρ.Ρ(𝐴)
let (ρ′, y) ← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else

let ρ.Ρ(𝐴) ← ρ′

return (ρ, y)

Unlike before, we cannot invert the multiplexing on an entire transcript, as
the transcript may consist of multiple separate sub-contract calls. Instead, we
can invert multiplexing each query/response pair in the transcript itself. We
assume the existence of unmuxOracle, which takes a query-response pair (q, r),
where the query is muxPubOracle(𝐴, q′) or muxPrivOracle(𝐴, q′), and maps it to
(𝐴, (q′, r)).

As far as descriptions go, it is crucial to note that the leakage description of a
contract is no longer in isolation: what the contract may leak, depends on what
this contract calls. We will assume instead that each sub-contract’s leakage de-
scriptor is aware that it is being run in a loopback system–and thereforewe give
it the full transcripts, even of sub-contracts being called. The assumption here
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is that the contract directly called by the user is also trusted by this user – the de-
scriptor it gives should be trusted, not necessarily that of any further contracts it
invoked. It isworth noting that this change of setting for the descriptor function
does not preclude using contracts designed without loopback systems in mind:
As this cannot invoke other contracts, their old descriptor function can be easily
lifted to this setting (a slight caveat is that either the old descriptor needs to be
capable of tolerating unconfirmed transaction transcripts over multiple calls to
theunderlying function, or there should exist a functionwhich splits transcripts
into these individual calls).

function liftDesc(𝐴, desc)(t,𝑋 , Tσ, Tρ,w, z)
let T ′

σ ← map(proj2 ∘ unmuxOracle, Tσ)
let T ′

ρ ← map(proj2 ∘ unmuxOracle, Tρ)
let 𝑋 ′ ← unmuxXregmux(𝑋 ,𝐴); z′ ← unmuxZregmux(z,𝐴)
return desc(t,𝑋 ′, T ′

σ , T ′
ρ ,w, z′)

function unmuxT(T ,𝐴)
returnmap(proj2, filter(λ(𝐴′, ⋅):𝐴 = 𝐴′,

map(unmuxOracle, T )))
function unmuxXloopmux(𝑋 ,𝐴)

let 𝑋 ′ ← ε
for (u, T , z,𝐷) in 𝑋 do

let T ′ ← unmuxT(T ,𝐴); z′ ← unmuxZloopmux(z,𝐴)
let 𝑋 ′ ← 𝑋 ′ ‖ (u, T ′, z′,𝐷′)

return 𝑋 ′

function descloopmux(t,𝑋 , Tσ, Tρ, (𝐴 = (⋅, ⋅, desc, ⋅),w), z)
return “Calling sub-contract𝐴: ”+desc(t,𝑋 , Tσ, Tρ,w, z)

function deploopmux(𝑋 , Tρ, z)
let 𝑆 ← ∅
for (q, r) in Tρ do

let (𝐴, ⋅) ← unmuxOracle((q, r))
let 𝑆 ← 𝑆 ∪ {𝐴}

let𝐷 ← ∅
for𝐴 = (⋅, ⋅, ⋅, dep) in 𝑆 do

let T ′
ρ ← unmuxT(Tρ,𝐴)

let z′ ← unmuxZloopmux(z,𝐴)
let 𝑋 ′ ← unmuxXloopmux(𝑋 ,𝐴)
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let𝐷 ← 𝐷 ∪ dep(𝑋 ′, T ′
ρ , z′)

returnmap(proj1,𝑋) ∩ 𝐷

6.7.4 Integrated Payments Systems

Smart contract systems typically have an associated, native “asset”, which can
be traded not only by users, but by contracts as well. This asset is typically tied
to a public key, which can be used as an identity of end users, providing ameans
to authenticate to contracts. We demonstrate a simple means of achieving this:
We construct a “simple payments” contract, which allows payments by end
users through demonstrating knowledge of secret keys, and arbitrary payments
which will be restricted to system usage. It is worth noting that this could be
done in a privacy-preserving manner, as presented in Section 6.5, although
significant changes would have to be made, as there would be situations where
a contract should publicly own funds and be able to transfer them, and the
simplified single-denomination design is not ideal.

Transition Function Γsp
The state transition function for a simple payments system. Parties have associated
public/private keys andbalances. Thepayments systemallows for partieswithout a
key pair to generate one, and for parties to transfer andmint coins, as well as query
their own balance.

Public state variables and initialisation values:

Variable Description
𝐵 ≔ λpk: 0 Mapping of public keys to their spendable coins

Private state variables and initialisation values:

Variable Description
sk ≔ ∅ The party’s secret key

When receiving an input InIT:

send InIT toOρ and receive the reply sk

let pk ← prfpksk (1)
return pk

When receiving an input (SEnD, recv, v):
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send SECrETKEY toOρ and receive the reply sk

let pk ← prfpksk (1)
send (SEnD, pk, recv, v) toOσ

return pk

When receiving an input (SYSTEm-SEnD, snd, recv, v):
send (SEnD, snd, recv, v) toOσ

When receiving an input (mInT, v):
send SECrETKEY toOρ and receive the reply sk

let pk ← prfpksk (1)
send (mInT, pk, v) toOσ

When receiving an inputBALAnCE:

send BALAnCE toOρ

When receiving a private oracle query InIT:

assert ρπ.sk = ∅
let ρ.sk ∗ {0, 1}κ
return ρ.sk

When receiving a private oracle query SECrETKEY:

return ρ.sk

When receiving a private oracle queryBALAnCE:

return σπ.𝐵(prfpkρπ.sk(1))

When receiving a public oracle query (SEnD, pk, recv, v):
assert σ.𝐵(pk) ≥ v
let σ.𝐵(pk) ← σ.𝐵(pk) − v
let σ.𝐵(recv) ← σ.𝐵(recv) + v

When receiving a public oracle query (mInT, pk, v):
let σ.𝐵(pk) ← σ.𝐵(pk) + v

function descsp(t,𝑋 , Tσ, Tρ,w, z)
if Tσ = (InIT, pk) then

return (InIT, pk)
else if Tσ = ((SEnD, snd, recv, v) , ⋅) then

return (SEnD, snd, recv, v)
else if Tσ = ((mInT, pk, v) , ⋅) then

return (mInT, pk, v)
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else return ⊥
function depsp(𝑋 , T , z)

return ε

Oncegiven suchapayments system, themultiplexing systemcanensure that
for each call, a transfer to the called contract is initiated first, with the value of
the transfer and the source address being passed into the contract being called.
Likewise, if this calls another contract, this call may transfer funds from one
contract to another.

Transition Function Γpaymux

The multiplexing with registration, loopback, and payments transition function
Γpaymux allows addressing any pair of address and sub-transition function (a, Γ).
Thesesub-transition functionsmayreturnvaluesof either (CALL,𝐴,𝑀), or (rETUrn,
y). In the former case, a different sub-transition function is invoked and the
value it eventually returns is fed back into the original one, by re-invoking it with
(rESUmE, y).

Public state variables and initialisation values:

Variable Description
Σ ≔ ∅ Mapping from address pairs to public states

Private state variables and initialisation values:

Variable Description
Ρ ≔ ∅ Mapping from address pairs to private states

When receiving an input (TOKEn,w):
assertw ≠ (SYSTEm-SEnD,…)
letO′

σ ← λq:Oσ(muxPubOracle(TOKEn, q))
letO′

ρ ← λq:Oρ(muxPrivOracle(TOKEn, q))
return Γsp,O′

σ,O′
ρ
(w)

When receiving an input (CALL, v,𝐴 = (i, Γ, desc, dep),w):
let pk ← Γpaymux,Oσ,Oρ (TOKEn, (SEnD,𝐴, v))
return callOσ,Oρ(v, pk,𝐴,w)

Helper procedures:

function subCallOσ,Oρ (v,𝐴,𝐴′ = (i, Γ, desc, dep),w)
assert𝐴′ ≠ TOKEn
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letO′
σ ← λq:Oσ(muxPubOracle(TOKEn, q))

letO′
ρ ← λq:Oρ(muxPrivOracle(TOKEn, q))

run Γsp,O′
σ,O′

ρ
(SYSTEm-SEnD,𝐴,𝐴′, v)

return callOσ,Oρ(v,𝐴,𝐴′,w)
function callOσ,Oρ (v,𝐴,𝐴′ = (⋅, Γ, ⋅, ⋅),w)

letO′
σ ← λq:Oσ(muxPubOracle(𝐴′, q))

letO′
ρ ← λq:Oρ(muxPrivOracle(𝐴′, q))

repeat
let y ← ΓO′

σ,O′
ρ
(CALL,𝐴, v,w)

if ∃v′,𝐴″,w′: y = (CALL, v′,𝐴″,w′) then
letw ← (rESUmE, subCallOσ,Oρ(v′,𝐴′,𝐴″,w′))

until ∃y′: y = (rETUrn, y′)
return y′

functionmuxPubOracle(𝐴, q,σ, ∅)
if 𝐴 ∉ σ.Σ then let σ.Σ(𝐴) ← ∅

let σ′ ← σ.Σ(𝐴)
let (σ′, y) ← q(σ′, ∅)
if σ′ = ⊥ then return (⊥, y)
else

let σ.Σ(𝐴) ← σ′

return (σ, y)
functionmuxPrivOracle(𝐴, q, ρ, (σo, ρo,σπ, ρπ, η))

let (ρ.Ρ,σo.Σ.ρo.Ρ,σπ.Σ, ρπ.Ρ) ← forceInitMaps((ρ.Ρ,σo.Σ, ρo.Ρ,σπ.Σ, ρπ.Ρ),𝐴, ∅)
let ρ′ ← ρ.Ρ(𝐴)
let z′ ← (σo.σi, ρo.ρi,σπ.σi, ρπ.ρi, η)
let (ρ′, y) ← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else

let ρ.Ρ(𝐴) ← ρ′

return (ρ, y)

function descpaymux(t,𝑋 , Tσ, Tρ,𝑀 , z)
if ∃w:𝑀 = (TOKEn,w) then

return “Calling token contract:”+descsp(t,𝑋 ,map(proj2 ∘ unmuxOracle, Tσ),
map(proj2 ∘ unmuxOracle, Tρ),w, z)

else if ∃v,𝐴 = (⋅, ⋅, desc, ⋅),w:𝑀 = (CALL, v,𝐴,w) then
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return “Calling sub-contract𝐴with pay-in v: ”+desc(t,𝑋 , Tσ, Tρ, (⊥, v,w), z)
else return ⊥

deppaymux = deploopmux

6.7.5 Fees and CostModels

In order to prevent denial-of-service attacks, the computations performed by
the network in verifying a transaction must be paid for in some way. In public
currencies, there is typically a cost model, which maps each step of computation
to a cost, often referred to as gas. Each transaction declares a limit on howmuch
gas it is willing to pay and what each unit’s value should be. It then pays the
corresponding amount into a fee pool and, while executing the transaction, the
gasusage is counted. If the limit is reached, the transaction is rejected, otherwise
any spare gas is refunded.

We do not explicitly specify how miners are awarded these fees – a simple
approach is to not enable withdrawals from the fee pot within the transition
function, relying on miners to do so themselves, and not include in their block
other transactions which take from the pot.

In KACHInA the computation done in public state oracles occupies a similar
space: A modelling of fees must include estimating their likely cost, pay this
estimation inadvance, and thenuseup thegasduring theactualoracleexecution.
In addition to this, theNIZK proof verificationmust be paid for. Wewill assume
that this has a flat cost, dependant on the size of its inputs, that is, the size of the
transcript.

Specifically, we assume two cost models: $zk and $std, as well as a cost esti-
mator Estd. $zk is simply a function from a public state transcript to the gas cost
of verifying a NIZK proof against it. A transaction will publicly declare what
it believes the cost of its transcript is and will use Estd (as well as a user input
dictating the cost per unit of gas) to estimate the cost of the remaining transac-
tion. The transaction declares this total fee, which part of the fee is for the NIZK
verification, andwhat the costperunit of gas is. Transactionswhichpay too little
forNIZKverification, or set the cost per unit of gas too low,maynot be picked up
by miners, although modelling miner incentives is not within the scope of this
thesis.

Formally, g ← $zk(T ) is a function from a public state transcript to a gas cost,
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(σ′, g′, y) ∨ ⊥ ← $std(q,σ, g) is a function taking an oracle query, initial state, and
gas limit, either returning the result and remaining gas, or returning ⊥ if the
supplied gas ran out. Finally, (σ′, g′, y) ← Estd(q,σ) returns an estimate as to the
gas cost of running a query q, with the state σ as a reference point. Estd and $std
should return (σ′, y) = q(σ) if they succeed.

In attaching fees to our contract system, we operate as follows:

1. In the private state oracle, simulate the transaction creation process, con-
structing thepublic state transcriptT and, for eachpublic state interaction,
recording the estimated cost, totalling to the overall gas cost g.

2. For a given gas price gasPrice, make two separate, public transfers into the
fee pot: first $zk(T ) × gasPrice and second g × gasPrice

3. Commit this as a partial execution success.

4. Execute the transaction as normal, except making public state oracle
queries through a modified gas cost oracle instead, retaining a temporary
state of the remaining gas.

5. Finally, the public state oracle relinquishes the remaining gas and returns
it to the transaction creator.

We now give an example transition function that combines this gas model
with the integrated payment system of Subsection 6.7.4.

Transition Function Γscs
The multiplexing with registration, loopback, payments, and fees transition
function Γscs allows addressing any pair of address and sub-transition function
(a, Γ). These sub-transition functions may return values of either (CALL,𝐴,𝑀), or
(rETUrn, y). In the former case, a different sub-transition function is invoked, and
the value it eventually returns is fed back into the original one, by re-invoking it
with (rESUmE, y). The transition function first estimates the cost of this call, and
pays for it in advance. This payment is then deduced from for executions, until a
remainder is refunded at the end of a successful call.
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Public state variables and initialisation values:

Variable Description
Σ ≔ ∅ Mapping from address pairs to public states

spare ≔ 0 Temporary book-keeping of the value to return

Private state variables and initialisation values:

Variable Description
Ρ ≔ ∅ Mapping from address pairs to private states

When receiving an input (TOKEn,w):
assertw ≠ (SYSTEm-SEnD,…)
letO′

σ ← λq:Oσ(muxPubOracle(TOKEn, q))
letO′

ρ ← λq:Oρ(muxPrivOracle(TOKEn, q))
return Γsp,O′

σ,O′
ρ
(w)

When receiving an input (CALL, gasPrice, v,𝐴 = (i, Γ, desc, dep),w):
let pk ← Γscs,Oσ,Oρ (TOKEn, (SEnD,𝐴, v))
send (ESTImATE-COST, v, pk,𝐴,w) toOρ and

receive the reply (gT , gO)
run Γscs,Oσ,Oρ (TOKEn, (SEnD, FEE-POT, gT × gasPrice))
run Γscs,Oσ,Oρ (TOKEn, (SEnD, FEE-POT, gO × gasPrice))
commitGAS-PAID
send (InIT-GAS, gO) toOσ

let y ← callOσ,Oρ(v, pk,𝐴,w)
send (DEInIT, pk, gasPrice) toOσ

return y

When receiving a public oracle query (InIT-GAS, gO):
let σ.spare ← gO

When receiving a public oracle query (DEInIT, pk, gasPrice):
run Γsp(FEE-POT, pk,σ.spare × gasPrice)
let σ.spare ← 0

When receiving a private oracle query (ESTImATE-COST, v, pk,𝐴,w):
letO′

σ ← O((σπ, ε, 0);O′
ρ ← O(ρπ)

letO″
σ ← λq:O′

σ(muxEst(q))
run callO″

σ ,O′
ρ
(v, pk,𝐴,w)

let (⋅, T , g) ← state(Oσ)
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return ($zk(T ), g)

Helper procedures:

function subCallOσ,Oρ (v,𝐴,𝐴′ = (i, Γ, desc, dep),w)
assert𝐴′ ≠ TOKEn
letO′

σ ← λq:Oσ(muxPubOracle(TOKEn, q))
letO′

ρ ← λq:Oρ(muxPrivOracle(TOKEn, q))
run Γsp,O′

σ,O′
ρ
(SYSTEm-SEnD,𝐴,𝐴′, v)

let y ← callOσ,Oρ(v,𝐴,𝐴′,w)
return y

function callOσ,Oρ (v,𝐴,𝐴′ = (⋅, Γ, ⋅, ⋅),w)
letO′

σ ← λq:Oσ(muxPubOracle(𝐴′, q))
letO′

ρ ← λq:Oρ(muxPrivOracle(𝐴′, q))
repeat

let y ← ΓO′
σ,O′

ρ
(CALL,𝐴, y,w)

if ∃v′,𝐴″,w′: y = (CALL, v′,𝐴″,w′) then
let y ← subCallOσ,Oρ(v′,𝐴′,𝐴″,w′)
letw ← (rESUmE, y)

until ∃y′: y = (rETUrn, y′)
return y

functionmuxPubOracle(𝐴, q,σ, ∅)
if 𝐴 ∉ σ.Σ then let σ.Σ(𝐴) ← ∅

let σ′ ← σ.Σ(𝐴)
let r ← $std(q,σ′,σ.spare)
if r = ⊥ then

σ.spare ← 0
return (⊥, y)

let (σ′, g′, y) ← r;
if σ′ = ⊥ then

σ.spare ← 0
return (⊥, y)

else
σ.Σ(𝐴) ← σ′;σ.spare ← g′

return (σ, y)
functionmuxPrivOracle(𝐴, q, ρ, (σo, ρo,σπ, ρπ, η))

let (ρ.Ρ,σo.Σ.ρo.Ρ,σπ.Σ, ρπ.Ρ) ← forceInitMaps((ρ.Ρ,σo.Σ, ρo.Ρ,σπ.Σ, ρπ.Ρ),𝐴, ∅)
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let ρ′ ← ρ.Ρ(𝐴)
let z′ ← (σo.σi, ρo.ρi,σπ.σi, ρπ.ρi, η)
let (ρ′, y) ← q(ρ′, z′)
if ρ′ = ⊥ then return (⊥, y)
else

let ρ.Ρ(𝐴) ← ρ′

return (ρ, y)
functionmuxEst(q,σ, ∅)

let (σ′, T , g) ← σ
let (σ′, g′, y) ← Estd(q,σ′, ∅)
if σ′ = ⊥ then return (⊥, y)
else

return ((σ′, T ‖ [(q, y)], g + g′), y)

descscs = descpaymux

depscs = deppaymux

6.7.6 Exporting Ledger Data

Real-world smart contract systems often have some means to extract limited
information about the underlying consensus protocol, such as the hash of the
most recent block, the address of the block’s miner, or the length of the current
chain. These can be useful in applications – in particular the latter, as it provides
an imprecise clock for use in contracts.

Clearly, these rely on tighter integration with the underlying consensus
mechanism than KACHInA provides. We can still capture the core idea, by
having a sub-contract which manages such chain data and allows this to be
read and set arbitrarily6. We can then assume that the correct usage of this
sub-contract is enforced by the validation of the underlying consensus mecha-
nism – transactions which attempt to “incorrectly” set the chain data – for any
definition of “correct” will never reach the ledger.

Transition Function Γchaindata
The chain data transition function Γchaindata allows arbitrary setting and reading of
state. An external assumption is that the setting of state is both enforced and re-

6This could be expanded to allow only certain types of setting – such as advancing the time,
but not rewinding it.
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stricted by the underlying ledger protocol, to give it meaning – for instance each
blockmay induce a phantom “chain-data” transaction which appears on the ledger
and sets themost recent block hash in the chain-data contract’s state.

When receiving an input (SET,σ′):
runOσ(λ(⋅, ⋅): (σ′,⊤))

When receiving an inputGET:

returnOσ(λ(σ, ⋅): (σ,σ))

The contract we present here does have a further issue: Since the loopback
in our multiplexers occurs only in the main transition function, the transcripts
it generates will commit to specific values for the ledger data upon transaction
creation – something which is likely not reasonable. A more complex loopback
design, which we do not present here, would solve this: If calling into public
or private parts of other contracts were permitted from within the public and
private state oracles, respectively.

For both leakage descriptors and dependencies, wemake use of our assump-
tion that users cannot directly call SET.

function descchaindata(t,𝑋 , Tσ, Tρ,w, z)
return “Reading the chain data”

function depchaindata(𝑋 , Tρ, (σo, ρo,σπ, ρπ, η))
return ε
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7 COnCLUSIOn
--.--

THIS thesis has attempted to solidify the basis of privacy in decentralised
blockchain systems, both at the protocol levelwith privacypreservingproof

of stake and smart contracts, and answering questions about the underlying
primitive of zk-SNARKs, questions of how they may be securely instantiated
and composed. Themajor results of this thesis are as follows:

• Chapter 3, Composition with Knowledge Assumptions, demonstrated how zk-
SNARKs can be used in wider composable security proofs, despite rely-
ing on knowledge assumptions for extraction. This directly confirms the
correctness of constructions which use zk-SNARKs as building blocks in
larger protocols, including other work in this thesis.

• Chapter 4, Secure Reference Strings from Consensus, addresses the question of
trusted setups for zk-SNARKs,which are theweakest link in their security,
as they rely on an honest party erasing a secret exponent. To solve this is-
sue, updateable reference strings are used, which allow any user to perform
an update. This task is given tominers of a Nakamoto-style ledger and, by
the honesty assumptions governing these, an honest update is guaranteed.

• Chapter 5, Privacy in Proof-of-Stake, combines results in provably-secure
proof-of-stake protocols with results from privacy-preserving transac-
tion systems, constructing the first proof-of-stake system which oper-
ates over a privacy-preserving distribution of stake. It replaces some
of the key cryptography from non-privacy-preserving proof-of-stake
with non-interactive zero-knowledge, and relies on existing zk-SNARK
constructions for privacy-preserving payments. The result is adaptively
secure, ensuring that stake cannot be misused after-the-fact once it has
been spent.

• Chapter 6,Privacy in SmartContracts, provides a platform for smart contract
authors to use arbitrary computation in zero-knowledge proofs, sepa-
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rating computation into three parts: the untrusted private, the trusted
private, and the trusted public, where only the latter operates on shared
state. This foundation permits smart contracts to be more expressive
with respect to the privacy they achieve and enables additional trust
assumptions andmodels to be layered on top of it. Smart contract systems
are constructed modularly, including privacy-preserving currency and
adjustable fees.

These results can be combined in a single distributed ledger – a proof-of-stake
system running privacy-preserving smart contracts, drawing its stake distri-
bution from a Zerocash-like private currency contract. Fully combining these
results is not quite immediate, as the setup would need to be with an initially
publicproof-of-stake and themodels used for privacy-preserving proof-of-stake
and smart contracts differ sufficiently that using a smart contract for the stake
of the former is non-trivial. These issues appear minor however – for the
former the public Ouroboros Genesis can be run during the setup-phase and
switched to CrYPSInOUS once the reference string has finalised. For the latter,
it is clear that a smart contract semantically identical to the transfer system of
CrYPSInOUS can be written in KACHInA – it is simply the matter of correctly
expressing the leakage CrYPSInOUS makes in the KACHInA model which is
non-trivial.

In ending this thesis, I would like to pause to note how grand the problem of
privacy in decentralised systems is. Any solution to it must be efficient – how-
ever, even the non-private solutions in use today are not efficient enough to be
sustainable. Furthermore, the setting is more strict than usual in cryptography:
No-one knows who is participating, let alone who is trustworthy. It has become
increasingly apparent to me during my study that it is unlikely that there is a
perfect solution for privacy, and that it is more important to broadcast that pri-
vacy is hard and that we should not expect it to come for free, or without a fight.
Too often people – developers, users, and even cryptographers alike – assume
privacy as automatic. It is not. In the course of this thesis, I tried to fight back a
little more of it.
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