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ABSTRACT

Distributed ledgers, and specifically blockchains, have been an immensely pop-
ular investment in the past few years. The heart of their popularity is due to
their novel approach toward financial assets: They replace the need for central,
trusted institutions such as banks with cryptography, ensuring no one entity has
authority over the system. In the light of record distrust in many established
institutions, this is attractive both as a method to combat institutional control
and to demonstrate transparency. What better way to manage distrust than to
embrace it? While distributed ledgers have achieved great things in removing
the need to trust institutions, most notably the creation of fully decentralised
assets, their practice falls short of the idealistic goals often seen in the field.
One of their greatest shortcomings lies in a fundamental conflict with pri-
vacy. Distributed ledgers and surrounding technologies rely heavily on the
transparent replication of data, a practice which makes keeping anything hid-
den very difficult. This thesis makes use of the powerful cryptography of suc-
cinct non-interactive zero-knowledge proofs to provide a foundation for re-
establishing privacy in the decentralised setting. It discusses the security as-
sumptions and requirements of succinct zero-knowledge proofs at length, estab-
lishing a new framework for handling security proofs about them, and reducing
the setup required to that already present in commonly used distributed ledgers.
It further demonstrates the possibility of privacy-preserving proof-of-stake,
removing the need for costly proofs-of-work for a privacy-focused distributed
ledger. Finally, it lays out a solid foundation for a smart contract system sup-
porting privacy — putting into the hands of contract authors the tools necessary

to innovate and introduce new privacy features.
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LAY SUMMARY

Blockchains have reached great popularity recently, as seen by the high market
price of Bitcoin. There is more than financial speculation here, as they cut out
banks and other trusted institutions. As social tensions rise in our world, and
people distrust many institutions more, removing the need for them is attractive.
An unintended side-effect of the technology behind blockchains is that — con-
trary to common misinformation — they have no meaningful privacy, outside a
few specialised exceptions. This thesis uses cryptography to re-establish a basis
for privacy in blockchain systems by ensuring the cryptography can be properly
applied to the problem, and broadening what it can be applied to from previous

results.
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INTRODUCTION

ODERN life increasingly relies on online networks and connections. The

benefits to modern communications are clear: Actions previously done
in-person can be done over vast distances. Actions which might take along time
to resolve in person, such as auctions or matching orders have been vastly sped
up, astheincreased networking allows people to access information and systems
directly, rather than through middlemen.

Despite the great advances brought by the internet, as with any industrial
revolution, it has also brought unexpected challenges. Large organisations such
as Google, Microsoft, Facebook, and Apple have amassed an immense effective
power — power which they are as of the time of writing under legal and legislative
scrutiny for [LH20, KM20]. Regardless of the outcome of such investigations, it
cannot be denied that these companies each have a great potential for censorship
and leverage their power to limit potential competitors.

Prominently, tech giants have been accused of partisan censorship [PW20]
and undue influence on the election process [Foliz], from both sides of the US
political spectrum. This culminated in the ban of US president Donald Trump
from Twitter [WP21] after the Capitol riots of January 2021. Online platforms
such as GitHub, Twitter, and Reddit, moderate content opaquely to ambiguous
terms of use, and even services considered as infrastructure, such as Cloudflare’s
denial of service protection and Amazon’s AWS cloud computing, the likes of
which are considered almost essential for operating a website in today’s internet,
have withdrawn their service for ideological reasons [Pri1z, NovaI].

The popularity of cryptocurrencies, blockchains, and distributed ledgers (the
terms often being merely different sides of the same coin), is largely explained
through a disillusionment with centralised systems and a promise that without
central oversight and dictation, a fairer, next generation network can be built.

This ideal of distributed ledgers empowering a more decentralised future is

at odds with the privacy of their users. Somewhat paradoxically, even though



much of the centralised internet relies on the gathering and selling (either
directly, or through advertising services) of personal data, the alternative pro-
posed by distributed ledgers has, at least naively, an arguably greater cost:
complete transparency.

While technological developments during the past few decades have desen-
sitised many people to the sharing of their personal data, people are prone to
overestimating the extent — major privacy scandals such as Cambridge Analyt-
ica [CGH18] still shock the general public, and in many areas, such as personal
finances, privacy is still very much expected. Even in areas where personal data
is frequently gathered and used, such as online purchasing habits and searches,
users often expect this privacy violation to be limited - it is one thing for “the
Google algorithm” to know what you have been searching for, but quite another
for your colleague to.

In their naive form, which overwhelmingly is still their current form, block-
chain-based systems are completely transparent. Their operation is primarily
based on replication — everyone knows everything and can therefore hold ev-
eryone else to account. This is somewhat inherent: To reach agreement on what
happened, one much know what happened. The challenge lies in the openness of
distributed systems — while with a centralised system, such as a bank, you may
be able to trust the respective entity with confidentiality (or at least to respect
the law on privacy), with a decentralised system any entity could be looking to
sell your data at the first opportunity.

Cryptography presents one of the best tools available to resolve this conflict.
At its most basic form, simply the usage of public-key cryptography in all
cryptocurrencies provides more privacy than their fiat-currency alternatives
in one aspect: A person’s bank account and credit cards are directly linked to
their name and address. A public key is typically linked much less directly; only
through third-parties which have gathered this information, usually because
of legal requirements. Furthermore, the creation of new public keys, new
“identities”, is free and trivial — while bank accounts and cards are often also
free to open, their creation is sufficient hassle to discourage making use of this
fact.

During the early days of cryptocurrencies, the wild-west nature of the field
and the pseudonymity provided by public-key cryptography caused a frequent

misconception of anonymity, rather than pseudonymity. Even users recognising
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the difference would often feel that pseudonymity was sufficient - nothing was
directly linked to them, after all. Since then, Bitcoin has seen multiple high-
profile deanonymisation attacks [MPJ*13, BKP14], disabusing this notion.

More complex cryptography can provide better anonymity and privacy: The
Monero cryptocurrency [vS13]relies onring signatures hiding the details of each
transaction among a set of possibilities, with external observers not able to tell
who made it. Even more powerful is Zerocash [BCG*14], which hides additional
information of a transaction, except when it was made!, using non-interactive
zero-knowledge proofs of knowledge (NIZKs) as the basic tool. The details of
how this proof works will be explained in Chapter 5, and NIZKs will follow us as

a central tool throughout this thesis.

1.1  From Bitcoin to Ethereum and Beyond

The question of consensus was thought largely settled in the literature at the
time Bitcoin [Nako8] was presented. n parties could agree, provided fewer than
n/3 of these behaved adversarially - or in a Byzantine manner, as it is often called
in the context of consensus. Practical protocols achieving this, notably PBFT
(practical Byzantine fault-tolerance) [CL99]existed, and impossibility results for
better thresholds were well-known.

Bitcoin [Nako8] threw a spanner in the academic works of consensus. While
the basic goal was the same, to agree on something, the details were entirely

different and largely novel:

I. The setting was not one of n parties, but the open internet.

2. Parties had influence according to their computational power, rather than
a singular vote.

3. The consensus was a continuous, eventual agreement, rather than being
immediate.

4. Athreshold of adversarial power of 1/2 was achieved.

The argument for these security properties was largely informal, but was later

formally proven [GKLI15], the details of which we will recap in Section 2.4.

'There exist privacy attacks [KYMMI8] on Zcash, the cryptocurrency based on Zerocash,
however they are more indicative of user behaviour and design decisions than the protocol’s
security: When given an inconvenient option of privacy, users will ignore it.
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2. and 3. are compromises — they are less strict than the traditional require-
ments of Byzantine consensus and come with their own problems. The former
violates a fundamental human desire for fairness, and the latter introduces an
uncertainty about when agreement has actually been formed (a fault which great
effort has gone into redressing in various cryptocurrencies, rebranded as a novel
feature of “finality” [Vukis]). These relaxations directly enable I. and 4., and
while some distributed ledger protocols have compromised on 4., removing the
restriction of a fixed set of parties is crucial for the distributed nature of dis-

tributed ledgers?.

Proof-of-work and stake. Bitcoin’s dependence on computational power
solved the issue of Sybil attacks: In a setting where creating new connections and
identities is effectively free, there must be some way to limit which identities
get a say and which do not. Bitcoin re-purposed the existing tool of proof-of-
work [DGNos3]. The basic primitive is the cryptographic hash function (using
the random oracle heuristic [BR93]), the output of which is unpredictable. A
proof-of-work is simply demonstrating a hash preimage for which the output
conforms to some pattern - for instance the first n bits being 0. This demon-
strates having — on average - run the hash function 2"~! times, demonstrating
either an investment of computational resources, or luck, with the latter smooth-
ing out due to the law of large numbers.

As Bitcoin grew in popularity, it quickly became apparent that proof-of-
work has a major downside when directly tied to financial incentives: Rather
than merely selecting the users which had the most computational power avail-
able, it actively encouraged the development of gigantic server farms with no
other purpose than to generate proofs-of-work. Moreover, the difficulty of the
proof-of-work adjusts automatically — it provides a competitive environment,
but no limits on the competition. As a direct result, the energy consumption and
waste generated by the proof-of-work process is immense. According to [Dig20]
and, at the time of writing, Bitcoin alone has a carbon footprint comparable to
New Zealand, with a yearly energy consumption of 75.50 TWh.

To address this issue, various alternatives have been proposed, with the most

*This restriction too has been lifted, for “federated” ledgers, in which a fixed set of parties
can participate in consensus. This setting is of no interest for this thesis and while it has seen
renewed interest since the development of Bitcoin, the cryptographic foundations of the setting
are well explored.
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prominent being proof-of-stake. As distributed ledgers are typically accompa-
nied by a currency, the amount each user owns of this can be used to determine
their voting power, rather than their computational resources. While proof-of-
stake appears a harder problem to solve, solutions have been created and proven
secure [BGK*18, GHM 17, DPS19]. There are trade-offs with respect to trust in

proof-of-stake - if the initial stakeholders of a proof-of-stake system are not
considered of a majority “honest”, the system is inherently insecure, placing an
unusual amount of power into the process of selecting the initial distribution. By
contrast, proof-of-work is more self-regulating, as it does not require “permis-
sion” to participate in the consensus process. Given a sufficiently liquid asset,
this is no longer a problem, and by contrast the advantages of the immensely

reduced energy consumption are obvious.

“Smart” contracts. Bitcoin itself was designed primarily as a cryptographic
currency: It supports transfers of funds, which are associated with a public
key. In perhaps a surprising level of foresight, Bitcoin came with a limited
programmability, in the form of short scripts which need to be satisfied to
spend each coin (or more precisely, unspent transaction output, or UTxO). While
the expressiveness of this scripting is limited, it allows for instance requiring
multiple keys to sign off on a transaction, and locking funds for a fixed time.
This expressiveness has been sufficient for some more innovative systems to be
deployed in the Bitcoin ecosystem, despite it having few fundamental changes.
Bitcoin was nevertheless too restrictive for many applications users wanted
to develop and, even where workarounds were possible, they were cumbersome
and hard to develop. Various applications duplicated the consensus of Bitcoin
and attached their own semantics for specific applications: NameCoin [KCE"15]
providing a distributed alternative to domain names and Bitmessage [WarI2]
providing a distributed ledger-based communication protocol, for instance.
This practice of separating the consensus of each application was not partic-
ularly sustainable. Not only did it splinter consensus into many different, small
communities, the smaller of which could be attacked with comparative ease,
but the effort of maintaining the complex consensus system went beyond what
many of these applications offered. Ethereum [Woo14] provided an alternative
approach: It aimed to provide a fully programmable blockchain as a platform,

allowing users to deploy programmatic rules to govern - in a small part - the
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consensus. These small programs have been called “smart contracts” and, as
bad as I believe this name to be3, it has stuck.

Smart contracts have been used for a multitude of applications, from the
comparatively simple, such as auctions and subsidiary currencies (usually re-
ferred to as tokens), to the complex, such as the (now infamous) DAO (de-
centralised autonomous organisation). The increased complexity of smart
contracts has also increased the attack surface, with Ethereum being the subject

to multiple high-profile attacks over the years [CPNX20].

“Layer 2” solutions. After the popularity of distributed ledger exploded in
2017, it became apparent that there was a very real limit to the practical scale of
the technology. Simply put, when everyone has to know everything, the amount
of data processed grows quadratically. At the height of its popularity, fees for
processing transactions soared, as users were forced to compete for the avail-
able bandwidth of the system, and many of the smaller, less financially driven
applications were laid on the wayside — no longer worth the cost of running.

This quadratic growth of processing (or linear if considered per-person) is
a direct result of the setting of mutual distrust, unlike trusted solutions which
decrease in per-person processing. The most common initial naive “solution” is
to split the network into smaller, independent parts (or shards, with the process
being often called sharding), has a tremendous hidden cost: It amplifies the effec-
tive power of an adversary, who can pick and choose which part of the network
to attack.

Recently, so-called “layer 2” solutions have become more prominent, includ-
ing state channels [DFH18] and the Lightning network [KL20]. These process
largely independently of the blockchain, falling back to it only as a dispute reso-
lution mechanism. While this thesis does not concern itself directly with layer 2
solutions, their existence is important for the goal of privacy, as they exhibit pri-
vacy characteristics both positive and negative: Layer 2 solutions provide inher-
ent privacy, by relying on less public, user-to-user interaction, but often imply
relying on, and interacting with, semi-trusted third-parties, potentially repli-

cating the privacy characteristics of the centralised internet.

3] contend: Smart contracts are neither smart, nor contracts. More accurately, they are
reactive state machines, as we will be discussed in Chapter 6.
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1.2 Disparate Approaches to Privacy

Privacy is one of the fundamental pillars of the field of cryptography. Many
tools, such as secure multi-party computation, fully homomorphic encryption,
and zero-knowledge provide great privacy guarantees. These are not all directly
suitable to the distributed ledger space however and a few tools have seen the

most success in preserving the privacy of distributed ledgers.

Statistical techniques. The first, and the one which we will not focus on, re-
lies on statistical security. Privacy is preserved by muddying the paths, making
unclear how funds are moving. The earliest conception of this approach lies
in coin mixers, such as CoinJoin [Max13] and CoinShuffle [RMK14]. The idea is
simple: A set of users deposit equal-value coins into a pot and each withdraws
the same value again independently, with all users signing off on the result. Each
user retains the same value, but (for an external observer) any output could be-
long to any user. The Monero cryptocurrency (based on [vS13]) bakes this model
into its basic transactions: Using ring signatures, each transaction is placed into

an anonymity set obscuring its true origin.

Zero-knowledge. The second prominent direction of privacy has used non-
interactive zero-knowledge proofs-of-knowledge (NIZKs), to prove that a trans-
action is correct, and legally generated some output, while not revealing the
details of the output, instead only cryptographically committing to it. This
is the basic premise of Zerocoin [MGGRI13] and its more notable successor
Zerocash [BCG'14], which also relies on a highly efficient class of NIZKs, Suc-
cinct Non-interactive ARguments of Knowledge (SNARKSs, or zk-SNARKSs to
emphasise their zero-knowledge property). These SNARKSs are well-suited to
usage in distributed ledgers: They are fast to verify, meaning it is possible to
utilise them for all transactions, and have small proof sizes, independent of the
complexity of what is being proven. They can be used as a drop-in replacement
for signatures, but being able to authenticate much more complex information
than knowledge of the correct secret key.

Despite this tool being powerful, it is still limited. Zero-knowledge alone
does not let mutually untrusting users to interact arbitrarily, although it does

enable many interactions in the face of adversity. As a result of this limitation
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such approaches to privacy in the more complex setting of smart contracts, such
as Hawk [KMS™16], re-introduce trust assumptions, approaching the centralised
model of privacy to cope with the limitations of the setting. This is a good ap-
proach, however makes for a poor foundation for a platform. Had Ethereum
stipulated that each contract must nominate a trusted party, interactions within
it would almost certainly be much more restricted.

SNARKSs come with their own drawbacks: First, they rely on non-falsifiable
knowledge assumptions which make using them in larger compositional settings
more difficult, and second, they require a trusted setup: They rely on a randomly
sampled Structured Reference String (or SRS), with the process sampling the
string being able to retain information which could be used to break the security
of the SNARK. These drawbacks are not to be underestimated - a flaw in Zcash’s
initial reference string design could have enabled illicit printing of vast amounts

of funds in the corresponding network [SWBI19].

Multi-party computation. Beyond these commonly used approaches to
privacy on distributed ledgers, three further approaches are noteworthy. First,
among other cryptographic approaches, secure Multi-Party Computation (or
MPC) is a very powerful candidate. Its use for privacy in smart contracts has
often been proposed, however it is directly opposed to scalability aims: MPC,
while practical, takes orders of magnitude longer to run than “native” compu-
tation. While it is possible to deploy in the fully distributed setting, by electing
representative committees from the participants (as some proof-of-stake proto-
cols, such as Algorand [GHM™17] already do), this committee would either need
to perform an infeasible amount of computation, or the ledger would have much

reduced throughput.

Layer 2 solutions. MPC still has good applications combined with the second
approach: As already mentioned in Section 1.1, layer 2 solutions are inherently
less open, with higher levels of privacy. As layer 2 solutions generally concern
small sets of semi-trusted parties, running MPC between these can reduce the
trust required further, spreading the cost of the overhead, as each user only

needs to compute what they are interested in4.

“4Incidentally, this is the same reason why SNARKSs are attractive: Proving is expensive, but
you need prove only what you are interested in.
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Trusted hardware. Finally, it is commonly proposed to utilise trusted hard-
ware to bypass the limitations and computational cost of cryptographic tools.
This is an especially attractive option for the private sector, as it reduces costs,
while being able to offer additional features. Tools such as Intel SGX and AMD
SVE are available for immediate use and require relatively little development
effort when compared to deploying advanced cryptography. Nevertheless, the
implications for privacy are murky: Centralised trust is placed on the design of
the processors’ secure elements, their production, and less obvious things such
as microcode updates. While it can (and should!) be argued that users must trust
their machines already — users typically do not trust the machines of others and,
especially when it comes to privacy, information is leaked at the weakest link.

Given a history of side-channel attacks on secure hardware[VMW*18, MOG*20],

the real privacy of such systems is questionable and, given the reliance of central

trust, it will not be able to resist nation-state actors?.

1.3 Thesis Outline

This thesis focuses on how to utilise zero-knowledge proofs to provide a better
foundation for privacy in the distributed ledger space. The contributions are
split into four main parts, each following one of the research papers produced
during this thesis, and each addressing a pertinent problem to deploying privacy
in distributed ledgers. While the privacy and decentralisation discussed here
seem far from the politics at the start of this section, I believe distributed systems
to be crucial in opposing centralised structures — and the basics of their privacy
are still poorly understood beyond financial transactions. This thesis’ primary
motivation is then to provide a foundation for constructing and reasoning about

distributed and private systems.

- Composition with Knowledge Assumptions. In Chapter 3 the short-
comings of existing compositional security techniques in handling knowl-
edge assumptions (and by extension, zk-SNARKSs) are outlined and a new
approach that permits composable security proofs with minimal changes

is presented. This substantiates the folklore belief that the usage of zk-

5Few things are when pressed. Given rising geopolitical tensions between the USA and China,
who broadly control the software and hardware we use respectively, it is worth considering that
both will likely be leveraged in future geopolitical conflicts, however.
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SNARKS in larger protocols is secure, although there is still ground for
caution: The reuse of knowledge assumptions presents a potential danger,
one with real-world consequences, as the same groups are frequently used
for various systems. This is a crucial prerequisite for using efficient zero-

knowledge proof systems, which the latter part of this thesis relies on.

- Secure Reference Strings from Consensus. Chapter 4 handles the issue
of the trusted setup required for zk-SNARKSs and observes a mechanism to
perform the setup from the same trust assumptions of Nakamoto-based
blockchains (i.e. honest majority of some resource). The result holds for
both proof-of-stake and proof-of-work blockchains, although itis easier to
establish for the latter. To simplify, each creator of a block also performs an
“‘update” on the reference string, which relies on this being among a class
of “updateable” reference strings. Given existing results on the frequency
of honest blocks, an honest update is eventually guaranteed. Again, this is
done as a prerequisite for using zk-SNARKSs in the final two parts of this

thesis.

« Privacy in Proof-of-Stake. The benefits of proof-of-stake are apparent
and, despite some drawbacks, outweigh their downsides, as discussed in
Section I1.1. Proof-of-stake exists in an inherent conflict to privacy on the
underlying currency however, with its operation being influenced by os-
tensibly private data. In Chapter 5 we resolve this conflict as far as pos-
sible, following an adaptation of Zerocash [BCG*14] and Ouroboros Gen-
esis [BGK*18] to derive a provably secure and private proof-of-stake pro-
tocol, with some concessions being made for network leakage. This can
provide assurance that private systems are not inherently more wasteful
than public ones — something increasingly becoming a point of contention

for Bitcoin, for example.

- Privacy in Smart Contracts. The disparate approaches to privacy in
smart contract systems and lack of a unified and foundational approach
is one of the primary challenges to privacy in the distributed ledger space.
Users cannot write a privacy-preserving contract with the same ease as
they can write one in Ethereum. This is party inherent, as privacy is
hard, but is also explained by there being a lack of a good foundational

framework to build from. Chapter 6 presents a foundation of privacy in
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smart contracts, based on zero-knowledge proofs of correct state updates

and argues why this is useful.

Beyond these chapters, which make up the core of this thesis, Chapter 2 intro-
duces necessary background material and important related work is. Chapter 7

summaries and ties together the core contributions.
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BACKGROUND

HIS chapter presents the foundations required to understand the main body
Tof this thesis, given a general computer science background. We begin in
Section 2.2 by introducing basic fundamentals of cryptographic proofs, such as
hardness assumptions and reductions, as well as how they relate to the more
sophisticated constructions primarily used in this thesis. Notably the introduc-
tion of the universal computation and constructive cryptography frameworks,
as well as knowledge assumptions are central to the work in Chapter 3.

Section 2.4 covers the origins of distributed ledgers, their properties, and
how secure proof-of-stake is constructed and combined with compositional se-
curity frameworks. The properties and modelling of distributed ledgers is of im-
portance to Chapters 4 to 6, while the design of secure proof-of-stake protocols,
and more specifically the Ouroboros family of protocols, is central to Chapter 5.

The basics of zero-knowledge and zk-SNARKSs are presented in Section 2.5.
Important are the fundamental characteristics of zero-knowledge proofs, the
additional properties of updateability and universality, required for Chapter 4
and Chapter 6, respectively. Section 2.5 also discusses the commonalities of zk-
SNARKS, and why they often rely on knowledge assumptions.

Finally, Section 2.6 discusses the design of smart contract systems, starting
with the archetypical smart contract system of Ethereum. The section also cov-
ers UTxO-based smart contract systems, which Bitcoin’s scripting language may
be considered a part of, and a few of the more notable privacy focused variations

of smart contract systems.

2.1 Mathematical and Programming Notations

This thesis uses common functional programming expressions in various places,

including the following for precision:

- Lambda expressions: (Ax: 2x)(2) = 4

12



- List and tuple literals: [1,2] and (1, 2).
« List accessors: [1,2][0] =1
« List head and tail: head([1, 2]) = 1, tail([1, 2]) = [2]
We consider tail permissive, i.e. tail([]) = []
- Tuple projection: proj;(1,2) =1
. List concatenation: [1, 2] || [3,4] = [1, 2, 3, 4]
« The higher-order function filter: filter(Ax:x = 0 mod 2,[1, 2]) = [2]
« The higher-order function foldl: foldl(+,0,[1,2,3]) = 6
« Curried functions: foldl(+) = As, I: foldl(+, s, )

Maps are seen as functions from keys to values, allowing map defaults to
be represented by initialising to a constant function, for instance Ax:0. Lists
are freely used to represent the set of their elements. The symbols L and & are
overloaded, with the former representing both “false” and “error/abort”, while
the latter represents the empty set, empty map, and in some cases, the initial
state. Further, for a map M, k € M denotes that the map contains the key k. A
key is not in the map if and only if M(k) = L. For lists, ¢ denotes the empty list
and | denotes list concatenation. Single non-list items can be interpreted as a
singleton list.

The following functions are used throughout the thesis.

« The function prefix(L, x) returns the shortest prefix of L containing x, or L
itself, if no such prefix exists.

« The function idx(L, x) returns the index of the first occurrence of x in L, or
Lifx ¢ L.

« The functions take(n, L) and drop(n, L) return the first n items in L, and all
but the first n items in L respectively.

« The function last(L) returns the last element in a list.

« The function reverse(L) reverses the order of a list.

« The function dedup(L) returns L, with only the first occurrence of any ele-

ment retained.

The relation a < b denotes the (reflexive) list prefix, and L% is used to denote the
prefix of L missing the last k entries.

Finally, assert and abort are used throughout this thesis. The statement
“assert x” is equivalent to “if -x then abort”. Where it occurs, abort is seen to

mean “the current experiment outputs L”. Note that this is different from the
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machine outputting L itself, and in particular applies to the whole simulation

experiment we will introduce in Subsection 2.2.2.

2.2 Cryptographic Proof Styles

Cryptographic proofs vary greatly in scale and requirements: From the informa-
tion-theoretic proof of the security of the one-time pad, to complex high-level
proofs of interactive systems relying on many unusual assumptions. This thesis
focuses more on the latter, the details of which depend on compositional security
frameworks which assume basic knowledge. The core ideas at play are presented

in this section.

2.2.1 Basics of Computational Security

At the base of security proofs are statements about security. Typically these
are expressed through so-called security games, short sequences of interactions
with an adversary. This adversary is typically modelled as a set of potential
algorithms (or sometimes multiple such algorithms, if the adversary operates
in stages). The set most typically has restrictions on the adversary’s execution
time, which will be discussed shortly, with other restrictions also being possible.

The adversary in the game has some winning condition - for instance, out-
putting the correct plaintext when it is given a ciphertext. The goal of any secu-
rity proof is to demonstrate that for any adversary, its probability of success in
the game is low. There are different flavours of what “low” means, depending on
the game and the setting. As there is typically a way for the adversary to sim-
ply guess the correct answer, rather than considering the probability of success
directly, often the advantage of the adversary is used instead: how much larger
any adversary'’s probability of success is than the probability of a random guess
succeeding.

If the supremum of adversarial advantages is zero, security is perfect. If not,
rather than directly working with concrete probabilities, the success probabil-
ity is usually expressed in terms of a security parameter, for which x will be used
throughout this thesis!. The usage of a security parameter allows tuning the

level of security required from non-perfect primitives. Typically this is taken

"The security parameter is often supplied in unary, written as 1%, to make explicit its impact
on algorithmic complexity.
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a step further: Rather than concerning ourselves with the concrete advantage
probabilities, cryptographers consider the asymptotics of these: Denote k(1)
by negl(x), typically security proofs demonstrate that the probability of adver-
sarial success is negligible, defined as it lying in negl(x). We often abuse notation
and write € < negl(k) to mean ¢ € k@),

The security parameter often serves a double purpose, also limiting the time
complexity of the set of adversaries permitted to k“(1). This is not necessarily
the case, however is considered the default, with more powerful adversaries (for
instance unbounded) adversaries usually being explicitly introduced.

While not unique to cryptography, this field has a strong reliance on as-
sumptions — these take many shapes, and we will introduce the more exotic

knowledge assumptions in Subsection 2.2.3, the most common are hardness

assumptions. These are specified as a game themselves, with this game being
secure by assumption. Often this is used though a reduction: The security of an-
other gameis proved by demonstrating how to construct a (victorious) adversary
against the hardness assumption from a (victorious) adversary against the game

subject to the proof.

2.2.2 Simulation-Based Security

To prove the correctness of implementations of software systems, a common
approach is to prove its equivalence to a simpler (perhaps due to it being un-
optimised) specification. A similar approach exists for security properties: A
complex interactive system can be proven secure by demonstrating its equiva-
lence, in terms of execution semantics, to a corresponding specification of ideal
behaviour. Importantly, while real protocols will have as foundational points
leaky network infrastructure and mutually distrusting parties, the ideal specifi-
cation can assume the existence of a trusted third party, with the specification
simply being a description of what this party does, when it receives (perfectly
hidden) messages from the protocol participants. Cryptographers often refer to
the ideal specification as the ideal world and the protocol as the real world.

Both worlds are usually modelled with an adversary?, which can influence
the world in certain ways. For an encrypted channel, it may be able to eavesdrop

on network communications, and for an authenticated channel, inject its own.

%It is possible to have multiple, independent adversaries as well. This is not a setting consid-
ered in this thesis, which assumes all adversaries are colluding.
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The adversary can also be a participant in the protocol, or control many users
at once (though if the adversary controls everything, there is no user for whom
security should hold). The more power is afforded to the adversary, the larger
class of attacks the protocol can withstand.

The adversary has a curious role in the ideal world. Naively, one might think
there is no point to an adversary in the specification. The need to establish equiv-
alence and its existence in the real world mandates it however, and forces con-
cessions into the ideal world. At best, any participant the adversary controls
in the real world, it also will control in the ideal world. The adversary may be
afforded additional powers as well, however. For instance, even in an authenti-
cated, secure channel’s ideal specification, the adversary is informed whenever
a message is sent, and usually provided with its length.

The secure channel’s leakage of the message length does not match the leak-
age observed in the real world, a full ciphertext. It is here that the “simulation”
part of the security statement comes in: An equivalence proof specifies a new
ideal-world adversary, called the simulator, for every potential adversary in the
real world. This simulator must coerce the ideal world to match the behaviour
of the real world, together with the adversary: It must simulate what the adver-
sary would do in this equivalent situation, for which it needs to simulate what
leakage should happen in the real world. For the secure channel, it may sample
a corresponding random string and hand it to the adversary, pretending it is
a ciphertext. Importantly, the simulator must be able to take any actions the
real-world adversary wants to take, otherwise the two side-by-side executions
will diverge and no longer be equivalent. This is the essence of a simulation
security proof: Any attack which works against the real world can be simulated
against the ideal specification — where by definition, it is no attack, but intended

behaviour.

2.2.3 Hybrid Models and Knowledge Assumptions

Beyond the hardness assumptions discussed in Subsection 2.2.1, assumptions

are sometimes made about the existence of a cryptographic primitive. These
are often approximated by a construction which cannot be proven secure - its
security is then heuristic, rather than proven. The most prominent instance of

this kind of assumption is one which features in this thesis at multiple points:
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The random oracle. The ideal description of this consists of a third party who
receives arbitrary inputs. If they have seen the input before, they output their
previous response again. If not, they randomly sample a fixed-length bit string,
record it, and output it.

The random oracle is a convenient abstraction of a hash function, although
this abstraction is flawed. For any concrete hash function, the abstraction
demonstrably does not hold [CGH98|. It follows that the usage can only ever be
heuristic. A similar situation occurs with the (comparatively simpler) common
random string (CRS) model. In this model, a fixed number of bits are randomly
sampled at the start of the protocol and made available to all users. Without a
trusted party, it is difficult to do this sampling in practice3. Nevertheless, there
are reasonable approaches to take in the real-world, which work heuristically:
Measurements of the physical world can be used to provide entropy. A hash
function can be used (as a random oracle), and provided with a distinct input ev-
eryone agrees on — perhaps the name of the protocol, or a recent news headline,
as was done for Bitcoin.

A further assumption which is often made to enable using a rounds structure
of communication is a discrete clock, which advances only when all interested par-
ties give it the go-ahead, and allows all parties to read the current time4. Unlike
with many other ideal functionalities, this thesis uses the clock globally - i.e. any-
one can access it at any time. Notably this means the environment can talk to it
directly and it is present in both worlds.

A much stronger heuristic assumption is made in proof-of-stake> protocols,
where an assumption over the initial distribution of funds is made - specifically,
that most funds are distributed to honest users. This is of course impossible to
demonstrate in the real-world, where initial distributions often follow a similar
pattern to initial public offerings of companies — whoever is interested and has
the funds to buy.

Knowledge assumptions. In zk-SNARKSs a class of assumptions known as

knowledge assumptions are prominently used. At their most basic, these are

3Although coin-flipping protocols are a possibility, they are also unreasonable in the setting
of a non-fixed set of users, which we will consider.

4This has plenty of practical uses, however raises both questions of physical limitations and
the reliability of our time-keeping when under active attack.

5Proof-of-work protocols also have to make strong assumptions about the frequency of
hashes performed. These are not central to this thesis.
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implications of the kind “If someone knows x, they must also know y”. Most
often, y encodes information on how to construct x. This allows extracting
information about the intent behind an action, which can be used in the proof,
or by the simulator, to ensure the action made sense. For example, a knowledge
assumption may state that you must know the preimage of a hash to produce this
hash (or more likely, either know this, or demonstrate you sampled it randomly
in some way). A simulator could use this knowledge in the simulation of a
hash-based commitment scheme to retrieve the original input and commit to
this in the ideal world.

We will discuss the details more in Chapter 3, however the basic form of the
knowledge assumption states that for any algorithm which outputs x, there must
exist a corresponding extractor, which outputs the corresponding y. Knowledge
assumptions are powerful and seem necessary for succinctness in many cases,
as the simulator needs to be able to retrieve the original inputs — something it
cannot do information-theoretically without additional help when the output
belongs to a smaller domain. The downside of this approach is that they are non-
falsifiable: To disprove a knowledge assumption, one would have to prove that

for some adversary, no possible extractor exists.

2.2.4 Adaptive Security

Subsection 2.2.1 already mentioned it is common for specific parties in a crypto-

graphic protocol to be considered adversarial. This is often also called static cor-
ruption: The adversary effectively begins the Protocol by deciding which parties
it wishes to control, within some limits. In many cases, this is a sufficiently pow-
erful model, however for long-running systems it is worth considering some-
thing more powerful: An adversary which can “corrupt” parties while the protocol
is running. Such an adversary is called adaptive, due to its ability to adapt who to
corrupt based on information it gathers during the protocol’s execution.

This is a particularly important consideration for proof-of-stake systems. In
these systems, as funds shift from party to party, it may become easy for an
adaptive adversary to corrupt users which hold only a minority of stake now -
therefore not violating the honest majority assumption - but did hold most stake
in the past, enabling them to re-write history. We will discuss this conflict in

more detail in Chapter 5. This may appear an unimportant detail, but it comes
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with a real-world analogue, making adaptive corruption a considerable threat in
this case: A user who has spent their stake in the system, no longer has reason to
protect their secret keys and may be careless with them: Installing malware on
the machine without as much thought, or selling it second-hand. There is little

question that obtaining old secrets is an easier task than obtaining fresh ones.

2.3 Composition

The usage of simpler cryptographic tools in larger constructions is common -
Bitcoin would fall apart without digital signatures, and layer 2 solutions like
Lightning would fall apart without Bitcoin. In the context of simulation secu-
rity, it is desirable to specify each in terms of their idealised abstraction: Bitcoin
should be secure for any signature primitive, not just its current elliptic curve
based solution®, and Lightning should work for any distributed payments sys-
tem.

Despite this concept being natural, it is not immediate, with the devil, as
usual, lying in the details. The exact notion of equivalence used in the simu-
lation proof matters, as it needs to be powerful enough to allow replacing the
ideal primitive with its realisation in the larger system, while still preserving
any security proofs. In practice, this requires two things: First, the equivalence
notion must be one of semantic equivalence, that is, both the real and the ideal
system will output the same values for the same sequence of inputs?, and second,
the proof of equivalence must apply in the presence of the larger protocol and its
environment.

Several frameworks exist to facilitate such composable proofs, by requiring
security proofs to be with respect to an arbitrary environment, which can make
any sequence of interactions it wishes. They typically define an explicit equiv-
alence relation, usually requiring a negligible advantage to distinguishing be-
tween the real and ideal world for any of the arbitrary environments. Combined,
these two properties ensure that composition is possible.

This approach is adopted both by the Universal Composition [m] frame-
work and the Constructive Cryptography [Mauir] framework (which is based
on Abstract Cryptography [MR11]), although both differ in their details. While

®An especially important point in the face of quantum cryptography.
?Technically, they must output a sufficiently close random distribution - occasional failures
and different sampling methods can be tolerated.
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many of the results in this thesis were first stated in the Universal Composition
framework, the inclusion of knowledge assumptions, which is discussed in

Subsection 2.2.3, is incompatible with either of these frameworks. The results of

Chapter 3 make up for this limitation, with the rest of the thesis being formalised

in the related UC model.

2.3.1 Universal Composability

The most popular compositional framework is Universal Composability [Canoi],
commonly referred to as UC. This framework is loosely used throughout this
thesis, making the basis of the results from Chapters 4 to 6. Its use is “loose”, as
these results are transferable to other frameworks, but are expressed in match-

ing language and notation.

Interactive Turing Machines. UC makes statements about sets of interactive
Turing machines, or ITMs. These are modelled on traditional Turing machines
with a few extensions for interaction and stochastic operation. They possess ad-
ditional input and backdoor tapes which allow ITMs to communicate with each
other, and a random tape which is provided an infinite sequence of uniformly
sampled bits. ITMs are instantiated with an identifier, with the combination of
an encoding of the ITM’s behaviour and the identifier making up an extended ID.
This can be used in a new external write operation, which can be used to write
to either the input or backdoor tapes of another ITM instance (ITM instances,
or ITIs, are independently executing copies of the same underlying machine).
Formally, an output tape exists which first the extended ID of the indented re-
cipient is written to, then the message itself. When the external write operation

is executed, this tapeis erased, and its content instead put on the recipient’s tape.

Flow Control. The interaction between ITIs is not free-form, but is formally
restricted by a control function, which may deny or alter external write operations.
In practice, this is used to prevent addressing the internals of a protocol directly.
An exception is made for the adversary, which is permitted to write onto any back-
door tape. This interaction allows each ITI to define their own adversarial influ-
ence. The details of the control function, and when calls are permitted and when
not are too long for this section, however the general premise is that — aside from

the adversary - all external writes form a tree structure, with protocols being
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able to invoke sub-protocols and receive information back from them. Execution
is kept serial for simpler analysis — one ITI is active at any time, and when it per-
forms an external write, it becomes inactive, with the recipient being activated

instead.

UC-emulation. A statement of security in UC follows from the notion of UC-
emulation. Before defining this, it is first necessary to formally define protocols
in the UC setting, and their idealised equivalents. Roughly speaking, a protocol
consists of a number of different ITIs, each representing one of the parties in the
protocol, running a program dictated by the protocol’s code. Often (especially
in the decentralised setting) the code each party runs is identical. They may
interact with other ITIs, which can model assumptions (such as the random ora-
cle, or a shared network), and with the adversary (which is often used as a fully
subvertable network). In the ideal world, parties are still represented as ITIs,
however they simply forward their inputs to a single trusted ITI, the specification
of which is usually called an ideal functionality, and denoted F. These forward-
ing parties are referred to as dummy parties. In both settings, the adversary is
assumed to be addressable - it can be sent messages, and send them in turn as
well. Beyond this, parties get inputs and supply outputs to something external
to them. This can be a larger protocol context, or the end user themselves.

The key to composition in the UC setting is that, in addition to the protocol
and adversary, a third component is considered, called the environment (written
Z). This may be any ITI, which interacts with either the real-world protocol, or
theideal-world specification, without knowing which. Itinstructs the behaviour
of the adversary® in both worlds, and must attempt to determine which world it
resides in. Ifthe environment cannot succeed, the real protocol is as secure as its
ideal specification.

Simulation-based security (see Subsection 2.2.2) is formally used, with the

ideal-world adversary being a simulator (often written S) which can mimic real-
world attacks on the ideal protocol, rather than the real-world adversary itself.
Additionally there are complexities in ensuring all ITIs run in polytime (in par-
ticular, it is difficult to capture with respect to what execution time should by

polynomial), however these are not of significant importance to this thesis.

8The adversary can be considered as part of the environment without loss of generality.
Indeed, this is part of the proof of composition of UC: the adversary is replaced with a “dummy”
adversary which simply does as instructed.
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Crucial to UC-emulation is the order of quantifiers. Given exec as the distri-

bution of executing a system of ITIs, UC-emulation is given by:

Definition 2.1. A protocol # UC-emulates a protocol ¢ if and only if
VA:4S:VZ:exec(Z, A, ) = exec(Z, S, ¢),

where A, S, and Z denote the adversary, simulator, and environment respec-

tively.

Universal Composition. Universal composition then states that a part of a
larger protocol can be replaced with a protocol which realises it. For instance,
an authenticated channel protocol p may rely on a digital signature functionality
Fsig, which in turn is UC-emulated by a protocol 7 using elliptic curve cryptog-
raphy. Then p with F; replaced with 7 (written p” sis™) also UC-emulates p.
Intuitively, this result is as the rest of the ITIs in p can be seen as part of the

environment Z. A simplified statement of the UC theorem is:

Theorem 2.1. Forall protocols p, ¢, m, where ¢ is a part of p, and m UC-emulates ¢, p‘i”’”
UC-emulates p.

2.3.2 Constructive Cryptography

Aless popular but mathematically simpler compositional framework is Construc-
tive Cryptography [Mauii]. While this framework is not used directly in this thesis,

the model used in Chapter 3 is closely based on it.

Random Systems. First introduced in [Mauo2], a random system is intuitively

a stateful variant of a randomly distributed function. Formally:

Definition 2.2. An (X, ))-random system F is an infinite sequence of condi-

tional probability distributions fori > 1, where X; and Y; distribute over

Py | xiyi-t
X and ) respectively.

Specifically, random systems produce outputs in the domain ) when given
an input in X and are stateful - their behaviour can depend on prior inputs and
outputs. [Maulr]itself works with random systems based on an automaton with
internal state; such an automaton can then also be constrained to a reasonable
notion of feasibility, such as being limited to a polynomial number of execution

steps with respect to some security parameter.
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Interfaces, Resources, and Converters. Constructive cryptography begins
by defining a set Z of interfaces, through which one may interact with a random
system. Typically, these represent protocol parties: Z may be {A, B, E} for a point-
to-point channel, for instance, to represent the parties Alice, Bob, and Eve the
eavesdropper. Arandom system which allows each of these interfaces to interact
with it is called a resource, typically denoted with a capital letter, such as R. A
converter is a random system operating only on a single interface - it connects to
the interface of some underlying resource, and provides a replacement interface
forit. Asitis possible to reduce two random systems interacting with each other

to a single random system (we will touch on this in Subsection 3.2.3), attaching a

converter to a resource on an interface results in another random system. Con-
verters are typically denoted with lowercase Greek letters, for instance a, and
attached to a resource R on an interface i € Z by writing «R.

Parallel composition is defined for both resources and converters, written

a | BorR | S, although we will not cover the details here.

Distinguishers, Simulators, and Security. A distinguisher D in Construc-
tive Cryptography is yet another random system, which forms the inverse of a re-
source: It connects to the resource on all available interfaces, and interacts with
it, before externally outputting a single bit. This bit is interpreted as a guess as to
which of two resources the distinguisher is connected with. Let AP(R, S) be the
statistical distance between DR and DS. Then the distance d(R, S)is defined as the

supremum over all possible D (ignoring subtleties such as feasibility notions):

d(R, S) = sup AP(R, S).
D

For security statements, we need to distinguish between attacker interfaces
and honest interfaces in Z. A converter 7 is defined for each of the honest inter-
facesi € Z, representing the protocol being executed. Furthermore, a converter
o' is defined for each of the attacker interfaces i € Z, representing the simulator.
Their key difference is that the protocol is attached in the real-world, while the
simulator is attached in the ideal world. We write 7 for the combination of all 77,

and o for the combination of all ¢'. If:
d(R,5S) < ¢,

then we can write this as:
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read as “R constructs S”. This constitutes a security proof that S can be securely

realised by using R.

Rules of Composition. The construction notion of [Maui1] is composable in
the sense that security proofs are preserved under parallel and sequential com-

position.

Theorem 2.2. Proofs in the Constructive Cryptography framework are sequentially

composable (2.1), parallelly composable (2.2), and reflexive (2.3).

- -

T, e T hE1+E

R— SA §—T = R— T (2.1)
7 4 | e+

RES sar 2y — pr 2 g o (2.2)
1,0

R— R (2.3)

2.3.3 Globality, Corruption, and Other Caveats

Globality. A few caveats arise in the practical usage of compositional frame-
works, in UC and other similar frameworks. First, it is frequently useful to have
multiple high-level protocols interact with the same sub-functionality. A great

example of this is the clock sketched in Subsection 2.2.3 — multiple protocols will

realistically share the same time units, and not operate vastly out-of-sync with
each other. This concept of a functionality being available more broadly is also
called globality. In UC this is not natively available, however modifications to the

framework [CDPWo7, BCH"20] enable globality. Intuitively, globality equates

to changing the requirement of a tree-structure for internal calls to requiring a
directed acyclic graph structure instead. Looking forward to Chapter 3, this is

also stricter than necessary — any graph structure can be used.

Corruption. A further question is how to model corruption - often static cor-
ruption can simply be modelled as a subset of the parties being controlled by the
adversary, that is, it determines their behaviour, and sends messages on their be-

half. Adaptive corruptions, as described in Subsection 2.2.4, are more complex.

Generally, the methodology in UC is to allow dummy parties to receive a special
message CORRUPT, which orders them to switch control from the environment

to the adversary. In either case, care must be taken to ensure that the adversary
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does not violate limits on corruption, and does not corrupt different users at
different levels - for instance, corrupting a user in a signature scheme which
is used in an authenticated channel should also corrupt that user of the authen-
ticated channel. Often ideal functionalities also make use of honesty, and spec-
ify different behaviour for honest and dishonest users. While there is nothing
preventing the same from being done in the real world, there it does not match

reality (rather inconveniently; it would make many problems far simpler).

Wrappers. It is occasionally useful to separate a core behaviour of the ideal
world or of the real world with a modification that is made to it for practical
purposes. This thesis makes use of wrappers at two points: In Chapter 4, an
idealised reference string functionality is modified to be available only after a
set time, and in Chapter 5, the real-world protocol is modified to deny all ad-
versarial zero-knowledge proofs if it violates the corruption limits. Formally,
this is achieved through wrapper functionalities, often denoted with W. In practice,
these are simply functions which map a (set of) ITIs to a corresponding set with
modified behaviour. An early example of this usage is in [BGK*18], with the
wrapper in Chapter 5 being closely modelled on this.

Aborts. Itiscommon for cryptographic protocols to abort. In practice this can
mean that a party leaves the protocol unfinished. This interpretation makes less
sense in the decentralised setting, where leaving the protocol is permissible, and
should not affect its execution. Instead, this thesis uses aborts to mark violations
of assumptions. This can refer to small violations, such as an input being in the
incorrect format, to large assumptions such as honest majority. Semantically,
throughout this thesis, the keyword abort should be taken to mean that the full
current execution exits immediately, and outputs L. Crucially, in a real/ideal
world experiment, both worlds should abort under the same conditions. In the
real world this is often simpler to achieve - the simulator can abort whenever it

pleases.

“Simple” UC. Thedescription given in Subsection 2.3.1 technically limits itself

to a simplified view of UC - in the full framework, ITIs are able to create new ITI
instances simply by addressing them directly. For analysis, it is often easier to

ignore this feature, and instead focus on static interaction graphs. This thesis
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only makes use of such a “static” form of UC, and notably relies on this being

closely related to the framework used for knowledge assumption in Chapter 3.

2.3.4 Notational Conventions in This Thesis

The style of writing UC protocols and functionalities differs greatly from author
to author. As a result potentially important corner cases may be overlooked,
as the exact behaviour of a given functionality is sometimes unclear. This
thesis adopts a more explicit style, while at the same time attempting to avoid
writing unnecessary information in the definition of the functionalities. While
the proofs, protocols and functionalities can be read and understood without
explicit knowledge of the notation described in this section, this section defines

some of the behaviour left implicit in them.

Flow of execution. Session identifiers are formally used in UC to shield a pro-
tocol from external calls, except when allowed by the control function. While
they are effectively a technical detail of the description in UC, they are often
replicated in the description of functionalities and protocols. Session identifiers
are implicit in this thesis. In a similar vein, it is often a convention to replicate
(part of) the input to a functionality when returning the result, to ensure that
it is clear which query is being answered. This is omitted as well, in favour of
simply stating the actual value returned. Both of these are how a protocol would
be written in a channel-based communications model, such as that of [MauIi],
rather than the tape-based model of UC itself.

When a functionality is processing something, it is always processing on be-
half of some party, which may be the adversary itself, or may be corrupted. Like-
wise when a protocol is processing something, it is processing this on behalf of its
owning party. When a functionality or protocol hands off execution to another en-
tity, by making a query to another functionality, or the adversary, execution for
this party is suspended, and resumes only when the query returns. Attempts by
the environment to make queries to a suspended protocol will be ignored. Like-
wise, if the environment attempts to query a functionality with a party which is
currently suspended, the query will also be ignored. Crucially, the environment
may still query a functionality with another party while one is suspended, ensur-
ing that parties may still act concurrently. This behaves equally in protocols

and functionalities, as the functionality is suspended in the same situation the
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corresponding party’s protocol is suspended. Finally, we assume that queries
will eventually return - this is equivalent to queries which do not return, as we
allow the environment and adversary to hold off indefinitely until returning.
While this is possible, in practice, due to the implicit suspension mechanism
described above, this means disabling a party permanently.

This above mechanism is not a great deviation from UC - it can easily be
implemented by having a functionality or protocol record locally the suspension,
and reject new queries from the suspended party until it receives an input of
a specified form. We simply omit this mechanism when writing our protocols.
Responsive environments [CEK"16] are a strictly stronger form of this idea.

We assume the existence of a set of all parties P, of which there is a subset of
honest parties H < P. We assume H # @. Correspondingly, the set of corrupted
parties is P \ H. All functionalities are assumed to have knowledge of these sets.
Real world protocols, when they interact with these sets, will assume that, if the
party running them is ¢, P = H = {}, that is, they know of no other parties

except themselves, at least initially.

Notation. Asthe adversary may respond arbitrarily to queries, each query in-
cludes a well-formedness condition, and a fallback distribution. In particular,
query A with x and receive the reply y, satisfying P, else sampling from D
means the following: Send x to A, then wait for the response y. If P(y) does not
hold, instead randomly sample y from D. This allows us to ensure responses
are well-formed, while avoiding the common technique of aborting in the ideal
world on receiving unexpected input, something we try to avoid, as it effectively
permits denial-of-service in the “ideal” world. Finally, the period (“.”)isused as a
membership access operator, to talk about variables of simulated functionalities,
or in the proof, to talk about state variables of various functionalities and proto-
col instances. For instance, 7.X means the state variable X within the (possibly

simulated) functionality F.

2.3.5 Commonly Used Functionalities

Subsection 2.2.3 has already introduced some cases where a functionality is as-

sumed. Notably the random oracle Fgq, global clock G|ock, and common refer-

ence string functionality 72,  are used at multiple points. For this reason, and

CRS
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also to familiarise the reader with the notation used for functionalities, they are

introduced here.

Functionality Fro
The random oracle functionality Fg returns a uniform random value in {0, 1}* for

each input.

State variables and initialisation values:

Variable ‘ Description

H=o ‘ A map from inputs to (fixed) outputs

When receiving a message (QUERY, x) from a party y:

if x ¢ H then let H(x) < {0, 1}*
return H(x)

Functionality G |,

The global clock allows parties to agree on some discrete notion of time.

State variables and initialisation values:

Variable | Description

t =0 | Current time

T =2 | Timekeepers

A =g | Agreements to advance

When receiving a message REGISTER from a party y:
letT <« Tu{y}
When receiving a message DEREGISTER from a party y:
letT « T\ {}
When receiving a message UPDATE from a party y:
let AW) « T
if Vi € T: A(Y) then
lett —t+1;A < A¢:L
query A with TICK-TOCK
When receiving a message READ from a party :

returnt
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. . D
Functionality 7 ..

The CRS functionality F2,. samples random values from D, until one satisfies the

CRS
adversary. This is made publicly available to anyone.

State variables and initialisation values:

Variable ‘ Description

s=1 ‘ The reference string

When receiving a message CRS from a party :
if s = 1 then
repeat
lets’ <~ D
query A with (CONFIRM-CRS, s) and receive the reply b
untilbvs # L
lets « s

returns

2.4 Distributed Ledgers

Distributed ledgers were conceived in Bitcoin[Nako8] to provide a decentralised
mechanism to track ownership of a digital currency. While this is still their pri-
mary purpose, the basic primitive is more flexible: Bitcoin achieved this tracing
of ownership through a ledger, an ordered record of who sent funds to whom.
Anyone can write to this record and insert a transaction?, with the ledger guar-
anteeing an approximately correct ordering. Two transactions submitted close to
each other (typically meaning within a few hours, depending on assumptions
made on honesty and the security parameter) they may appear in a different
order, while if they are sufficiently far apart, their temporal order is preserved
on the ledger. Ledgers are also typically assumed to be readable by all, although
Chapter 5 will discuss a partially private variant. In this section we will detail the
exact security provided, and how this has been achieved in both proof-of-work

and proof-of-stake.

°Provided they pay a transaction fee and follow the appropriate format, although these are
not crucial for the primitive itself.
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2.4.1 Bitcoin and Proof-of-Work

Bitcoin [Nako8] was proposed and implemented without a formal security anal-
ysis. It builds on the pre-existing tools of peer-to-peer networking, digital sig-
natures, and proof-of-work. Prior to Bitcoin, proof-of-work had been proposed
as a mechanism to deal with email spam [DGNo3]and used in prior unsuccessful

attempts at digital currencies.

Proof-of-work. The term “proof-of-work” describes a class of primitives con-
sisting of a proving and verifying algorithm. They operate much like signatures,
with it being possible to perform a proof-of-work being on any arbitrary mes-
sage and verifying it with respect to the same message. Much like signatures,
proofs-of-work must be binding with respect to the message — another message
should not be substitutable after the fact. Unlike signatures, no keys are involved
however. They are substituted with a different, interesting property: The only
way to generate a valid proof-of-work is to run the proving algorithm, which
has a known average-case runtime!®. Thus the verifier succeeding attests to the
prover having (on average) devoted this runtime into generating the proof. A
closely related concept are verifiable delay functions [BBBF18], which differ in that
instead of the exponential success distributions involved in the usual proofs of
work, they are distributed more consistently around the mean.

A straightforward implementation of proof-of-work relies on repeated ap-
plication of a random oracle in the random oracle model, or in its heuristic re-
alisation, repeated hashing. To begin, sample a random nonce and concatenate
it to the message. Pass this into the random oracle and interpret the result as a
binary number. Ifthis is sufficiently small, for an I-bit output, less than 2% fora
k dictating the hardness of the “work”, the nonce serves as a proof of work. If not,

repeat until it does. In the case of less than 2/ it takes on average 21

attempts
before the random oracle outputs a sufficiently small value, therefore attesting
to sufficient “work” having been done. Furthermore, verification is independent
of the difficulty: Only one random oracle invocation is necessary to check that
the work claimed is available. As applying the random oracle with a nonce is a

commitment scheme, the commitment properties are also guaranteed.

'°Assuming all parties have the same computational resources. In practice, these are variable,
with the proof-of-work runtime being inversely proportional to the resources available.
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“Nakamoto”’ consensus. Given the basic tool of proof-of-work and a peer-
to-peer broadcast network which reliably sends information to all other par-
ticipants®, it is possible to construct a distributed ledger given a uniform start-
ing point through the so-called “Nakamoto” consensus algorithm, after the
pseudonymous author of Bitcoin. Specifically, this starting point, called a genesis
block in Bitcoin, ensures that no user has been pre-computing proofs-of-work, by
requiring all proofs-of-work to sign information which was not known before
the protocol start. This can be modelled as an assumption through a common
random string, although in Bitcoin it was achieved by embedding a headline
from The Times.

From the initial genesis, a difficulty target is chosen — kin the sketch of proof-
of-work above. Any user may create a “block”, a collection of transactions and
some metadata and append it to the already existing data, provided its metadata
includes a cryptographic reference to the previous block, in form of its hash and
it contains a proof-of-work reaching the difficulty target over the message of the
remainder of the block (including the reference to the prior block).

This creates a tree of blocks, with the genesis block as its root, due to blocks be-
ing verified recursively until the genesis is reached. Onlyifeach block in the path
from genesis to leaf block is correctly formatted and contains a correct proof-of-
work is the chain as a whole considered valid. Whenever a new block is created
(and therefore a new, longer chain is), its creator broadcasts it to all other users.
These attempt to create their own blocks, but always start with the currently
longest chain (breaking ties when needed). As honest users keep to this protocol,
it is unlikely that they will create a wide tree, as whenever a new, longer chain
is available they start trying to extend it instead. The only case when honest
users will work on different branches is when ambiguity arises, for instance due
to multiple blocks being created in short succession, before the users found out
about the other through the network. As the next block after this is likely to dis-
ambiguate which chain is longer, Bitcoin’s original proposal reasons that chains
will reconverge.

While the basic form of the Nakamoto consensus functions with a fixed dif-
ficulty for its proof-of-work, Bitcoin rightly anticipated that the work available

for the system would fluctuate. As this would lead to an inconsistent frequency

"What “reliably” means is a point of great contention. This thesis assumes the semi-
synchronous setting, which will be discussed in more detail in Subsection 2.4.5.
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of blocks, Bitcoin instead varies the difficult of the proof-of-work at regular
(spaced in terms of block, rather than time) intervals, adjusting it up or down
depending on self-reported timestamps within these blocks. Bitcoin targets
approximately 10 minutes between blocks and this mechanism hasbeen adopted
by most!2 proof-of-work based cryptocurrencies.

Informally, the security of Nakamoto consensus relies on a larger amount of
honest proofs-of-work being performed. An adversary attempting to break con-
sensus will want to create uncertainty about the true state of the ledger, which
can be done if multiple chains of equal length are competing. The further back
the last common ancestor is in these chains, the less about the ledger is certain.
This situation of competing chains of equal length is called a fork, with the dis-
tance to the common ancestor being the fork’s depth. While an adversary can
easily beluckyin the proof-of-work process and create a shallow fork, a deep one
is exponentially unlikely, as, if honest users have more mining power, they will
eventually break any artificial tie and extend only the longer remaining branch,
with the adversary being unable to maintain the other branch as a viable alter-

native.

Digital money. The usage of the ledger is mostly independent from the con-
sensus mechanism itself in proof-of-work currencies. “Mostly”, as the winner
of the proof-of-work lottery is typically rewarded with funds in the digital cur-
rency built on top of the ledger, to incentivise participation in the consensus
mechanism. Incentives are not the focus of this thesis (although they briefly
feature in Chapter 4, due to a flaw in the incentives for the naive approach), how-
ever it is worth stating that rewarding block creation broadly achieves its goal
or encouraging rational miners to behave honestly, provided no great financial
interests lie in censorship, or reordering transactions!3. The basic foundations
of building a digital currency on a ledger is simple: A mapping of public keys
to funds is maintained, with users being able to create transactions when they
spend funds associated with their public key. These transactions indicate a new
recipient public key and a fee they are willing to pay for the transaction, which
is retrieved by the block creator. Each transaction is digitally signed, therefore

ensuring only the owner of funds can spend them.

2 All to my knowledge, although it would be a full-time occupation to survey the entire field.
3This is, of course, a strong assumption, although still weaker than the traditional “honest
majority”.
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2.4.2 Security Properties

Bitcoin, being proposed and implemented without a formal security analysis
and not falling into the existing notions of consensus, clearly achieved some-
thing. It took a while for cryptographers to catch up and articulate clearly the
properties achieved in the Bitcoin ledger. The most notable of these formalisms
is [GKL15], which defines three properties of Nakamoto consensus: chain growth,
chain quality, and common prefix. While the analysis of [GKL15] was of a simplified
version of Bitcoin, assuming fixed difficulty and a synchronous network, these

results have since been extended [GKL17].

Definition 2.3 (Chain Growth). For parameterss,y € N, if at time ¢ the honest
party i has selected a chain of length c, then at time ¢ + s,  will have selected a

chain of length at leastc + y.

Definition 2.4 (Chain Quality). For parameters !/, u € INand any honest party’s
selected chain, any consecutive sequence of [ blocks in the chain will include at

least u blocks created by an honest party.

Definition 2.5 (Common Prefix). For the parameter k € N: Given the current

chains C; and C; of two honest parties i, and ; at the same pointin time, remov-
[k

1 -<C2,

ing the last k blocks from one chain ensures it is a prefix of the other: C
where C* denotes the chain C without the k last blocks.

Combined, these properties achieve the broader goals of persistence and live-
ness, essentially stating that a confirmed transaction will remain confirmed and

that all new transactions will become confirmed eventually.

Definition 2.6 (Persistence). For the parameter k € N, any transaction more
than k blocks from the end of the chain of an honest party will be found at the

same location in all honest parties ledgers and will remain there in future.

Definition 2.7 (Liveness). For parametersu, k € N, any valid transaction broad-
cast to all honest parties will, after u units of time, be reported as k blocks deep

in their local chain by all honest parties.

Combined, persistence and liveness are sufficient to construct a digital cur-
rency, and [GKL17] demonstrated that the (simplified) Bitcoin ledger achieves
these notions for reasonable parameters (although k may be much longer than

most users expect for typical security parameters).
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2.4.3 Composability

As distributed ledgers are used as a basis for larger systems, such as currency
systems and smart contracts, it is crucial that their security proofs still hold in
the context of their greater environment. Initial attempts at simulation-based
models of distributed ledgers [CG]"17] were too powerful, as they provided in-
stantaneous consensus, more akin to the traditional byzantine fault-tolerance
notions than the “Nakamoto-style” distributed setting.

A comprehensive modelling of Bitcoin in the universal composability setting
was later achieved by [BMTZ17], although the model had many complex parame-
terisations: A function describing how blocks are constructed from transactions,
a function restricting how the adversary is permitted to behave and complex ma-
chinery to track the passage of time, to name a few. It is because of this complex-
ity that the work in this thesis is based on a series of smaller, simpler ideal de-
scriptions of ledgers — unlike [BMTZ17], this thesis proposes new constructions,
rather than modelling existing ones, so a simpler model is more appropriate.
These simplified ledgers are presented here, as their modelling is not a primary
contribution to the thesis and they are used throughout the rest of the document.
The distributed ledger can be modelled to differing levels of granularity, depend-

ing on the amount of information needed.

2.4.3.1 The Simplified Ledger

The simplified ledger captures the essence of the traditional persistence prop-
erty of ledgers, although it does not capture liveness. Any user may post trans-
actions, which are deemed unconfirmed. The adversary may decide when and
which unconfirmed transactions to move to an append-only ledger and may de-
cide how long a prefix of this ledger honest parties see — provided it does not
remove anything previously revealed to them.

While the liveness property is not captured by this ledger, due to the large
amount of adversarial control, it is straightforward to see — although we will
not demonstrate it here — that more complex ledgers, such as those defined in
[BMTZ17, BGK"18], UC-emulate GsimpleLedger, 28 defined next. In particular, this

means that if replaced in the ideal world with such a ledger, which does have the

liveness property, we also in practice have liveness for our protocol.
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Functionality GsimpleLedger
The simplified interface to G .4, is strictly less powerful than actual ledger imple-

mentations, allowing reasoning about a less complex ledger functionality.

State variables and initialisation values:

Variable ‘ Description

% = ¢ | Authoritative ledger state
M = A.e | Mapping of parties to ledger states

When receiving a message (SUBMIT, tx) from a party }:
// The adversary is not required to ever put
// transactions on the ledger.
// Where it doesn't, the execution is unlikely
// to be interesting, however.
query A with (TRANSACTION, tx)

When receiving a message READ from a party :
if p = Athenreturn X
else return M(y)

When receiving a message (EXTEND, ') from A:
let2 <« 2| %

When receiving a message (ADVANCE, §, 2) from A:

if M(P) < 3 < 5 then let M() — 3.

2.4.3.2 The Delay Ledger

While the simplified ledger GsimpleLedger 1S nice for the analysis of protocols build-

ing on it as a global functionality, in practice users would like to take advantage

6
DelayLedger

which they were received. This time is never returned to parties, however it

of some liveness guarantees. G annotates transactions with a time at

asserts that every party can see a transaction, once it is 6 time slots in the past.

This ledger operates under the assumption of a global clock Gk, described ear-

6
DelayLedger

FsimpleLedger, DY Virtue of the latter having far greater adversarial power. This

lier in Subsection 2.3.5. We posit without proof that G UC-emulates

ledger can also be constructed using existing UC-secure ledgers such as[BMTZ17,

BGK™18], as these aim to provide the same guarantees.
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6
DelayLedger

The 6-delay ledger adds liveness guarantees to GgjmpleL edger, €nsUring that sufficiently

Functionality §

old transactions are always visible to honest parties.

State variables and initialisation values:

Variable | Description

2 = ¢ | Authoritative ledger state
M = Ap.e | Mapping of parties to ledger states

U = @ | Multiset of unconfirmed transactions

When receiving a message (SUBMIT, tx) from a party }:
send READ to G, and receive the reply ¢
letU « U u {(tx, t)}
query A with (TRANSACTION, tx, t)

When receiving a message READ from a party y:
assert liveness
return map(proj;, M(¥))

When receiving a message (EXTEND, ') from A:
if 3’ < U then

letU « U\ Y
let <« 2| %

When receiving a message (ADVANCE, §, 2) from A:

if M(p) < £’ < X then
let M(p) « 3.

Helper procedures:

procedure liveness
send READ to G, and receive the reply ¢
if H(tx, t') e U: |t — t'| > 6 then return L
elseif d(tx,t') € 2: |t —t'| > 6 A Hp € H: (tx,t') ¢ M(yp) then return L

elsereturn T

2.4.3.3 The Nakamoto Ledger

The basic functionality of this ledger allows the submission of transactions and

retrieving each of the following:
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- A confirmed prefix of the ledger state.

+ A “projection” of the ledger state — that is, what the local state will ap-

proach, if there is no chain reorganisation.

« The confirmed “leader state”, which models the mechanism used for the

SRS generation.

When any of these values is queried, the functionality ensures that liveness
and chain quality properties still hold. The adversary further has the power to
instruct the creation of a new block, on behalf of any party, and to instruct any
party to adopt a different chain. In both cases, the functionality ensures that the
common prefix property is preserved. The adversary has full control over the

contents of both honest and adversarial blocks, as well as their order.

Functionality F\ayLedger
A ledger following a Nakamoto-style consensus, with each party having a projected
chain, a prefix of which is common to all parties. Common prefix, chain quality and

chain growth are guaranteed.

State variables and initialisation values:

Variable | Description

Il = ¢ — ¢ | Mapping of parties to projected ledger states

T = @ | Multiset of submitted transactions

hon =2 | Mapping of block ids 1 if they are honest, or o

When receiving a message (SUBMIT, tx) from a party i:

send READ to G, and receive the reply ¢
let T « T u{(tx, t)}

query A with (TRANSACTION, tx, t)
When receiving a message READ from a party :
assert liveness() A chainQuality (i)
return map(proj;, tXS(H((]J)[k))
When receiving a message PROJECTION from a party i:

assert liveness() A chainQuality (i)
return map(projy, txs(I1()))

When receiving a message LEADER-STATE from a party }:

assert liveness() A chainQuality (i)
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letd « map(A(-,a,-,t): (a, t), [I({)*)
return foldl(Apply, 2, @)

When receiving a message (EXTEND, §, B, t, a) from A:
send READ to G, and receive the reply ¢’
letid < {0, 1}¥
if p € H then

leta < map(A(, a, -, t):(a,t), 1))

let o < foldI(Apply, @, a)

leta <~ Gen(o,t)

lett « t’ let hon(id) « 1
else

let hon(id) < O

ift' <tthenlett — t

elseif At”:(.,-,-,t”) = last(II(Y)) A t” > t then let t « t”
let TI($) — 1) | (B, a,id,
assert Vi € P:TI(§)* < TI(¢")
return (B, q,id, t)

When receiving a message (ADVANCE, §, %) from A:
assert 4y’ € P: X' < II(¢")
assert V' € P: 3 F < TI(¢") A I )k < 3
letI[I(Y) « ¥’

Helper procedures:
function txs(I1y)
let B — map(projy, )
return concat(E)

procedure liveness(ip)

send READ to G, and receive the reply ¢

ifdtg <t:|[t, | G, tp) eI, tg—s<t, <ty ]| <yAty—s=0then

return L

return V(tx, ') € T:t' +[(1 + R)y s > t v (tx,t") € txs(TI({P)*)

procedure chainQuality(ip)
letid « map(projs, II()*)
return Vi€ Z;_: (Zjell ids(i—aiﬂ')) 2 pl
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2.4.3.4 Commutativity of Ledger Realisations

Itis of note that since the ledger exists in both the ideal and real world, we would
ideally wish to be able to utilise the stronger 6-delay ledger (and others) in the
ideal world as well. This is not trivial, however — the UC proof presented in this
paper holds for the simple ledger, and while the transitivity and composability
of UC proofsimplies that the simple ledger can be replaced by the stronger ledger
in the real world, this is not the only goal.

In order to enable ideal-world replacement, we consider when UC replace-
ments are commutative. Specifically, consider we have four functionalities, A,
B, C, and D, such that: a) A and B both have C as a global functionality, b) A is
UC-emulated by B with the simulator Sg, and c) C is UC-emulated by D with the
simulator Sp. Observe that this is a generalisation of our situation, where A is

AA

‘FSC !

When can we conclude that A is still UC-emulated by B even if the global

Bis KACHINA, C is GsimpleLedger, and D is some other ledger G, .

functionality is replaced by D in both worlds? That is, when can we perform

the inner UC-replacement first and still be able to perform the outer one?

Theorem 2.3. Given A, B, C, D, Sg, S¢ as defined above, if S forwards all adversarial
queries to C unchanged and makes no queries to C, then A is UC-emulated by B with the
global functionality D in place of C.

Proof. We will provide this proof largely visually. The environment has a num-
ber of actions it can perform in any given world, in tandem with the dummy
adversary. We will represent these as unconnected wires in a circuit representa-
tion of the different UC functionalities. Each wire is coloured in accordance with
its purpose; these colours serve only to differentiate the wires. We visualise the

preconditions of Theorem 2.3 in Figure 2.1 and Figure 2.2. This crucially includes

the precondition that Sp forwards adversarial queries to C, which is represented

equivalently by these queries being made directly instead.

Soardd L

Figure 2.1: The first part of the precondition: 3 UC-emulates .A.

By the UC emulation theorem, for all environments, executions with the sim-

ulator and the ideal-world protocol are equivalent to executions with the real-
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Figure 2.2: The second part of the precondition: D UC-emulates C.

world protocol. Due to the all-quantification of the environment, we can replace
any part of a circuit diagram which matches exactly one of the two sides of the
equivalence with the other - this is the foundation of the compositionality in UC.

We first make use of this in the non-standard direction, of making our
ideal-world protocol more abstract. Specifically, replace the right-hand side of
Figure 2.2 with the left. We start similarly to the left-hand side of Figure 2.1,
however using D instead of C. Visually, Figure 2.3 demonstrates the result,

which includes two independent simulators.

ﬁ I |
Sp— A DJQSBA C—Sp

Figure 2.3: Visual equivalence for idealising the sub-protocol D.

From here, we can realise both the ideal-world functionalities, provided it is
in the correct order: We must first realise .4, as it relies on the presence of C. We

can directly apply the equivalence of Figure 2.1, as can be seen in Figure 2.4.

| | | | |
S A C—Sp = LlS‘ cC—Sp

Figure 2.4: Visual equivalence for substituting the main protocol .

Finally, nothing stands in the way of realising C with D, using the equivalence
of Figure 2.2 again, this time in the more typical direction. As a result, we get in

Figure 2.5 the final step, leading us to the intended equivalence and proving the

related UC-emulation statement. ]

5 cos - sl

Figure 2.5: Visual equivalence for re-substituting D.
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2.4.4 Ouroboros and Proof-of-Stake

As the theory of proof-of-work quickly gave rise to a practice of expensive, pur-
pose built machines dedicated only to “useless” work (not fully useless, but with
the purpose only to establish a distribution of power), the question quickly be-
came apparent as to whether this wastefulness was necessary. Proof-of-stake
was initially proposed as PPCoin [KN12], which later evolved into the Peercoin
cryptocurrency. As with Bitcoin, the early designs’ implications were poorly
understood, and initially there was a great deal of skepticism that proof-of-stake
was possible to do securely.

In the years since, a great deal of research on proof-of-stake has been car-
ried out. Two main streams of securely performing proof-of-stake have emerged
from this: First, “Nakamoto-style” proofs of stake, where a randomised process
determines which user will be able to create blocks and allows this user to extend
a chain, and second, Byzantine fault-tolerant (BFT)-style ledgers, where a ran-
domised process elects a representative committee of users, who perform a tradi-
tional BFT consensus protocol to decide on the order of transactions. Examples
of the former are “ad-hoc” constructions such as Peercoin and the Ouroboros
family of protocols, and examples of the latter are Snow White [DPS19] and Al-
gorand [GHM*17]. This thesis will focus on the Ouroboros family specifically, as

Chapter 5 focuses on implementing a privacy-preserving variant of Ouroboros.

The Ouroboros family of proof-of-stake. The Ouroboros family of proof-of-
stake protocols consists of the original proof-of-stake design, named just Ouro-
boros [KRDO17], and various incremental improvements, of which Ouroboros
Praos[DGKR18]and Ouroboros Genesis[BGK*18]are relevant to this thesis. This
basic design of Ouroboros divides time into lengthy periods across which stake
is considered (mostly) stable, called epochs, which is subdivided into short peri-
ods representing network synchronisation time, called slots. At the start of each
epoch, the distribution of users’ stake at a predefined point during (but not at the
end of!) the previous epoch is taken as the distribution according to which new
block creators are to be selected.

Choosing a point not at the end of the epoch mitigates an attack known as
grinding, where an adversary repeatedly sends funds to themselves, or regen-

erates a public key, until they get one which is eligible to create a block [Jut12].
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Separately, during the epoch a randomness generation process takes place, pro-
ducing the randomness used to sample from this distribution. While the details
of the randomness generation and selection process differ, the result is that each
slot is assigned a user who is permitted to create a block at this time in the origi-
nal Ouroboros protocol, with Praos and Genesis differing only in that a slot may
have multiple or no eligible block creators (or “leaders”).

The original Ouroboros [KRDO17] design used secure multi-party computa-

tion [GMW87, CLOS02] to compute randomness at the end of each epoch. This

randomness was completely unbiased and is then used to sample one leader
for each slot in the next epoch. The cost of the multi-party computation was
a limiting factor in this design and the main motivation behind the changes in
Ouroboros Praos[DGKR18]. Instead, this relied on each block creator embedding
in the block a predetermined random value, dependant on their secret key, the
slot number, and the epoch randomness. This is achieved using the primitive
of Verifiable Random Functions (VRFs), which allow other users to verify that the
randomness is indeed associated with the correct input and secret key.

At the end of the epoch, randomness provided by the blocks of this epoch is
aggregated, up to a point before end of the epoch to again protect from grinding.
A probability analysis shows that this is equivalent to a “clean” source of random-
ness as in Ouroboros, which the adversary has the opportunity to reset a fixed
number of times: The adversary can roll the dice again a few times, for instance
by withholding its own contribution to the randomness. This influence gives it
negligible impact over the distribution of blocks in the next epoch however, not
compromising overall security.

In addition to the changes to randomness selection, Praos has a modified pro-
cess for selecting slot leaders: Instead of publicly sampling a leader for each slot,
Praos relies on a process more similar to the probabilistic self-election of proof-
of-work. The VRF primitive is also used (in a separate instance) to determine if
a user is eligible for creating a block in a specific slot. Each slot, a user evaluates
the VRF given the epoch randomness and slot number. If the output value is
lower than a threshold which depends on both a difficulty parameter and the
proportion of stake the user holds, they are eligible to create the block, with the
VRF output authenticating their right to this. In particular this approach enables
moving the network model from a synchronous one to being semi-synchronous,

the difference of which will be discussed in Subsection 2.4.5.
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Ouroboros Genesis [BGK"18] moves from the property-based results of the
original Ouroboros and Praos to simulation-based results in the UC framework.
In addition to this change, it addresses an issue in proof-of-stake for users newly
joining the protocol: Given only the initial distribution of stake, it is possible to
create believable, yet false histories, by including only transactions in an alter-
nate history which transfer funds to the adversary. This attack, known as stake
bleeding [GKR18], or a long range attack, requires that participants are fixed and
active in many proof-of-stake protocols, including Ouroboros and Ouroboros
Praos. Ouroboros Genesis addresses this deficit by changing the conditions un-
der which new chains are adopted: Rather than only adopting the longest chain,
Ouroboros Genesis requires the adopted chain to be sufficiently active throughout
its history. Specifically, a chain which grows faster at the point of divergence is pre-
ferred over a slower growing chain. This makes stake bleeding attacks infeasible,
as the fork necessarily takes place at a point where the adversary has a minority

of stake.

Forkable strings. The core of the security proof of each of the Ouroboros pro-
tocols is a stochastic analysis of randomly distributed strings of selected leaders:
In Ouroboros, these strings are binary, with ones representing adversarial slots
and zeros honest slots, sampled from independant Bernoulli distributions, bi-
ased towards honest parties. In Ouroboros Praos and Genesis, as multiple or no
user may be elected to any slot, the additional symbol 1 is introduced to denote
slots without a leader, and slots with multiple leaders are treated as adversarial.
The forkable strings theorem is restated here, with the following caveats: divg(w)
is not formally presented, though it can informally be thought of as the distance
to the latest common ancestor of the longest possible fork. Further, the notation
is asymptotic, using exp and Q notations. Informally, it becomes exponentially

unlikely for a fork longer than k to be possible, as the length of the string grows.

Lemma 2.1 (Theorem 3 of [DGKR18]). Let £,k € IN,and ¢ € (0, 1). Let w € {0, ¥
be sampled from { independant Bernoulli trials, where Pr{w; = 1] = (1 — &)/2. The
Pr[divg(w) > k] < exp(In € — Q(k)).

Lemma 2.1 is combined with a proof that the asynchronous strings (i.e. in
{0, 1, L}*) can be safely reduced to synchronous ones, accounting for a maximal

network delay A.
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2.4.5 Assumptions: Network and Honesty

Some of the cryptographic assumptions required for distributed ledgers were
already briefly covered in Section 2.2. Two additional assumptions are necessary
however: First, a broadcast network is needed, both to broadcast transactions
and to broadcast blocks in order to perform consensus (this is assuming a
Nakamoto-style consensus mechanism - BFT-style algorithms may addition-
ally require point-to-point channels between the committee members). Second,
the assumption of honest majority of either computational power, or stake
needs to be made formally. In particular in the composable setting with adaptive
security, this restricts how the adversary can corrupt. This is primarily relevant
in the proof-of-stake case, as in proof-of-work corrupting a party does not

necessarily inherit their computational power.

Modelling the network. The most basic form of broadcast network delivers
any message to all participants immediately. This is clearly too strong a notion:
Real networks have delays, and a network this powerful already almost achieves
consensus: Everyone simply observes the messages in order, and treats this as
final (this assumes no messages are sent simultaneously, a possibility often de-
liberately unsupported by cryptographic frameworks to force modelling tempo-
ral uncertainty as adversarial influence). The next relaxation of broadcast is to
assume delivery after some fixed time, or after a round. Cryptography tends to
discretise time, with the (assumed) delay of communication often dictating the
units. This setting is often referred to as synchronous, as every user still receives a
message at the same time, although there is not necessarily a guarantee of order
for messages submitted in the same round. Ouroboros [KRDO17] was initially
proven in the synchronous setting.

The synchronous setting has the disadvantage of relying on the delay to be
an upper bound. If at any point a message takes longer than this delay to deliver,
the security proofis invalidated. This is in contention with a desire for protocols,
and consensus in particular, to be as responsive as possible, and therefore for the
network delay to be set as low as possible. In the real world, network delays are
likely to be distributed according to an exponential distribution — packets having
a probability of successful transmission on each attempt, with repeated attempts

on timeout. It is tempting to set the network delay to the median latency and
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throughput, which often assumes no retransmissions.

While a network-level adversary could do worse, even simple network-level
attacks such as denial-of-service can vastly increase network delays, making it
paramount that they are considered. A fully asynchronous network is not an
option either, as the delay cannot be arbitrary for consensus to be achieved. In-
stead, the semi-synchronous setting used in Ouroboros Praos [DGKR18] does have
a maximum network delay, but also divides time into smaller units than this,
and allows messages to be delivered in a time window between when they are
sent and the maximum delay. This allows protocols which operate optimisti-
cally, moving faster under good network conditions, but which still have a hard
fallback when network delays are increased.

A further power which can be afforded to the adversary is selectively broad-
casting messages, or delaying messages partially. Also referred to as multicasting,
this allows the adversary to present different chains to different users, an attack
which assumes a fair amount of network control or good timing. Further, as
privacy is the focus of this thesis it is important to stress that anything broadcast
over a network will be seen by a powerful adversary immediately. Although it
makes no difference for some of the results of this thesis, Chapter 6 assumes
sender anonymity of the transaction broadcast, that is, that a transaction cannot
be linked to the user that posted it. This is a powerful requirement, however
anonymity is unachievable without it on distributed ledgers. In practice, it can
be approximated through techniques such as onion routing [%], or mix net-
works [JJRoz], although the former is vulnerable to powerful adversaries and
the latter is costly to operate at scale. Formally, we use the following UC hybrid

functionality:

Functionality Fy;
The sender-anonymous multicast network Fy; permits any party to broadcast mes-
sages to any other. These messages will be delivered within a maximum delay of 8,
measured through G,... The adversary can deliver messages faster, and can send

messages to individual parties. Messages are erased after they are read.

State variables and initialisation values:

Variable ‘ Description

M = Ap.e | Mapping of parties to messages
P = AY.2 | Mapping of parties to messages pending delivery

Chapter 2. Background 45



When receiving a message (BCAST, m) from a party y:
query A with (BcasT, m)
send READ to G, and receive the reply ¢

let P() < P(P) u{(m, )}

return T
When receiving a message READ from a party :
send READ to G, and receive the reply ¢
for (m,t’)in P(}) do
if ' + 6 < tthen abort
let res — M(¢); M() < ¢
return res
When receiving a message (TARGET, {, m) from A:
if 4t: (m, t) € P(Y) then
let P(P) <« P(P) \ {(m, D)}
let M($p) < M(P) | m

return T

Requiring honest majority. How to formally require honest majority differs
between proof-of-stake and proof-of-work protocols. In (random oracle based)
proof-of-work, a comparatively straightforward approach may be adopted: The
random oracle is specified to restrict the number of queries each party can make
in a single round, and further limits the adversary to performing fewer queries
than honest parties. Proof-of-stake is more complex, as it is related to the cor-
ruption model. Once the adversary adaptively corrupts any party, it obtains this
parties funds (more precisely, it obtains the parties state and identity, which is
sufficient to control the funds). The adversary can attempt to corrupt a party
even if this results in it violating the honest majority assumption.

The simplest attempt to circumvent this would be to forbid such corruptions,
however as corruptions are a part of the fundamental security model in the uni-
versal composition framework!4, Ouroboros Genesis [BGK*18] instead permit-
ted them, but ensured that the security statement is trivial if honest majority is
violated. Specifically, the assumption is encoded as a wrapper around the VRF

functionality and the network. The wrapper observes network traffic to con-

"4Rather: They were at the time Ouroboros Genesis was written. Newer version of UC are more
flexible in their corruption models.
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clude if honest majority is violated, and if it is, refuses to carry out any adversar-
ial evaluations of the VRF. While the VRF functionality itself can be constructed,
using the wrapped variant instead is done by assumption - the assumption that
this violation never occurs. If it does, the adversary effectively shoots them-
selves in the foot, as its ability to create block at all is revoked. A similar ap-
proach is taken in Chapter 5, although the wrapper applies to performing zero-
knowledge proofs and retrieves the stake distribution by observing the inputs to

these proofs.

2.4.6 Limitations

When discussing distributed ledgers and their usage, it is important to bear in
mind that they are not a universal solution. Two major issues limit their ap-
plication, the first of which being a lack of privacy. As the topic of this thesis,
this should come as little surprise, but it is important to note that the lack of
privacy is (to some level) inherent in the idea of a distributed ledger as a form of
consensus among parties. Users must know the data they are agreeing on, even
if they need not know its meaning. This enables some usage of cryptography to
hide meaning, but only in so far as it is isolated and does not affect the rest of the
system. The trade-offs here are discussed in detail in Chapter 6, which focuses on
providing a reasonable basis for privacy in the general case of smart contracts.
The second limitation is not the focus of this thesis, but is important to
understand as it indicates the direction of this field of study: Distributed ledgers
are limited in their scalability. Because of the setting of mutual distrust, greater
participation in the consensus mechanism does not lead to less computational
burden on each participant, but if anything to more, as each user must in-
teract with more people. Given more users means more information flow-
ing into a distributed ledger, the effort required to maintain this ledger rises
linearly for each participant as it grows. During its peak of interest in late
2017, costs of transactions rose dramatically, and the latency of using many
blockchains slowed to a crawl due to limited transaction throughput. A lot
of research has been done over the years to increase throughput, including
Bitcoin-NG [EGSvR16] and a variant of Ouroboros [FGKR20]. Proposals were
made to split networks [WSNHI19], although this dramatically weakens the

security of each part.
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To bypass this limitation, layer 2 solutions [DFH18, KL20] optimistically
carry out computation off-chain. This must be something which can safely
be detached from the primary, on-chain consensus, such as exchanging funds
between each other. Typically this involves locking the on-chain state in some
way, for instance setting aside a fixed amount of funds for trading off-chainin a
payments channel. Only in the case that the users wish to end their relationship,
either agreeably or in a dispute, is the distributed ledger invoked again and
provided with evidence of what happened.

If distributed ledgers become a commonly used tool, their fate is likely
to become a decentralised court — mediating disputes, rather than managing
micropayments. In this context privacy becomes of even greater importance:
What happens off-chain is often protected by partial trust, and can more easily
be subjected to powerful cryptography, such as secure multi-party computation.
The on-chain resolution is the place where care needs to be taken, and in order
for this to be possible in the broadest cases, a good foundation for privacy is

needed.

2.5 Zero-Knowledge

Zero-knowledge proofs!> are an advanced and powerful cryptographic primi-
tive with many applications, specifically to ensuring privacy. The core idea is dif-
ficult to convey to a layperson without it sounding like magic: Zero-knowledge
proofs allow one person to convince another that a statement is true, without
revealing any further information than the fact that it is true. This is counter-
intuitive as humans have grown used to demonstrating truth through trans-
parency: We give the tax-man our records and their consistency confirms our
workings. This is epitomised in the infamous argument “If you have nothing to
hide, you have nothing to fear”, a statement which presupposes a proof of innocence
cannot coexist with privacy.

The idea of zero-knowledge also sounds like magic as its limitations are not
well-defined. Can a zero-knowledge proof convince someone of a person’s trust-

worthiness, or desire todo good? Clearly not, as the terms themselves are subjec-

50r zero-knowledge arguments, as they are sometimes referred to. The term argument is
used for proofs whose soundness relies on computational assumptions, distinguishing them
from mathematical, or perfectly correct, proofs.
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tive, butin a similar vein they cannot prove whois the legitimate owner of a piece
of land, or that a parcel is within its weight limits. Zero-knowledge proofs are
mathematical objects and can reason only about mathematics. Specifically, they
can make statements about the properties of information. A zero-knowledge
proof may prove that a prime exists between 15 and 20 (in this case, it should
not be too hard to find), or that a message, when decrypted, contains a specific
phrase.

A proof of knowledge additionally demonstrates that the person doing the
proving knows the information which a property is asserted about. They should
know of the primality of either 17 or 19. They should know the decrypted mes-
sage — and the key, to demonstrate how it relates to the ciphertext.

Subsection 2.5.1 introduces the mathematics behind zero-knowledge proofs,

and the common properties they satisfy. The main theoretical object used in
this thesis, the non-interactive zero-knowledge proof (or NIZK), is introduced

in Subsection 2.5.2, with their most interesting instantiation, the SNARK, being

introduced in Subsection 2.5.3. Finally, the universality and updateability fea-

tures of a select set of SNARKSs are discussed in Subsection 2.5.4.

2.5.1 Definition and Sigma Protocols

The basis of a zero-knowledge proofis a relation R, which encodes the informa-
tion the proof wishes to convey. For instance, in our bounded prime example,

the following relation formally describes the problem:
((a,b),p) e R < a<p<bnpisprime

The left-hand side of zero-knowledge relations can be considered public, while
theright-hand side should have no information revealed about it. If Alice proves
to Bob that Hp: ((15, 20), p) € R, Bob should not be able to determine if Alice was
using p = 17 or p = 19, and for other problems, should not be able to determine
any satisfying value.

The left-hand side of a relation is often denoted by x and referred to as the
statement. Correspondingly, the right-hand side is denoted by w and referred
to as the witness. A specific protocol for zero-knowledge proofs applies only for
specific types of relations R, although protocols for NP-complete relations allow
proving solutions to all problems expressible in NP. Given efficient primality

tests, the simplistic primality relation above can also be realised.
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Prover Verifier

* t= gr *
re Fq (commitment) € IFq
c
(challenge)
S=r+cx
(response) output g° = th°

Figure 2.6: The Schnorr proof of knowledge of discrete logarithm sigma protocol.

Many zero-knowledge proofs rely on an interactive proof approach of com-
mitment challenge and response. In the first step, the prover commits to an
input, either the witness, or randomness, and transmits this to the verifier. The
verifier selects arandom challenge and sends this to the prover. The prover must
then generate a response depending on both the challenge and the witness — one
which must convince the verifier that the response could not have been gener-
ated without it satisfying the relation.

The most well-known such protocol (the structure of which is also collec-
tively called a 2-protocol, or sigma protocol, due to its three-round structure
matching the strokes of the Greek letter), is a proof of knowledge of a discrete
logarithm from Schnorr [Schg9o], which serves as a good example. In this case,

for a group G of prime order q with generator g, the relation is:
(h,x) e R < h=4g".

Using F; for the multiplicative field modulo g, i.e. Z; \ {0}, Schnorr’s protocol is
described in Figure 2.6. This protocol achieves three properties crucial for zero-
knowledge proofs: Correctness, soundness, and zero-knowledge, which are
sketched informally here (as this thesis will rely on composable zero-knowledge

definitions, rather than these properties directly).

Anoteonrewinding. Schnorr’ssecurityis commonly expressed using rewind-
ing — where the proofitself involves (as the name suggests) rewinding the proto-
col execution and observing an alternate execution with different randomness
from the same point on. Although this approach is common for formalising
sigma protocols, we explicitly avoid it in this thesis, in favour of white-box,
straightline extraction. This requires additional assumptions, such as the Algebraic

Group Model [FKL18], a powerful knowledge assumption. The primary reason
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for this is this thesis’ use of compositional security, which does not work well

with rewinding proof techniques.

- Correctness. The correctness property states that with overwhelming
probability, an honest prover will convince an honest verifier. Note that

as g = ¢"(g*)° = g"h", Schnorr’s protocol is perfectly correct.

- Soundness'®. The soundness property requires that a prover who does
not know the witness cannot convince the verifier. In Schnorr’s proof, for
g° = g'h° to hold, s = r + cx must also hold. A prover able to generate such

an s can also solve for x, thereby “knowing” it.

+ Zero-knowledge. The zero-knowledge property states that the verifier
learns no information about the witness, except that it satisfies the rela-
tion. In the case of sigma protocols, the more relaxed honest-verifier zero-
knowledge property is often used, which requires that the verifier adheres
to the protocol (in the case of Schnorr, c must be distributed according to
7). In practice, this is demonstrated using a simulator, which must be able
to generate a transcript of interactions indistinguishable from a real one,
given the statement x. Given that the simulator can sample c honestly, it
can sample s < F3, and compute t = g°h™“. This produces a matching

transcript without knowing the discrete logarithm of h.

2.5.2 Non-Interactive Zero-Knowledge

The interactive nature of sigma protocols does not suit the nature of distributed-
ledger protocols, in which transactions are typically considered fire-and-forget.
If the validity of Alice’s transaction required an interactive query with Alice, not
only does she need to remain online in case further people attempt to verify
it, but worse she will need to repeat proving to each of them. As distributed
ledgers rely on many verifiers for their security, this is impractical, even if one
ignores the question of how to handle the potential disagreement if some users
succeed in verification, but others fail to verify, for instance due to the prover

being unavailable.

®In a rewinding based setting, special soundness typically states that the transcripts of two
accepting runs, sharing the same initial message, can be combined to extract a witness.
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To solve this issue, the interactive protocol can be constrained to a single
round: The prover sends a single message to the verifier, who then either
accepts this proof, or rejects it. Impossibility results [%] show that this
type of protocol requires hybrid assumptions - either a common reference
string, or a random oracle. Given these, constructing a non-interactive form
of zero-knowledge is possible. This non-interactive zero-knowledge (or NIZK)
no longer benefits from a distinction between prover and verifier — key is
the content of the message that is sent, which is often referred to as a proof
(although argument is more appropriate) and is denoted by 7 throughout this
document. A NIZK consists of two algorithms, which have access to the same

hybrid assumption:
« <= NIZKg.Prove(x, w) — Produces a valid proof wif and only if (x, w) € R.

« b « NIZKR .Verify(x, ) — Outputs 1if wis honestly generated and may addi-
tionally do so only if knowledge of w can be extracted from the adversary

such that (x, w) € R. In all other cases, output o.

A fairly simple trick, known as the Fiat-Shamir transform (or heuristic'?), trans-
forms a sigma protocol into a non-interactive proof: Instead of asking the ver-
ifier for a random challenge, the random oracle is queried. As this challenge is
equally unpredictable to a challenge coming from the verifier, it is possible to roll
all three phases into one. Even outside of sigma protocols, the general approach
of transforming an interactive, challenge-based protocol into a non-interactive
one through use of random oracles is commonly used, forming one of the basis

of SNARKSs, which will be discussed in Subsection 2.5.3.

Black-box vs white-box extraction. The Fiat-Shamir transform is secure,
however it often relies on white-box extraction assumptions or rewinding.
Consider the example Schnorr protocol: The extraction is not black-box, as to
compute x, it is necessary not only to know the parts s and c directly embedded
in the proof, but it is also necessary to know r, which is internal to the prover
and never broadcast.

The primary issue with this is that, in order to retrieve the witness for an ad-

versary’s proof, it is necessary to know everything about the adversary. In compo-

71t is heuristic when used with a hash function, while being statistically secure using a ran-
dom oracle.
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sition frameworks, this is too powerful a statement, as the “adversary” is the dis-
tinguishing environment, which also controls honest users’ inputs. Chapter 3
discusses how this issue with white-box extraction can be resolved, however it
is worth discussing the alternative.

Instead of white-box extraction, composition is possible when the extrac-
tion is black-box, that is, when it does not require knowledge of the internals of
the prover. Fischlin’s transform [Fiso5] provides a generic replacement for the
Fiat-Shamir transform, which in the random oracle model allows for black-box
extraction. It cleverly shifts extraction toward the random oracle, by requiring
n multiple independent proofs, and for each of these m multiple challenges to
be answered. Of the answered challenges, the full sigma protocol transcript is
again passed into the random oracle, and the smallest response’s transcript is
chosen to represent this one of the n proofs. This must fall under a threshold -
practically requiring at least some of the m queries are actually made, with the n
independent proofs preventing luck being the reason for passing the threshold
in all of them. The upshot is that at least two transcripts for the same initial
commitment will have been queried on the random oracle. These transcripts

can be extracted and correlated to find the witness.

Composable Definition. Throughout this thesis, the below composable def-
inition for non-interactive zero-knowledge will be used. It permits proof-
malleability, that is, for a valid proof to be changed into a different proof of the
same statement, and for ease of extraction, tracks witnesses. Proof-malleability
is required for several real-world constructions, and does not impede the proto-
cols presented in this thesis. It also tracks disproven statements — when it marks

a proof as false, it will not later change this assessment.

. s TR
Functionality 7|
The (proof-malleable) non-interactive zero-knowledge functionality ]-"[ZIQIZK allows

proving of statements in an NP relation R.
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State variables and initialisation values:

Variable | Description

W =@ | Mapping of statement/proof pairs to witnesses

Set of statement/proof pairs

M=o
I := 2 | Setof known invalid statement/proof pairs

When receiving a message (PROVE, x, w) from a party y:
if (x,w) ¢ R then
return |
query A with (PROVE, x) and receive the reply 7,
satisfying 7 # L A (x,7) ¢ TIA(,7) ¢ else sampling from {0, 1}*
letIl « ITu{(x, M} W(x,m) <« w
return
When receiving a message (VERIFY, x, ) from a party y:
if (x, /) ¢ TUIl A7 # L then
query A with (VERIFY, x, 1) and receive the reply R
if (x,7) ¢ [ UTI then
if Hw.R = (WITNESS, w) A (x,w) € R then
letIl « ITu (x,m); W(x,m) <« w
else
letl « MU (x,7)
return (x,m) € I1
When receiving a message (MAUL, x, 1) from A:
if 47 (x, ') € 1 A (x, ) ¢ 1 then
letIT « ITu {(x, )}

2.5.3 SNARKSs

Traditionally, both interactive and non-interactive zero-knowledge protocols
are quite costly on both the prover and verifier side, when compared with the
cost of a membership test in the relation R. This is especially true as most
problems of interest first need to be massaged into an appropriate, typically
NP-complete, relation. For distributed ledgers, verification cost dictates the
efficiency of the entire chain, making it a far more limiting factor than in other
applications.

Furthermore, non-interactive proofs need to be stored in distributed pro-
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tocols, making their brevity paramount - a 100 MiB proof may be acceptable
in many cases, but attached to each transaction on a distributed ledger, will
cause the system to fail. Within the last decade, a new wave of research into
succinct zero-knowledge [Gro1o, Lip12, GGPR13, PHGR13, Gro16, GM17, GKM*18,
MBKM19, CHM*19, GWC19, CHM"20] brought the technology into the realm of
feasibility for distributed ledgers. zk-SNARKSs, standing for zero-knowledge

Succinct Non-interactive ARguments of Knowledge, typically have proof sizes
of at most a few kilobytes and verify in a few milliseconds (for typical circuits).
Thisis very close to the performance characteristics of digital signatures, making

them an effective drop-in replacement.

The structure of a SNARK. SNARKSs often share many of the same compo-
nents, although each part has seen optimisation in subsequent works. This
section gives a loose intuition for the Sonic [MBKMI19] zk-SNARK, although
the same ideas apply more broadly. Firstly, the zero-knowledge relation is one
of arithmetic circuit satisfiability. A fixed number of variables are constrained
through addition and multiplication gates with each other. Some of these
variables are declared as public inputs. The arithmetic circuit (and notably,
the values assigned to it) is then transformed into a corresponding constraint
between polynomials. One of these polynomials is publicly computable, and
represents the public inputs and (potentially) the structure of the constraints
itself.

Many SNARKSs begin as interactive protocols, to which the Fiat-Shamir-like
transform is applied. First, the prover commits to each of the relevant polyno-
mials, using a specialised cryptographic primitive. After the verifier provides
a random challenge, the polynomials are opened at this point. The verifier can
test that the public (also called target) polynomial relates to the openings in an
expected way - for instance, demonstrating that a polynomial is divisible by
it, if it can be multiplied with a third polynomial’s opening to reach the same
value. This relies on the Schwartz-Zippel lemma, which states evaluating any
two polynomials at random points over a domain much larger than their degree

d will have a very small probability of resulting in equal outputs.

Circuit satisfiability and polynomials. Various zk-SNARKs differ slightly

in their circuit representation, depending on the details of the relation enforced
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between polynomials. As a point of commonality, they tend to be easily re-
ducible to the problem of arithmetic circuit satisfiability. An arithmetic circuit
over the prime field F, consists of a number of variables vy, ..., v,, and arithmetic
constraints modulo p between these, taking the form of v, + v, = v orv, - v, = v.
SNARKSs differ in regard to how efficiently some of these constraints can be
represented — Pinocchio [PHGR13] can make use of linear combinations in mul-
tiplication constraints, effectively making additions “free”, while Plonk [GWCI19]
limits the number of constraints each variable can be used in.

An assignment satisfies the circuit if each of the addition and multiplication
constraints holds for the assignment. A subset of variables are usually marked
as public inputs; part of the statement in the relation. The circuit is then trans-
formed into an equivalent statement about relationships between polynomials.
For instance, to express a vector of constraintsa b = c(i.e.a; - b; = ¢;fori €
1,...,m), each of a, b, and c is expressed as a polynomial, with different powers

representing separate variables, such as:

A(x) = i a,-xi

i=1
Then the constraint becomes A - B = C, which by the Schwartz-Zippel lemma
can be efficiently checked by testing x &< F,; A(x) - B(x) = C(x). In order to hide
the structure of the polynomial, an additional random masking polynomial is

added, ensuring that all values appearing in the proof are uniformly distributed.

Polynomial commitments and reference strings. A key part of applying
the Schartz-Zippel lemma is the sequence of committing to the polynomial and
then having to reveal a random point of it. If the point is known beforehand, the
polynomial can be selected to give whichever value one wishes. This order of
messages is not always necessary: In Pinocchio [PHGR13], it is possible to send
the challenge first, provided it is not sent in cleartext. Instead of sending a chal-
lenge s € I, evaluations depending on s are sent, such as ¢°, gs2 etc. These evalua-
tions are sufficient to construct an evaluation of a polynomial at s, however insuf-
ficient to determine s. Pinocchio evaluates a polynomial “in the exponent” of the
group generator at s (i.e., evaluates g”®)). It then relies on a knowledge assump-
tion known as the Knowledge of Exponent Assumption (KEA) [Damg2, HT98] to
guarantee that this exponentially evaluated polynomial actually implies knowl-

edge — it could not have been created without knowing the polynomial itself.
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Sonic [MBKM19] has an adjusted form of this, based on [KZG10], which al-
lows it to evaluate polynomials not only on the challenge point s, but on any
point, which it later uses to evaluate at a Fiat-Shamir-style chosen point. The
general idea remains the same however — an evaluation of the polynomial at a
pre-determined (and secret!) point acts as a commitment to it. This crucially
means that the reference string, which provides different bases of s must be se-
curely generated, or the commitments do not possess their crucial property of

being binding.

2.5.4 Universality and Updateability

A recent family of zk-SNARKSs, notably Sonic[MBKM19], and the more efficient
Marlin[CHM"20]and Plonk [GWCI19]derived from it, achieve two very desirable
properties which this thesis makes direct use of: The universality and updatabil-
ity of their reference string. Although very different properties, they are related,
both being properties of the reference string. Universality roughly states that the
same SNARK can be efficiently adapted for any NP relation R (within some size
bounds). This notably means that the reference string must be sharable between
different relations, a feature not present in many zk-SNARKS.

Updatability is more straightforwardly attributable to the reference string,
although it also requires the proof system to be secure despite it. The idea is sim-
ply that any user can transform a reference string, producing a new one which
is “more secure”: The updated reference string must be secure if either the prior

one was, or the user updating it did so honestly.

Universal relations. Consider the Sonic relation as an example of a univer-
sal SNARK. The trick of it lies in the relation itself encoding information about
constraints, with the constrain information being embedded in the statement x.
While Sonic removes some of the overhead due to the increased statement size
through a “helped” mode, this is not of particular interest in this thesis. Ignor-
ing this aspect, the proof effectively permits constraining which variables are
subject to addition constraints and which are not.

Sonic has variables a;, b;, ¢; € F, fori € {1,...,n}, represented with the vectors
a,b,ce ]P;. The circuit is constrained through additional vectors ug, v, w, € IF;},

and the scalars k; € F, forq € {1,...,Q}. Q represents the number of addition
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constraints, which are typically sparse and compressed into a single polynomial.

The NP relationship Sonic produces proofs over is

acb=c

a-u;+b-vy+c-w, =k,

where - denotes element-wise multiplication and - the dot-product. By using
values in {-1,0, 1} for ug ;, v, ;, and w,; values it is possible to control whether
they are constrained in addition or not. It also permits constraining individual
variables to be equal to others and equal to specific constants, allowing the state-

ment to be determined entirely through the choice of ug, v4, wy, and k.

Updateable reference stings. A polynomial commitment scheme, used in
Sonic to commit to monomials, is the primary usage of the reference string.
While this thesis does not discuss polynomial commitments in depth, it relies
primarily on evaluating g™ and g*?™) for a polynomial of degree d (potentially
including negative exponents) where a and x are (secret) trapdoor values of
the reference string. This is possible to construct from the coefficients given
values gxi and g“xi for all necessary values of d. Specifically, given the trapdoor

(a, x) <~ F2, the structure function

s = ([o )

is sufficient to construct the “in exponent” evaluations necessary for Sonic.
This reference string is universal, in the sense that it is possible to “multiply”
the trapdoor by a randomly sampled field element, by exponentiating each com-

ponent of the reference string:

NG N iﬁyid 4
S((aB, xy)) = {<gx) ,<hx> ,(hax) }'__d,z<gax) }

This does not permit an adversary to remove entropy from the reference string,

d

i=—d,i0

as the adversary cannot find (a, x), but permits honest users to inject more en-
tropy. This is the focus of Chapter 4, where it is described more formally and

applied in practice.
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2.6 Smart Contracts

The basic premises of a distributed ledger is merely to agree on a sequence of
transactions, not to assign any meaning to these transactions. This is a useful
theoretical view, however in practice transactions are taxing on the network:
they must be replicated, distributed and stored (potentially forever!). This sug-
gests an immediate and very real danger of denial-of-service attacks. What is to
prevent a malicious user from flooding the network with useless transactions,
preventing it from processing anything useful?

To combat this, the practice of blockchains is different from the idealised
transaction-orderer, requiring not only transactions to adhere to specific for-
mats, but imposing a toll on network usage: Each transaction must pay a fee for
inclusion. Denial-of-service is much less feasible as a result, however it relies
on being able to accurately asses how much strain each transaction takes on the
network. As the same currency which the transactions define operations over
pays for fees, testing if they are satisfied requires taking a step further and as-
signing meaning to each transaction, eventually boiling down to the following,
ostensibly simple, question: “Does the user making this transaction have the funds to
pay for its fees ?”

Ensuring that transactions which cannot pay for their fees are rapidly dis-
missed is paramount to resisting denial of service attacks. Bitcoin[Nako8]relies
on short, quickly verifiable scripts as a result, written in a language so basic as to
lack loops or jump statements. As a result, the time it takes to run these scripts
is predictable ahead of time — at most as long as their size.

As different people began attempting to use Bitcoin for purposes which
did not fit into the limited expressiveness, new custom-built protocols, such
as NameCoin [KCE"15], a distributed domain name registration protocol, and
Bitmessage [War12], a ledger-based communications protocol, arose. These
used their own separate blockchain with modified semantics for transactions,
better suited for their purpose. An obvious problem with this approach is
that, even though the Bitcoin source code can be copied arbitrarily often, the
Bitcoin community of software developers and miners cannot, and hence such
systems are typically not sustainable. Smart contracts, originally posited as a
form of reactive computation [Sza97], were popularised by Ethereum [Woo14],

solving these problems by providing a uniform and standardised approach for
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deploying decentralised computation over the same back-end infrastructure.

2.6.1 Ethereum

Ethereum [Woo14] envisioned arbitrarily programmable semantics for transac-
tions. This brings with it a few immediate questions: Who gets to set the rules for
which interactions? How is it possible to prevent denial-of-service when each
individual transaction may invoke a large amount of computation (and due to
the halting problem, there is no way to determine if it is finite, let alone how
expensive the computation is). These problems were solved quite elegantly, a
testament to which is the continuing popularity and usage of Ethereum (this is
not to say Ethereum does not have flaws — considering off-chain computation as
“out-of-scope” being potentially the most serious of these, which will feature in

depth in Chapter 6).

The basic semantics of Ethereum. Ethereum has a basic currency transfer
system, not unlike Bitcoin as its basis. It differs slightly in that unlike Bitcoin,
Ethereum encourages the reuse of public keys, facilitating this and protecting
against replay attacks, by associating each public key with a nonce. Transactions
must include the current nonce, ensuring a new transaction needs to be signed
every time. Although it is often cited as a major difference between Ethereum
and Bitcoin, the difference is rather subtle and the designs are in fact isomor-
phic[Zahi8]. More notable is Ethereum permitting two additional types of trans-
actions: Smart contract creations and smart contract invocations. In a smart
contract creation, a user submits a program, written in Ethereum’s native byte-
code language, which gets assigned a unique address. The submitting user pays
storage fees for the program and can submit any program they wish, without
restriction’®. This contract can hold its own funds and in addition to its code,
can store additional data (the storage of which also requires payment).

The contract’s code only governs interactions users directly make with the
contract — when a user invokes it (with a transaction specifically for this purpose,
as mentioned above), they provide an input to the contract’s program, as well
as optionally providing it with funds. The contract’s program executes on this

input, as well as auxiliary information including information about the current

8In practice, contracts are restricted in size, although this can also be bypassed if necessary
by splitting a contract into multiple parts.
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block, the address (public key) of the caller, and the funds provided to it. The con-
tract may also invoke other contracts and initiate funds transfers on its own be-
half(but not on behalf ofits caller!). In some ways the contract is an autonomous,

trusted third party, although it is limited in its agency.

Preventing denial-of-service through “gas”. The question remains how to
limit the impact of denial-of-service attacks. The first part of the solution lies
in Ethereum’s support for a basic transfer protocol - it is possible to, just as in
Bitcoin, quickly test that a user has the funds to pay for a transaction in this basic
system, even though managing funds of contracts can require more complex
computations. This leaves the question of how to accurately judge how much
a transaction should cost. As the halting problem hints at the impossibility of
this problem, Ethereum instead bypasses it: Instead of attempting to calculate
what a transaction should cost, it asks the creator of each transaction to give
their own estimate. Ifa user cannot estimate it (for instance, due to it running too
long), the transaction would almost certainly be too expensive for the network
to execute as well. Further, there is no need to trust a user on their estimate: If
they claim a computation takes five steps to compute and it is not finished after
these, Ethereum simply marks the transaction as failed. Crucially however, it is

still valid, in the sense that it is included in the blockchain — and its fees are taken.

The Ethereum Virtual Machine (EVM). Achieving consensus about the
execution of contracts is a subtle matter — and slight difference in the execution
semantics between different users can lead to disagreement and the divergence
of their state, breaking consensus. Seemingly minor differences, such as bugs
in the implementation of floating-point arithmetic, or undefined behaviour of
operations, can lead to a collapse of distributed consensus. It is primarily for
this reason that Ethereum adopted a virtual machine, designed specifically to
be well-defined in all corner cases (although it also benefited from providing
application-specific primitives, such as signature verification). Subsequent
smart contract systems have largely followed this approach, designing their
own atomic “virtual machine” languages with well-defined execution.

A high-level language, Solidity, was also designed to allow developers to
write smart contracts in a simpler manner (there are a few other languages tar-

geting the EVM, however Solidity is by far the most popular). This is reminiscent
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of object-oriented programming, although it is more akin to a message-passing
language, as “objects” represent actual semi-autonomous entities, rather than

being a tool for abstraction.

Off-chain execution and Web3. Ethereum’s vision involves a distributed
“evolution” of the world-wide web. As a means toward this, its primary mode of
interacting with smart contracts is via JavaScript, which is assumed to be able to
interact with a low-level Inter-Process Communication (IPC) socket to talk with
alocal (or remote) Ethereum client. This JavaScript interface is called “Web3” as
a result of its ambitions - either optimistically, or arrogantly — depending on
your point of view.

While ideally this API would be limited to tying together HTML front-end
user interfaces with the underlying smart contract, in practice the JavaScript
portion of the program also performs pre-computations, and acts more as a part
of the overall smart contract, rather than a front-end to it. A more holistic ap-
proach to on- and off-chain computation is part of some competing smart con-
tract designs, such as Plutus [CKM*19]. It mars the modular, interactive nature
of on-chain smart contracts, and as will be discussed in Chapter 6, does not lend

itself for privacy-focused smart contract design as a result.

2.6.2 UTxO-Based

Ethereum’s approach to smart contracts takes one which is consistent with their
interpretation in this thesis, modelling smart contracts as state machines, their
state being replicated and reproduced via a distributed ledger. For complete-
ness, it is worth sketching the main alternative approach to modelling smart
contracts, which embraces the transactional nature of the distributed ledger.
Rather than smart contracts being their own entities, as in Ethereum, the
approach of UTxO-based smart contract system says that assets are their own
entities, with code dictating who can use them. This is the design underlying
Bitcoin - Bitcoin Script controls who can spend a particular transaction’s output,
and although it is typically simply a public key test, more complex logic can be
applied. Another example of this is Plutus [CKM*19], which also extends the
model of unspent transaction outputs to allow them to carry data, enabling

more complex behaviours including state evolution. The privacy-preserving
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Zexe [BCG™20] also falls into a similar category, with the caveat of the UTxO
structure itself being hidden.

Ethereum’s approach is largely isomorphic to the extended UTxO model of
Plutus, although without state-passing it is clearly more powerful. Even state-
passing gives a slight advantage to Ethereum’s modelling, in that it supports
concurrent interactions better, a distinction described in detail in Chapter 6. The
increased expressiveness comes at a cost to clarity however - numerous bugs
in Ethereum have lead to great financial losses, making the case for a simpler

model.

2.6.3 Privacy Focused Variations

A body of research has looked into addressing the privacy shortcomings of
smart contracts. These take a variety of different approaches, the most notable
of which are briefly discussed here. This work is especially relevant to Chapter 6,

which presents as alternative approach to modelling privacy in smart contracts.

Zexe. Zerocash [BCG'14]is a well-known privacy-preserving payment sys-
tem, allowing direct private payments on a public ledger. Zexe[BCG*20]extends
its expressiveness by allowing arbitrary scripts, reminiscent of Bitcoin-scripts,
to be evaluated in zero-knowledge in order to spend coin outputs. It is a major
improvement in expressiveness over Zerocash, which only permits a few types
of transactions. Combined with the extended UTxO approach mentioned in

Subsection 2.6.2 of carrying state over from transaction output to transaction

output, Zexe would form a very expressive smart contract systems, although its

limitations remain uncertain.

zkay. zkay[SBG'19]extends Ethereum smart-contracts with types for private
data. It allows users to share encrypted data on-chain, and prove that data is
correctly encrypted and correctly used in subsequent interactions. These proofs
are managed through the ZoKrates[ETi8] framework, which compiles Ethereum
contracts into NIZK-friendly circuits. Its usage is limited to fixed size pieces of

private data.

Hawk. Oneofthe earliest workson privacyinsmart contracts, Hawk[KMS'16]

is also one of the most general. It describes how to compile private variants of
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smart contracts, given that all participants of the contract trust the same party
with its privacy. This party, the “manager”, can break the contract’s privacy guar-
antees if they are corrupt, however they cannot break the correctness of the con-
tract’s rules. The construction used in Hawk for the manager party relies on

zero-knowledge proofs of correct contract execution.

Zether. Alotofworkon privacyinsmart contracts has focused onretro-fitting
privacy into existing systems. Zether [BAZB19], for instance, constructs a
privacy-preserving currency within Ethereum, which can be utilised for a
number of more private applications, such as hidden auctions. As with most
retro-fitted systems, Zether is constrained by the system it is built for and does

not generalise to many applications.

Enigma. There are two forms of Enigma: A paper discussing running secure
multi-party computation for smart contracts [ZNP15], and a system of the same
name designed to use Intel’s SGX enclave to guarantee privacy [EPT19]. The for-
mer has a lot of potential advantages, but is severely limited by the efficiency
of general-purpose MPC protocols. The latter is a practical construction and
can claim much better performance than any cryptography-based protocol. The
most obvious drawbacks are the reliance on an external trust assumption and

the poor track record of secure enclaves against side-channel attacks [ BMW™*18].

Arbitrum. Using a committee-based approach, Arbitrum [KGC*18] describes
how to perform and agree on off-chain executions of smart contracts. A com-
mittee of managers is charged with execution, and, in the optimistic case, sim-
ply posts commitments to state updates on-chain. In the case of a dispute, an
on-chain protocol can resolve the dispute with a complexity logarithmic in the
number of computation steps taken. Arbitrum provides correctness guarantees
even in the case of n — 1 out of n corrupt committee members, however relies on

a fully honest committee for privacy.

State channels. State channels, such as those discussed in [DFH18], occupy
a similar space to Arbitrum, due to their reliance on off-chain computation
and on-chain dispute resolution. The dispute resolution process is different,
more aggressively terminating the channel, and typically it considers only

participants on the channel that interact with each other. The privacy given
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is almost co-incidental, due to the interaction being local and off-chain in the

optimistic case.

Piperine. Piperine [LNS20] uses a similar model and approach as presented
in Chapter 6, relying on zero-knowledge proofs of correct state transitions, and
modelling smart contracts as replicated state machines. Piperine focuses on ef-
ficiency gains from this approach, rather than privacy gains, which it does not
capture, while our work does not account for the benefit of transaction batching.
The notion of state oracles presented in Chapter 6 can be seen as a generalisation

of the state interactions presented in [LNS20].
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COMPOSITION WITH

KNOWLEDGE ASSUMPTIONS

This chapter is based on “Composition with Knowledge Assumptions”[KKK21a],
first published at the Crypto 2021 conference, primarily authored by Thomas
Kerber, and co-authored by Aggelos Kiayias and Markulf Kohlweiss.

KNOWLEDGE assumptions, discussed briefly in Subsection 2.2.3, are espe-
cially useful in cases where both succinctness and extractability are re-

quired. This is notably the case for zk-SNARKS, as discussed in Subsection 2.5.3,

which typically rely on either a knowledge-of-exponent assumption [Dam9z2],
the Algebraic Group Model (AGM) [FKL18], or the even stronger Generic Group
Model (GGM) [Sho97]. Their importance for zk-SNARKs makes them partic-

ularly relevant for this thesis, as Chapter 5 and Chapter 6 rely on a compos-

able non-interactive zero-knowledge functionality, which would ideally be
implemented using zk-SNARKSs. Nevertheless, the composition of knowledge
assumptions has applications outside of zk-SNARKSs, for instance in extractable

functions [CDo8, CDog, BCCT12], and the modelling in this chapter even lends

itself to a novel interpretation of random oracles.

Proving the security of SNARKs under composition would typically involve
using a compositional framework (see Section 2.3), such as Universal Com-
posability [Cano1] or Constructive Cryptography [Mauli], specifying an ideal
behaviour for the primitive and constructing a simulator which coerces the ideal
behaviour to mimic that of the actual protocol. This simulator will naturally
need to make use of the extraction properties, often to infer the exact ideal intent
behind adversarial actions. It is in this that the conflict between extraction and
compositional frameworks arises: As the extraction is white-box, the simulator
requires the input of its counter-party - the environment, or distinguisher, of
the simulation experiment. This cannot be allowed however, as it would give the

simulator access to all information in the system!, not just that of the adversary.

"Recall that the simulator is the ideal-world adversary and should by definition not have
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This conflict has been observed before, for instance in [KZM*15]. Often, the
remedy is to extend the original protocol with additional components to enable
the simulator to extract “black-box”, i.e. without the original inputs. For example,
the Fischlin transform [Fiso5] uses multiple queries to a random oracle to by-
pass the inability to extract from the commitment phase of an underlying Sigma
protocol, which would allow using the simpler Fiat-Shamir transform [FS87]in-
stead. CoCo [KZM*15] extends zk-SNARKSs with an encryption of the witness
and a proof of correctness of this encryption to a public key the simulator can
control.

A theme of these approaches is that succinctness is usually lost - size being
limited by the information-theoretic reality of black-box extraction. Thus CaCg
proofs are longer than their witnesses and UC-secure commitments [CFo1] are
longer than the message domain.

This limitation can often be bypassed by using a local random oracle, as this
does permit extraction. Restricting the model to allow the adversary to perform
only specific computations on knowledge-implying objects, could be one way to
generalise this approach. Just as a random oracle functionality would abstract
over extractable hash functions, a generic group functionality would abstract
over knowledge of exponent type assumptions. This would constitute a far
stronger assumption however, running counter to recent developments to relax
assumptions, such as the Algebraic Group Model [FKL18], which aim for a more
faithful representation of knowledge assumptions.

In this chapter, a different approach is taken by defining the concept of
knowledge-respecting distinguishing environments, or distinguishers (to be
consistent with the terminology of Constructive Cryptography). The Construc-
tive Cryptography framework [Maull] serves as an orientation point for this
work, due to its relative simplicity compared to the many moving parts of
UC[Canor], making it easier to re-establish composition after making sweeping
changes to the model.

Similar to an algebraic algorithm, distinguishers in our model need to ex-
plain how they computed each knowledge-implying object they output. The
compositional framework is extended by giving the simulator access to these
explanations.

Furthermore, this chapter discusses the conditions under which it is rea-

access to secrets the distinguisher holds.
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sonable to assume knowledge-respecting distinguishers. To this end, stronger
versions of knowledge assumptions are defined that depend on auxiliary and
knowledge-implying inputs. These assumptions suffice to extend a distin-
guisher with an extractor providing said explanations.

Within this setting we are able to establish not only an impossibility result on
full general composition, but more interestingly a positive result on the compo-
sition of systems relying on different knowledge assumptions. Intuitively: You
can use a knowledge assumption only once, or you need to ensure the various
uses do not interfere with each other (specifically, the simulators of both invoca-
tions cannot provide any advantage due to extraction, as shown in the example
in Section 3.4). This result has the immediate effect of enabling the usage of
primitives relying on knowledge assumptions in larger protocols — provided the

underlying assumption is not used in multiple composing proofs.

3.1 Modelling Knowledge Assumptions

We formally define knowledge assumptions over a type of knowledge-implying ob-
jects X. When an object of the type X is produced, the assumption states that
whoever produced it must know a corresponding witness of the type W. The
knowledge of exponent assumption is an example of this, where X corresponds to
pairs of group elements and W is an exponent. A relation R c X x W defines
which witnesses are valid for which knowledge-implying objects.

In the case of the knowledge of exponent assumption, it roughly states
that given a generator and a random power s of the generator, the only way
to produce a pair of group elements, where one is the sth power of the other,
is to exponentiate the original pair and in so doing implying knowledge of
this exponent. There is one extra item needed: The initial exponent s needs
to be sampled randomly. Indeed, this is true for any knowledge assumption:
The all-quantification over potential distinguishers implies the existence of
distinguishers which “know” objects in X without knowing their corresponding
witness. To avoid this pre-knowledge, we assume X itself is randomly selected
at the start of the protocol. For this purpose, we will assume a distribution
init, which given a source of public randomness (such as a global common
random string), produces public parameters pp, which parameterise the knowl-

edge assumption. In the case of knowledge of exponent, this needs to sample
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an exponent s and output the pair (g,4°). For this particular setup, public
randomness is insufficient.

Beyond this, users do not operate in isolation: If Alice produces the pair
(g%, g*°), knowing x and transmits this to Bob, he can produce (g7, %) without
knowing xy. This does not mean that the knowledge assumption does not hold,
however it is more complex than one might originally imagine: One party
can use knowledge-implying objects from another user as (part of) their own
witnesses. Crucially this needs to be limited to objects the user actually received:
Bob cannot produce (g% ,gszy) for instance, as he never received (gs,gsz) and
does not know s. This setting also lends itself more to some interpretations
of knowledge assumptions than others. For instance, the classical knowledge-
of-exponent assumption [Damg2]does not allow linear combinations of inputs,
while the t-knowledge-of-exponent assumption [HT98] does. When used com-
posably, the latter is more “natural”, in much the same way that IND-CCA def-
initions of encryption fit better into compositional frameworks than IND-CPA

ones, due to them already accounting for part of the composable interaction.

Definition 3.1 (Knowledge Assumption). A knowledge assumption & is de-

fined by a tuple (init, X, W, R) consisting of:

I. init, a private-coin distribution to sample public parameters pp from,

which the others are parameterised by.
2. X, the set of all objects which imply knowledge.
3. Wy, the set of witnesses, where Vx € X,,;: (INPUT, x) € Wop-

4. Rpp:(I € Xpp) = (Y = (XppxWpp)), the relation new knowledge must satisfy,

parameterised by input objects, where

Vx,y € Xpp, I € Xpp: (x, INPUT, y)) € R, (I) &= x=ynrxel

pr
Furthermore, R,, must be monotonically increasing:
VIc ] <X Rpp(D) € Rpp(J)-

The inclusion of (INPUT, x) in W,,, and R, for allx € X,,, ensures that parties are
permitted to know objects they have received as inputs, without needing to know

corresponding witnesses. Importantly, this is possible only for inputs and not for
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other objects. For each knowledge assumption &, the assumption it describes
is in a setting of computational security, with a We state the assumption itself
in a setting of computational security, with a security parameter x. Broadly,
the assumption states that, for a restricted class of “K-respecting” adversaries,
it is possible to compute witnesses for each adversarial output, given the same

inputs.

Assumption 3.1 (8-Knowledge). The assumption corresponding to the tuple & =
(init, X, W, R) is associated with a set of probabilistic polynomial time (PPT) algorithms,
Respg. We will say an algorithm is K-respecting if it is in Resp . This set should contain
all adversaries and protocols of interest. The &-knowledge assumption itselfis then that, for

all A € Respg, there exists a PPT extractor X, such that:

pp < init;

Pr| 45 c X

ops aux € {0, 1} < negl(x),

Game 3.1(A4,, X, pp, I, aux)

where A, and X, are A and X supplied with the same random coins r (as such, they behave

deterministically within Game 3.1).

While it is trivial to construct adversaries which are not &-respecting by
encoding knowledge-implying objects within the auxiliary input, these trivial
cases are isomorphic to an adversary which is & -respecting and which receives
such encoded objects directly. We therefore limit ourselves to considering
adversaries which communicate through the “proper” channel, rather than
covertly. In this way, we also bypass existing impossibility results employing
obfuscation [BP15]: We exclude by assumption adversaries which would use

obfuscation.

Game 3.1 (Knowledge Extraction). The adversary A, wins the knowledge extraction
game if and only if it outputs a series of objects in X,,, for which the extractor X, fails to
output the corresponding witness:
Il
let X « A(I,aux), w « X,(I,aux) in ¥ € X3, A \/(x;, wy) & Rppp(D.
i=1
Crucial for composition are the existential quantifications, which combined

state that we assume extraction for all of the following:
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- Algorithms in Respg
- Input objects I

- Auxiliary inputs aux

This makes knowledge assumptions following Assumption 3.I stronger than

their typical property-based definitions. It is also non-standard as a result, as
it relies on quantifiers within a probability experiment. While the adversarial
win condition is well-defined, it is not necessarily computable. Nevertheless,

quantifications are required for their usage in composable proofs.

3.1.1 Examples of Knowledge Assumptions

To motivate this definition, we demonstrate that it can be applied to various com-
monly used knowledge assumptions, including the knowledge of exponent as-
sumption, the Algebraic Group Model and variants, and even to random oracles.
We detail our flavour of these here. Witnesses naturally seem to form a restricted
expression language describing how to construct a knowledge-implying object.
A morenatural way to express the relation R is often an evaluation function over

witnesses, returning a knowledge-implying object.

Knowledge of Exponent Assumption. The t-knowledge-of-exponent as-

sumption [Damg2, HT98] depends on a (possibility pre-selected) group G of

order p and generator g € G. It selects a random exponent s and provides the
pair (g, g°) as public parameters. Any pair of group elements where the second
is the sth power of the first must provide an exponent to match.

A curiosity of this knowledge assumption is that there is no simple mem-
bership test to apply. As a result, we permit pairs not related in this way to be
members of X,,,, which do not require witnessing, capturing the possibility of

transmitting unrelated group elements.

W = {BASE} U

Kkea = (init, X, W, R) { INPUT,i) | i€ X }U
init = s < Fy; (9,9°) {(ExP,b,e) | be W,e€Fp }u
X = G2 {(MUL,b,c) | b,ce W }u

{ (FREE,g,h) | g,h e G }
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r(g,gs) ifw = BASE
] ifw=(INPUT,))AiE]T
(a®, b°%) ifw = (ExP,c,e) A (a,b) = eval(I, c)

(acc,bod) ifw = (MuUL, e, f) A (a,b) = eval(l,e)
A (c,d) = eval(I, f)

(g, h) if w = (FREE, g,h) Ag® # h

eval(I, w) = 1

(x,w) e R(I) < x =-eval(I,w)

The Algebraic Group Model. Assuming a distribution groupSetup providing
a group G and a generator g, we can recreate the Algebraic Group Model [FKL18]

as a knowledge assumption fitting Definition 3.1:

QAGM = (init,X, W7 R) W = { (OP, a,b) | a,b ew } U
init = groupSetup { iNPUT,i) | i€ X } U
X =G { GENERATOR }

eval(g) - eval(h) ifw = (op,g,h)
eval(l,w) = {i ifw= INPUT, ) Ai€]
g ifw = GENERATOR

(x,w) e R(I) < x=-eval(l,w)

The Bilinear Algebraic Group Model with Random Sampling. Assuming
a distribution groupSetup providing groups G, Gy, Gr, a bilinear pairing opera-
tion e:G; x Gy — Gr, and generators g € G; and h € Gy, we define the corre-
sponding knowledge assumptions of a bilinear Algebraic Group Model below.
Random sampling of group elements in G; and G, is permitted by providing
random permutations? ([fl of G; and @2 of G, as part of the public parameters
- we assume machines have random memory access and can therefore easily

query random elements in these vectors, but cannot search for specific elements,

*We write Sy for the set of permutations of X and the corresponding uniform distribution.
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due to the exponential size of the group. Note that this assumes public parameter

selection is free from computational feasibility constraints.

Kpacm = (init, X, W, R)
init = let (G, Gy, Gr,¢,9,h) s groupSetup; G_)l < SGI;(P:Z & Se,
in (G1, Gy, Gr,e,9,h,Gy, Gy)
X =G uvGyuGr

W ={(op,a,b) | a,be W }u
{ (PAIRING,a,b) | a,be W } U
{(NpPuT,i) | ie X }U
{ INDEX, i,x) | x € {1,2}},i € Zg, } U

{ (GENERATOR,x) | x € {1,2}}

(eval(a) o eval(b) ifw = (op,a,b)

e(eval(a), eval(b)) if w = (PAIRING, a, b)

i ifw=(INPUT,))Ai€E]
eval(I,w) =1 _

(G,); ifw = (INDEX, i, x)

g ifw = (GENERATOR, 1)

|k if w = (GENERATOR, 2)

(x,w) e R(I) < x=-eval(l,w)

Notably - and e may be undefined - g - h is not defined, for instance. In this case

eval is also not defined: eval(I, (OP, g, h)) is undefined.

Random Oracles. Somewhat surprisingly, (global, non-programmable) ran-
dom oracles can be seen as a somewhat unique knowledge assumption, using a
similar technique for randomness as is used to sample random group elements
above. Unlike the above, the public parameters need to encode an infinite se-
quence of random values — effectively publicly describing the entire random
oracle. Again an assumption of random access to these public parameters
implies a limited number of possible “queries” to this random oracle, with
each query simply reading the nth random value in the sequence, where n is
a numerical encoding of the query.

In practice, this assumption has similarities to that of an extractable hash
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function [KLT16] and global random oracles [CJS14, CDG18]. It fits the former

in that for every “hash” produced by an algorithm, an extractor must be able to

outputits preimage, and the latter if this operation is viewed as a black-box query

to a global random oracle functionality.

W = {(INPUT,i) | ie X } U

Kro = (init, X, W, R) { ONDEX,i) | ie N}
init = ({0, 1})*° i ifw = (INPUT, i)
X ={0,1}* eval(I,w) = INENI
(x,w) e R(I) < x=-eval(l,w) pp; ifw = (INDEX,i,x)

3.2 Typed Networks of Random Systems

While it is not our goal to pioneer a new composable security framework, ex-
isting frameworks do not quite fit the needs of this chapter. Notably, Universal
Composability [Canor]has many moving parts, such as session IDs, control func-
tions and different tapes which make the core issues harder to grasp. Construc-
tive Cryptography [Maui1] does not have a well-established notion of globality
and fixes the number of interfaces available, which makes the transformations
we will later perform more tricky.

Furthermore, the analysis of knowledge assumptions benefits from a clear
type system imposed on messages being passed — knowing which parts of mes-
sages encode objects of interest to knowledge assumptions (and which do not)
makes the analysis more straightforward. Due to both of these reasons, we con-
struct a compositional framework sharing many similarities with Constructive

Cryptography (see Subsection 2.3.2), however using graphs (networks) of typed

random systems as the basic unit instead of random systems themselves. Cru-
cially, when we establish composition within this framework, we do so with
respect to sets of valid distinguishers. This will allow us to permit only distin-
guishers which respect the knowledge assumption.

Our definitions can embed existing security proofs in Constructive Cryptog-
raphy and, due to the close relation between composable frameworks, likely also

those in other frameworks, such as UC. In particular, our results directly imply
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that primitives proven using knowledge assumptions under this framework can
be directly used in place of hybrids in systems proven in Constructive Cryptog-
raphy.

We will not go into depth on modelling computational security, as it is not
the primary focus of this chapter, however we will assume the existence of a
feasibility notion of this type. We follow the approach of [LM20] and consider
random systems as equivalence classes over probabilistic systems. We make a
minor tweak to the setting of [Maui1] as well and use random-access machines
instead of automata3, to enable the use of super-polynomial parameters as laid

out in Subsection 3.1.I.

3.2.1 Type Definition

We introduce a rudimentary type system for messages passed through the net-
work. It consists of a unit type 1, empty type 0, sum and product types r] +12/77 X

79, and the Kleene star r*. This type system was chosen to be minimal while still:

I. Allowing existing protocols to be fit within it. As most of cryptography
operates on arbitrary length strings, (1+1)", or finite mathematical objects,

1+...+ 1, these can be embedded in the type system.

2. Allowing new types to be embedded in larger message spaces. The inclu-
sion of sum types enables optional inclusion, while product types enables

inclusion of multiple instances of a type alongside auxiliary information.

We stress that this type system may be (and will!) extended and that a richer

system may make sense in practice. Types follow the grammar:
=0 |1]|11+1p | 11 X1y | T7,
and the corresponding expression language follows the grammar

E=T | inji(E) | injy(E) | (E1,Ep) | € | Eq:: Ep.

3Specifically, we assume each of the following to be of time complexity ©(1): 1. receiving and
sending messages of any length, 2. (de)constructing sum and product types, 3. accessing a given
index in a bit string for reading or writing, 4. copying objects of any size, which is assumed to be
done through copy-on-write references.

Chapter 3. Composition with Knowledge Assumptions 75



We will alsouse 2 torepresent 1+1,and 0 and 1 forinj; (T) and inj,(T) respectively.
Formally, the typing rules are:

Fx:1q = x:Tp
FT:1
Finjp(x): 71 + 12 Finjy(x): 71 + 12
X1 Fy: 1) Fx:T Xt
et
- (x,y): 11 X 1o Foxxt*

Note that there is no means to construct the empty type 0.

Knowledge assumptions. We expand this basic type system by allowing ob-
jects to be annotated with a knowledge assumption. Specifically, given a knowl-
edge assumption & = (init, X, W, R), where init returns pp: 7, and for all pp in the
domain of'init, both X, and W,,, are valid types, there are two additional types

present:

1. The type of knowledge-implying objects in &: [& ] (equivalent to X,,)

2. Thetype of witnessed objectsin & with respect to aninput set of knowledge

I: VI € X5:(Kpp, I) (equivalent to X, x W,
Formally then, we define & types through the grammar
r=0 [ 1]+ | rxry | 7| [Rppl | (Kppo D),
with the corresponding expression grammer being
E=T | injy(B) | inip(B) | (Br,By) | ¢ | Evisby | [Els,, | (B, .

Crucially, the types of messages may depend on prior interactions. This is
particularly obvious with the set of input knowledge I, which will be defined
as the set of all previously received x:[&,,], however it also applies to pp itself,
which may be provided from another component of the system. This allows for
the secure sampling of public parameters, or delegating this to a common ref-
erence string (CRS). The typing rules are extended with the following two rules,

where X,,, and W,,, are type variable:
= x: Xpp = w: Wy, (x, w) € Rpp(I) = x: Xpp

F (x, w}%pp: (Kpp, I - [x]ggpp: [Kpp]
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3.2.2 Efficiently Indexable Sums and Products

In order to allow representing infinite randomness in public parameters, such
as for the random oracle, infinite products with efficient indexing are required.
We define the sum and product operator here to divide the domain into sets of
increasingly large powers of two, which can be arranged as a binary tree. The
final construction links these in a basic sequence, ensuring that any index i can

be accessed in O(log(i)) operations.

> flx) = effAgg(X, f, +,0,0)

xeX

[ [fx) = effAgg(X, £, %, 1,0)

xeX

effAgg( &, -1,") =T
effAgg( X f,0,1, 1) = aggTree(take(Zi, X),f,<,1,0) &
effAgg(drop(2i, X),£, O, 1,i+ 1)
aggTree([x] f, -,,0) = flx)
aggTree( &, -T,) =T
aggTree( X ,f,0,1,10) = aggTree(take(Zi_l,X),ﬁ O, 1,i—1)0
aggTree(d rop(Zi_l, X),[,0,1,i—1),
where take(i, X) returns the sequence containing only the first i elements of X (or

X itself, if | X| < i), drop(i, X) returns the sequence containing all other elements
of X, such that take(i, X) | drop(i, X) = X, and < stands in for one of + and x.

3.2.3 Typed Networks

We will consider networks of random systems (which can be considered as la-

belled graphs) as our basic object to define composition over.

Definition 3.2 (Cryptographic Networks). A typed cryptographic network is

a set of nodes N, satisfying the following conditions:
I. Eachnoden € Nisatuplen = (I,,0,, 7, R,, A,) representing:

+ I, a set of available input interfaces.

+ O, aset of available output interfaces.
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+ 1,:1, U0, — T, a mapping from interfaces to their types.

« R, a (Zie 1, (D, Xoeo, rn(o)) random system.
(see Subsection 3.2.2 for a detailed description of sums over types)

« A, < I, U Oy, the subset of interfaces which behave adversarially.

2. Both input and output interfaces are unique within the network:

Va,be N:a#b = [)nl,=2A0,n0Oy =2.

3. Matching input and output interfaces define directed channels in the im-

plied network graph. Therefore, wherea,b € N,i € O, n Ij:

« The interface types match: 7,(i) = ;,(i).

« The edges have a consistent adversariality: i€ A, < i€ Aj.

We denote the set of all valid cryptographic networks by .

This corresponds to a directed network graph whose vertices are nodes and
whose edges connect output interfaces to their corresponding input interface.

Composing multiple such networks is a straightforward operation, achieved
through set union. While the resulting network is not necessarily valid, as it
may lead to uniqueness of interfaces being violated, it can be used to construct
any valid network out of its components. We also make use of a disjoint union,
A v B, by which we mean the union of A and B, while asserting that A and B are
disjoint. Due to the frequency of its use, we will allow omitting the disjoint union

operator, that is, we write AB to denote A v B.

Definition 3.3 (Unbound Interfaces). In a typed cryptographic network N, the
sets of unbound input and output interfaces, written I(N) and O(N), respectively,
are defined as the set of all tuples (i, r) for which there existsa € Nandi € I,
(resp.i € O,), where for allb € N,i ¢ Oy (resp. i ¢ I)), with r being defined as its
type, 7,(i). Furthermore, I04,(N) is defined as the unbound honest interfaces: all
(i,-) € I(N) u O(N), where i is honest, that is, where Va € N:i ¢ A,.

We can define a straightforward token-passing execution mechanism over
typed cryptographic networks, which demonstrates how each network behaves

as a single random system#. We primarily operate with networks instead of

4Termination is an issue here, in so far as the network may loop infinitely using message
passing. We consider a non-terminating network to return the symbol L, although this might
render the output uncomputable.
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reducing them to a single random system to preserve their structure: It allows
easily applying knowledge assumptions to each part and enables sharing com-

ponents in parallel composition, a requirement for globality.

Definition 3.4 (Execution). A typed cryptographic network N, together with
an ordering of I(N) and O(N) defines a random system through token-passing
execution, with the input and output domains (. ye;(n) T/ X r)co(n) Tr respec-
tively. Execution is defined through a stateful passing of messages — any input
to N will be targeted to some (i,-) € I(N). The input is provided to the random
system R,, for which i € I,. Its output will be associated with an o € O,. If there
exists ab € N such that o € [, it is forwarded to Ry, continuing in a loop until no
such node exists. At this point, the output is associated with (o,-) € O(N) (note
that, if O(N) = 2, the corresponding random system cannot be defined, as it has
an empty output domain) and is encoded to the appropriate part of the output

domain.

In order to help with preventing interface clashes, we introduce a renaming op-

eration.

Definition 3.5 (Renaming). For a cryptographic network N, renaming inter-

facesay,...,a, toby,..., by, is denoted by:
Nlai/bq,...,a,/b,]| ={me N | ml[ay/bq,...,a,/b,] }.

Where, for m = (I, Oy, T, -, Am), mlay /by, ..., a,/b,] is defined by replacing each
occurrence of g; in the sets I, O,, and A, with the corresponding b;, as well as
changing the domain of 7, to accept b; instead of a;, with the same effect.

To ensure renaming does not introduce unexpected effects, we leave it unde-
fined when any of the output names b; are present in the network N and are not
themselves renamed (i.e. no g; exists such that a; = b;). Likewise, we prohibit
renaming where multiple output names are equal. For a set of cryptographic

networks, the same notation denotes renaming on each of its elements.

When talking about valid distinguishers, these are sets of cryptographic net-

works closed under internal renaming.

Definition 3.6 (Distinguisher Set). A set of distinguishers ® c * is any subset
of * which is closed under internal renaming: For any D € D, 71 = ay/by, ..., a,/by,
where no g; or b; are in I(D) or O(D), D[n] € * = D[n] € D.
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Composition is also defined for distinguisher sets. Given a set of networks
D and a network A, DA is defined as the closure under internal renaming of
{ DA| D € D: DA € * }. Observe that * is closed under composition and therefore
*A < «for any A € * Renaming for distinguisher sets is defined similarly,
allowing distinguisher sets to give special meaning to some external interfaces,

but not to internal ones.

3.2.4 Observational Indistinguishability

Now that we have established the semantics of cryptographic networks, we can
reason about their observational indistinguishability, defined through the sta-
tistical distances of their induced random systems combined with arbitrary dis-

tinguishers. The indistinguishability experiment is visualised in Figure 3.1.

Definition 3.7 (Observational Indistinguishability). Two cryptographic net-
works A and B are observationally indistinguishable with advantage ¢ with re-

spect to the set of valid distinguishers D, written A e B, if and only if:
« Their unbound inputs and outputs match: I(A) = I(B) A O(A) = O(B).

« For any network D € ® for which DA and DB are both in *, with I(DA) =
I(DB) = (-, 1) and O(DA) = O(DB) = (-, 2), the statistical distance §°(A, B) is
at most £, where

62(A, B) = sup AP(A, B)
Ded

AP(A, B) = |Pr(DA = 1) — Pr(DB = 1)|.

To simplify some corner cases, where VD € D: DA ¢ x v DB ¢ %, we con-
sider 6°(A, B) to be 0 - in other words, we consider undefined behaviours

indistinguishable.
The ® term is omitted if it is clear from the context.

Observe that observational indistinguishability claims can be weakened:

AE’?lB/\szgfbl — A" p (3.1)

Lemma 3.1(Observational Renaming). Observationalindistinguishability is closed

under interface renaming:

VA Be«®cxenAln] Bilesr A B — Am]*I" p
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Figure 3.1: A visual representation of an example A 2B experiment, with solid
lines representing honest interfaces and dashed representing adversarial inter-

faces.

Proof. By precondition, we know that I(A) = I(B) AO(A) = O(B), that 82(A,B) <¢
and that D is closed under renaming. As renaming is restricted by definition to
not create any new connections, I(A[n]) = I(A)[n] = I(B)[n] = I(B[n]) and like-
wise for O. As ® remains unchanged, it remains to show that sup .4 | Pr(DA[R] =
1) - Pr(DB[n] =1)| < e.

Consider how, for D € ®, (DA)[n] and (DB)[n], are related to D’(A[n]) and
D’(B[n]). If (DA)[n] is well-defined, then for D’ = D[n], then (DA)[n] = D’(A[n).
Moreover, for any D’ € 9D, there exists some internal renaming m such that
(D’[m]A)[n] and (D’[m]B)|[1] are well-defined, as the renaming m can remove the
potential name clashes introduced by n. As ® is closed under renaming, it is
therefore sufficient to show that sup g | Pr((DA)[7] = 1) — Pr((DB)[71] = 1)| < &.
As the execution semantics of (DA)[1] and (DB)[n] does not use interface names,
this is equivalent to suppcq | Pr(DA = 1) — Pr(DB = 1)| = 62(A,B) < «. O

Lemma 3.2 (Observational Equivalence). Observational indistinguishability is an
equivalence relation: It is transitives (3.2), reflexive (3.3), and symmetric (3.4). For all
A,B,Ce*Dc*¢e,6 R

£1,® EZ,Q £1+£2,®

A X BAB = C = A C (3.2)
0,

AXA (3-3)

AEILQB = leigA (3-4)

Proof. We prove each part independently, given the well-known fact that statis-

tical distance forms a pseudo-metric [Maul1].

5Technically, due to the error terms, the relation is not transitive, but obeys a triangle inequal-
ity and asaresultitis alsonotan equivalence relation. We view this as a weak transitivity instead,
as in practice, for negligible error terms, it behaves as such.
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Transitivity. The equality of the input and output interfaces can be estab-
lished by the transitivity of equality. The statistical distance is established
through the triangle equality. Specifically, for all D € ®, AP(A,C) < AP(A, B) +
AP(B,C) < & + &. The only case where this is not immediate is if DB ¢ =,
which occurs in the case of an internal interface name collision - resolvable

with renaming and use of Lemma 3.1. [

Reflexivity. By the reflexivity of equality for input and output interfaces and
62(4,A) =0 being established for pseudo-metrics. O

Symmetry. By the symmetry of equality and pseudo-metrics. O

Lemma 3.3 (Observational Subgraph Substitution). Observational indistin-

guishability is closed under subgraph substitution.

VA BCe+DcrecRA S B — CcA®DCB

Proof. The equality of outgoing interfaces is trivially preserved under substitu-
tion, as the outgoing interfaces of A and B are the same by assumption.

We know that VD € ®C:AP(A,B) < ¢. Suppose there existed a distinguisher
D € D such that AP(CA,CB) > &. Then, we can define D’ € ®C as DC, redraw-
ing the boundary between distinguisher and network. By definition, D’ € DC,
allowing us to conclude 4D’ € DC: AP'(A, B) > ¢, arriving at a contradiction. The

proof runs analogously in the opposite direction. ]

Corollary 3.1. For ® = x, observational indistinguishability has the following, simpler

statement for closure under subgraph substitution:

VA,B,Ce+ AL B = CA*CB

3.2.5 Composably Secure Construction of Networks

(Composable) simulation-based security proofs are then proofs that there exists
an extension to one network connecting only on adversarial interfaces, such that
it is observationally indistinguishable to another. We visualise and provide an

example of construction in Figure 3.2.

Definition 3.8 (Network Construction). A network A € » constructs another

network B € * with respect to a distinguisher class ® with simulator a € * and
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. . . 0D .
Figure 3.2: A visual representation of the A — B experiment.

. 7 ’g . . . . .
error ¢ € R, written A SihaN B,ifand only if A &2 aB and a and B have disjoint
honest interfaces: IOy (a) N IOy (B) = @. The D term may be omitted when it is
clear from the context, the a term may be omitted when it is of no interest, and

the ¢ term may be omitted when it is negligible.

Aswith observational indistinguishability, network construction statements

can be arbitrarily weakened. Furthermore, it is directly implied by indistin-

guishability:
£,0,D LN sa%z
A—"HBAD, c D — A B (3.5)
) 7g
A B — A2 p (3.6)

Theorem 3.1 (Generalised Composition). Network construction is composable, in
that is satisfies transitivity (3.7), subgraph substitutability (3.8), and renameability
(3.9). Forall A,B,C,a,B € +,D < *,£1,& €R, it:

’ 7g ’ Ig y ,g
A&B/\BfZB—%C/\aBCe*:AmC (3.7)
€1, 7 lrayg
AEDE, B A 104(C) N [0y(@B) = 2 — CAE2s cp (3.8)
- - ’ !S ’ n vg n -
Al afBlA] € « 7 4222 g af) R, g (5)

Proof. We will prove each of the three properties separately.

Transitivity. By assumption, we know that A %° B and B *2° pC. By
Lemma 3.3, we can conclude that aB ° aﬁC By transitivity (Lemma 3.2), we
conclude that A #1452, ® aPC.

Observe that /5’ and C, as well as @ and B have disjoint honest interfaces by
assumption. As B® [3C they have the same public-facing interfaces. As afiC

is well-defined and as a and B have disjoint honest interfaces, so does o and C.
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From each of @, B, and C’s honest interfaces being disjoint, we conclude that so
are aff and C’s. L

£1,9C oB

Closure under subgraph substitution. By assumption, we know A
D " . c ..

By Lemma 3.3, we can conclude that CA o2 CaB. As composition is a disjoint

union, it is commutative and therefore CaB = aCB. The interface disjointness

requirement is satisfied by the precondition. ]

. . D
Closure under renaming. By assumption, we know A 12 gB. By Lemma 3.1,

21, 207] (aB)[n] = a[n]B[n]. As a[n]B[n] € *, both a[n] and

B[n] are in *. As the honesty of edges remains unaffected by subgraph substitu-

we conclude that A[n]

tion, name collisions are notintroduced, the disjointness requirement is also sat-

isfied. Combined, this implies network construction in the renamed setting. [

From the generalised composition theorem, which notably relies on modify-
ing the distinguisher set (e.g. from D to Da in (3.7)), we can infer operations sim-
ilar to sequential and parallel composition in Constructive Cryptography, given
D = *. For any 9, identity also holds, due to the identity of indistinguishability,

and indistinguishability lifting to construction.

Corollary 3.2 (Traditional Composition). For ® = «, honest network construction
has the following, simpler statements for universal transitivity (3.10) and universal

closure under subgraph substitution (3.11). Identity (3.12) holds regardless of D. For
all A,B,C,a,p € *,&1,62 € R, D c =

&1,0,* B/\B SZYﬁy* C/\aﬂCe % = A)M)C (3.10)
€1,0,* €1,d,%
A——> BAIOy4(C)nIOy(aB) =2 — CA——CB (3.11)
0,2,9
s A (3.12)

3.3 The Limited Composition of &-Networks

Having established a composition system which allows restricting the domain of
permissible distinguishers and, having formalised the general notion of knowl-
edge assumptions, we can now establish the main contribution in this chapter:
Permitting extraction from knowledge assumptions within a composable set-

ting.
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We use asimilaridea to that of “algebraic adversaries” in the Algebraic Group

Model [FKL18], requiring random systems (recall Subsection 2.3.2) to output not

only knowledge-implying objects, but also their corresponding witness. We
then add new nodes to the network which gather all data extracted in this way
in a central repository of knowledge for each knowledge assumption. Crucially,
while the distinguisher supplies witnesses for all knowledge-implying objects it
outputs, it is not capable of retrieving witnesses from other parts of the system.

Simulators are provided with read access to this repository, allowing the
simulator to extract the knowledge it requires, but not any more about the
behaviour of honest parties. The composition of constructions using knowledge
assumptions is proven, provided the parts being composed do not both utilise
the same knowledge assumption. In such a case, Theorem 3.1 provides a fall-
back for what needs to be proven, namely that the simulator of one system does
not permit distinguishing in the other system. At a technical level, modifications
to Definition 3.2 are needed to allow types to depend on previously transmitted

values. We note the formal differences in Subsection 3.3.2. Furthermore, many

of the statements in this section technically require some renaming to avoid
internal name clashes and connect to the correct interfaces. These detract from
the legibility of statements; we will therefore describe them less formally in this

section, leaving the details to Subsection 3.3.6.

3.3.1 Knowledge Respecting Systems

The Algebraic Group Model [FKL18] popularised the idea of “algebraic” adver-
saries, which must adhere to outputting group elements through a representa-
tion describing how they may be constructed from input group elements. Secu-
rity proofs in the AGM assume that all adversaries are algebraic and therefore
the representation of group elements can be directly accessed in the reduction —
by assumption it is provided by the adversary itself.

While this is equivalent to an extractor-based approach, for composition we
will follow a similar “algebraic” approach. The premise is that for any random
system R outputting (among other things) knowledge-implying objects in &, it
is possible to construct an equivalent random system &(R), which outputs the
corresponding witnesses as well, provided each step of the random system is

governed by a 8-respecting algorithm.
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Recall that a random system is an infinite sequence of probability distribu-
tions. As this is not in itself useful for applying Definition 3.1, we instead in-
terpret them as an equivalence class over stateful, interactive, and probabilistic
algorithms [LM_zo], with associated input and output types. For any such typed

algorithm A and knowledge assumption & ,,,, A can be separated into A; and A,,

pp’
where A; outputs only a series of [ X,,,] values and A; all the remaining informa-
tion, such that A’s output can be trivially reconstructed by inserting the [X]
values of A; into the gaps in Ay’s outputs. Likewise, inputs can be split into the
I and aux inputs used in Game 3.1. Given this, we can define when a random
system is K-respecting. Each such system has a corresponding “K-lifted” system,

which behaves “algebraically”, in that it also output witnesses.

Definition 3.9 (8-Respecting Systems). A typed random system R is said to
be K-respecting (or R € RespSysg), if and only if its equivalence class of state-
ful probabilistic algorithms contains a stateful algorithm A that when split as

described in Subsection 3.3.1 into A; and A;, satisfies A} € Respg. For a set S%,

RespSysz = (¢ g RespSysg.

Definition 3.10 (S%-Lif’ted Systems). A typed random system R induces a set of
K-lifted random systems. This is defined by replacing, forany & = (-, X,W,R) €
K, any (part of) an output from R with type [&,,] with (a part of) the output with
type (Kpp, Igpp), where Ig,, is constructed as the set of all prior inputs to R of

I
type [fpp]- The output (part) {x, w)gpp of the lifted system must be such that the
PP
equivalent output (part) on the unlifted system is [x]gpp and (x,w) € R@pp (Igpp)

with overwhelming probability.

Theorem 3.2 (§—Liﬂing is Possible). For random systems R € RespSysz, at least
one S%—lzﬁing of R, denoted ﬁ(R), exists.

Proof. Split R into algorithms Ag for each & € & and A, for the remaining com-
putation, such that each Ag outputs only [&] and A, outputs no such values, as

described above. Then, by Assumption 3.1, there exist corresponding extractors

Xg foreach & € 8, such that given the same inputs X'g outputs witnesses to the
knowledge-implying objects output by Ag.

Replace Ag with A%, which runs both Ag and Xg, and outputs (x, w)g, where
[x]g is the output of Ag and w is the output of Xg. When reassembled into a

random system, this modification satisfies Definition 3.10. ]
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3.3.2 Basic Type Dependencies

Up to this point we have glossed over an inconsistency in the framework we
presented: It relies on types depending on sets of input knowledge and public pa-
rameters, however types are statically defined, and set from initialisation. To cir-
cumvent this, we extend the definition of cryptographic networks with a limited
support for type dependencies, just sufficient for the purposes of this chapter. To
reason about the origin of public parameters, we first classify which interfaces
can be used as a basis for other types. This definition and that of the network
public parameters arise from are mutually recursive — they are nevertheless pre-

sented separately for clarity.

Definition 3.11 (Public-read Interface). A countably infinite set A = {(i1, 07),
(ip,07),...} is a public-read interface in a cryptographic network N if each of the

following conditions hold:

I. Allinterfaces names are valid: Vj € N:dny, ny € N:ij € Iy A 0j € Op,.
2. The types of all input interfaces are 1.

3. The types of all output interfaces are equal.

4. Passing T to each input interface will:

(a) Cause the corresponding output interface to output a value matching
all others output by this public-read interface in the past, indepen-

dent of which interface is queried.

(b) Not impact any subsequent execution (that is, not change the system

state).

An example of acommon public-read interface is a common reference string,
provided it has an explicit setup step, that is, the CRS is not selected on the first
query. We make use of public-read interfaces by allowing them to parameterise
types of other interfaces in the system, for instance to be used as public param-
eters in knowledge assumption types. We are primarily interested in infinite
sets to ensure that arbitrarily many additional interfaces can be created, a fact
exploited to ensure the uniqueness of interface names in &-lifting.

These changes cumulate in a fairly minor change in the definition of cryp-
tographic networks and their execution, which does not affect the subsequent

proofs and definitions presented in Section 3.2.
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Definition 3.12 (Simply Dependently Typed Cryptographic Networks). A

simply dependently typed cryptographic network N (over a set of knowledge

assumptions §) is defined as in Definition 3.2, with the following modifications:

I.

Let R be a set of public read interfaces associated with N, and I be all inter-
faces in N. Then there exists a partial order < c R x (R v I) indicating type

dependencies.

. IfA,Be Rand A < B, then forall (-,0) € B, A < o.

Nodes depending on a public-read interface must have access to it: Vn €

N,aebuO,,A:A<a = Hd(i,0) € Ao I, ni€ O,

For each node n € N and knowledge assumption & € K, during execution,

each message received on an interface in I, is statefully recorded in Ig.

Foralln € N,a € I, u O,, t,(a) returns a function taking the following
inputs:
- Foreach & € S?Q, Ig.

« Forall A € R: A < a, the output value of the public-read interface.

The output of this function is the type of this interface given a specific execu-

tion state (Ig and public-read interface values).

Interface types match if their concrete type matches at all possible system
states, where type matching is relaxed to allow the output type to be a sub-

set® of the input type. In particular, note that I; < I, = (&, ;) < (&, k).

Typically the easiest way to ensure that interfaces are matching in all possible

states is to ensure they depend on the same public-read interface. The rest of

Section 3.2 can be established analogously for simply dependently typed cryp-

tographic networks, with the modification of using the above definition of inter-

face matching.

Definition 3.13 (Public parameters). A public-read interface A supplies the

public parameters for a knowledge assumption & = (init,...) if and only if its

®Where subsets of types are constructed by (K,,,, I;) < (|, L) < Rg, () € Rg, (1), and
for all other defined naturally over all recursive types, for instancet* € 1" < rc1.
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output type is 1 + O, where O is the type of the codomain of init, with inj; (T) in-
dicating the public parameters are uninitialised, and the output value v satisfies

the following criteria:
I. Initially, v = inj{(T).

2. The value v changes at most once during any execution and, if it does, it is

distributed according to inj,(init).

We will largely use this implicitly - for pp being the value supplied by such a
public-read interface, we will write X, W,,,, R, and &, as usual - for pp =
injo(pp’), these are synonyms for X, etc., while for pp = inj;(T), the unini-

tialised state is captured by defining Xy, (1) = Winj, (1) = Rinj, (1) = 2-

3.3.3 Lifting Networks for Knowledge Extraction

The set of S%—respecting random systems RespSys¢, along with the transforma-
tion K(R) for any R € RespSysg, provides a means of lifting individual random
systems. Applied to networks, it is clear something more is necessary - the
lifting does not preserve the types of output interfaces, and to permit these to
match again some additional changes need to be made to the networks. Looking
forward, the lifted systems will interact with a separate, universal node REPO,
which stores witnesses for the simulator to access.

We extend the notion of ﬁ—respecting to apply to networks, a network
is S%—respecting if and only if all vertices in it are also S%—respecting (we will
use RespNetg as the corresponding set of S%-respecting networks?). In lifting
networks in this set, not only is each individual node lifted, but all outgoing
connections are connected to a new node, which we name CHARON, which acts
as a relay; re-erasing witnesses, while also informing a central repository of
knowledge (outside of this network) of any witnesses it processes. We take the
name from the ferryman of the dead in ancient Greek mythology, who in our
case demands his toll in knowledge rather than coins. For any §-respecting

network N, we define the lifting §(N ) as follows:

Definition 3.14 (Network Lifting). The network lifting K(N) for any crypto-

graphic network N € RespNet is defined to compose as expected. In particular,

*This set also forbids interface name clashes with REPO, ensuring this can be safely inserted
and is a subset of *.
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if there exists S%’,N’:N = S%’(N’), then §(N) is defined as (§ U KE’)(N’). Oth-
erwise8, §(N) is defined as consisting of nodes n’ for each node n € N, where
Ry = ﬁ(Rn) and each output interface is renamed to a unique? new interface
name. For each output interface now named x and previously named y in N,
~@%(N) contains a new node CHARON(.&, adv), where adv denotes if the interface
is adversarial, connected to free interfaces on the knowledge repository REPO
and the public parameters for each knowledge assumption. Note that REPO is
not part of the lifted network itself, which allows disjoint networks to remain

disjoint when lifted.

Where CHARON is defined as follows:

Node CHARON(S?Q, adv)
This node intercepts an outgoing message of &(R) and maps it to the correspond-
ing message R would have output, as well as sending the additional witnesses to
REPO(R). adv indicates if this node should be adversarial or not. r and 7’ represent
the arbitrary types of the interface in R(R) and R respectively, differing only in that
7 has instances of [&] replaced with (&, I).

Interfaces and their types:

Type | Description

a/b t/t" | The input and output messages
PPo.&/PPis Top,¢/1 | Public parameters read interface (for all & € S?Q)

ki o'k, o Xpp X W,,p/1 | The knowledge output interface

(for allR =(, X, W,) e S%, pp as received on ppoyg)

I={a}u{kiqg | R€R}L,0={b}U{k,q | R € & },A = {a,b}ifadv, & otherwise

When receiving x on interface a:

Recursively replace all {x,w)g = values in x with [x]g  where the corresponding
part of 7 does not have type (& ,, ). Record the list of such values in K for each
feR.

for & € & do

for (x,w)g € Kgdo

pp’

8Note that this is well-founded recursion, due to the base-case of & = g and as the order in
which knowledge assumptions are added does not affect CHARON or REPO.

Where we assume uniqueness, this is assumed globally: In K_i(A)Ei(B), the uniquely selected
interface names should not clash, therefore being the same as K(AB).
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output (x, w) onk;

require response T on k, ¢

outputxonb

The node REPO(K) collects witnesses from CHARON and provides adversar-

ial access to them. REPO allows for some variation. For instance, it could:

I. Return the set of all witnesses.

2. Return at most one witness.

3. Abort when no witness is available.

4. For recursive witnesses (such as those used in the AGM and KEA assump-
tions), consolidate the witness into a maximal one, by recursively resolv-

ing (INPUT, i) terms.

We focus on 1., as it is the simplest, although we also specify the case of 4., as it

matches reality more closely. First, I. is formally defined:

Node REPO(R)

This node stores all transmitted witnesses in the network and permits adversarial
querying of statements, returning all appropriate witnesses. Where pp is used, it is

as received on the public parameter read interface pp,.

State variables and initialisation values:

Variable ‘ Description

K:(Xpp X W) =€ ‘ List of acquired knowledge

Interfaces and their types:

iR

0,8’

A={d W, |jeN}

Type | Description
ki ﬁ/k{)y Q Xpp X W,,/1 | Knowledge inputs
PPo.s/PP;i & 7g,,/1 | Public parameters
x"g / w"g Xop/Wpp | Witness request

I[={F ﬂ@jem}u{ppo,@}
o={F w’ﬁ | jeN}uipp; )
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When receiving (x, w) on interface k’l
letK « (x,w), K
output T on k’o

When receiving x on interface x':

letw « ¢
for (x’,w’)in K do

if x = x’ thenletw « w’,w

output won w

4 can be defined as:

Node REPO(R)
This node stores all transmitted witnesses in the network and permits adversarial
querying of statements, returning all appropriate witnesses. Witnesses w are as-
sumed to be representable as (a, wy, ..., w,), wherea ¢ W andw; € W. Any (INPUT, i),
at any level of the tree, is recursively substituted with the first alternatively avail-
able witness, if possible. It is assumed that the result is still in W. Where pp is used,

itis as received on the public parameter read interface pp,.

State variables and initialisation values:

Variable ‘ Description

K:(Xpp xWp,)" = ¢ ‘ List of acquired knowledge

Interfaces and their types:

Type | Description

ki,g/k{),,@ Xop X W,,/1 | Knowledge inputs
PPo.s/PPi g T@pp/]l Public parameters
xjﬁ/w’;2 Xop/Wpp | Witness request

I={¥,g% | j€N}U{pp, g}
oz{k’qﬁ,v}/ﬁ | je N} u{pp; g}
A={xX W, |jeN}

When receiving (x, w) on interface k’l
if w # (INPUT, x) then
letK « (x,w),K
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output T on k{)
When receiving x on interface ¥’
letw « g K’ « K
while K’ = (x’,w’"),K” do
if x = x’ then let w « unwind(w’), w
letK’ « K”

output won w

Helper procedures:
procedure unwind((a, wy, ..., w,))
foriin Z, where dx: w;,; = (INPUT, x) do
for (x’,w’)in K do
if x = x’ then
let w; ; « unwind(w’)
break

return (a, wy,...,w,)

The set of valid S%-distinguishers Dy is defined with respect to REPO, where
we assume the choice of variation is made separately for each knowledge as-
sumption. Informally, it ensures that all parts of the distinguisher are K-lifted,
and the distinguisher collects all witnesses in a central knowledge repository
REPO, but does not retrieve witnesses from this, effectively only providing

access to the simulator.

Definition 3.15 (E%-Distinguishers). The set of valid ﬁ—distinguishers D¢, for
any set of knowledge assumptions R, is defined as the closure under internal

renaming of

|K(N)u Uﬁ REPO(R) | N € RespNetg
Ref
Note that as N € RespNetg, it cannot directly connect to any of the REPO nodes.

As the number of REPO and public parameter interfaces may differ be-
tween the real and ideal world, we must normalise them before establishing
indistinguishability. To do so, we wrap both worlds to contain an additional
node L which consumes all remaining interfaces, depending on the number
already used. This node depends on which interfaces are consumed in the

world, and we therefore formally also define a wrapper which roughly says
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‘consume all remaining interfaces”, specifically for the REPO interfaces and
public parameters. In the remainder of this section, we leave this wrapper as

implicit, with it detailed in Subsection 3.3.6. Formally, the | node is specified as:

Node 1(&,n)
This node does nothing, except connect to dangling k; s/k, &, Xa/Wg, and pp, ¢/pp; «
interfaces. n: § - N? represents the number of each interface not to connect to and

we will denote (ag, bg, cg) = n(K).

Interfaces and their types:

Type | Description

k{) ﬁ/ké . 1/X,, x W, | Knowledge repository inputs
PPo.s/PPi g Tg,,/1 | Public parameters

wh i

Witness requests

XPP

b . .
I= (K70, W, ol | je N}
O = { k}+a§ x]+b§’prfi+

i}@;s\? y5?‘:|}€IN}
A= {0 Wi jeNy

When receiving any input:

abort

A minor result of interest can be obtained in the case that a cryptographic
network does not make use of a knowledge assumption. Formally, we define this

S
as K-agnosticism.

Definition 3.16 (S%-(Semi—)Agnostic). A cryptographic network Ais S%—agnostic
ifand only if no outputs with a componenty: [& ,,] forany & ,, € R are ever made.
A cryptographic network R is semi-&-agnostic if and only if any output with a

component y:[&,,] was previously received as an input.

Given these definitions, existing indistinguishability and constructions results
between K-respecting networks can be lifted to equivalent results between the
lifted networks with respect to & -distinguishers:

£z
Lemma 3.4 (Indistinguishability Lifting). If A; A, 1 BBy, where fori €

{1,2}, A;,B; € ReSPNet§2; f_él N §2 = g, and ] = §1 U 5%2, then:

£,®§

- 8,@* -
A1Ay ~' BBy = A1R3(A3) ~" B1Ky(By).

Chapter 3. Composition with Knowledge Assumptions 94



Proof. Recall from Definition 3.7 that three conditions need to be satisfied for
indistinguishability: a) Unbound interfaces must match, b) 62(A,B) < ¢, and c)
the set of distinguishers must be closed under internal renaming.

For any ], & is closed under internal renaming by definition. Furthermore,
as the interfaces of A; Ay and B} By match by precondition and interfaces not re-
lated directly to the knowledge assumption are preserved (with only their types
being modified equally). For this point we only need to consider the knowledge-
supplying, public parameter and knowledge-querying interfaces, which will be
equal due to the definition of L -lifting and K20) using the same types.

It remains to show

sup AP(A1R2(42), By 82(By)) =
Degﬁ

sup | Pr(DA; 82(A;) = 1) — Pr(DBy §,(By) = 1)| < &.

Ded¢
Consider how the behaviour of DAlfi(Al) and DB1§(B2) differs from D’ A Ay
and D’B; B, respectively, where D’ is D without REPO(R) (with any internal
connections being replaced with a dummy REPO with no other purpose) for
8 € ﬁz, not exporting public-parameter interfaces. A; lacks CHARON nodes
which impart knowledge to D’s REPO(&) nodes (for & € S%z) However, as in
DA, §2(A2) these nodes do not reveal any information to the distinguisher (as
the distinguisher cannot connect to the knowledge exporting interfaces, and
as Aj is ﬁz—respecting) and neither reveals any information to the network
A1R2(Ap) (due to the _L-lifting forcing these to be a no-op), this additional
mechanism has no impact on the behaviour. As a result, the output of D’A1 A,
equals that of DA; S%Z(Az). AsD’ € Qﬁl’ we have

|PI‘(D’A1A2 =1)- PI‘(D,BlBZ = 1)| <& =
|Pr(DA182(Ay) = 1) — Pr(DB1K»(By) = 1)| < &. O

Lemma 3.5 (Construction Lifting). For Ay, By 2,01, € RespNet§2 and K1, K>,
where S?Ql N §2 - pand § = S?Ql U 5%2:

&a102,Dg, N s,alﬁz(zxz),ﬁﬁ N
AjAy ——— B1By = A1R(Ap) = B1 Ka(B)).

o« . . ’ 7g
Proof. Recall from Definition 3.8 that network construction A %=, B has two

separate conditions: @ and B must have disjoint honest unbound interfaces, and
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. . . avgﬁ .
Figure 3.3: A visual representation of the A — B experiment. The small
points denote CHARON(K) nodes, while & denotes the REPO(K) node. Public
parameters have been omitted. Note that outside of D CHARON nodes are per-

mitted, but not required.

A®2 4B. From the precondition, we know that a’ and B’ (defined as above) have

disjoint honest interfaces. Interface names do not get changed through the K
lifting, however new interfaces do get added. There is no clash in these inter-
faces, due to the global uniqueness requirement in the lifting. Furthermore, the
1-lifting will be the same for all & € S%l and normalise the interfaces available
for & € 3%2.

It remains to show:

- 5,@” - -
A1R2(Ap) '~ a1 82(ap)By K2(By),

£z
which by Lemma 3.4 follows from A Ay 1 a1 Bjay By, which in turn holds as

part of the precondition. O

We visualise the construction experiment against a knowledge-respecting
distinguisher set Dg in Figure 3.3. This may be contrasted with Figure 3.2, which

does not have REPO(K) and does not allow the simulator to extract.

Lemma 3.6 (D Closure). D is closed under sequential composition with lifted (with

respect to ﬁ) networks in RespNetz: VR € RespNetz: D K(R) < Dg

Proof. Follows immediately from RespNet¢ being closed under set union, and

Definition 3.15 stating that any K-lifted network has a corresponding distin-

guisherin Dg. [

As a stricter set of knowledge assumptions corresponds to a smaller set of
permissible distinguishers, indistinguishability and construction results can be
transferred to larger sets of knowledge assumptions. A proof without knowl-
edge assumptions is clearly ideal - it still holds, regardless which knowledge

assumptions are added.
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Lemma 3.7 (Knowledge Weakening). In addition to weakening with respect to a
subset of distinguishers being possible, weakening is also possible for distinguishers with a

greater set of knowledge assumptions. Forall A, B,C,a € *, S%L S?'Ez, where 5%1 c 5%2-'

8,@5% C S,@ﬁ C
A ~' B= A -~ B (3.13)
s,a,Sﬁlc s,a,QﬁzC
A———B =— A——>B (3.14)

Proof. For (3.13), it is sufficient to show that

sup AP(A,B)> sup AP(A,B)
DES§IC De®§2C

For this it is sufficient to show that every D Q)S%ZC has an equivalent D’ € Q)EQIC:
VD e §)§2C: 4D’ e ®§1C: DA=D'"AADB=D’'B.

For each distinguisher D in QDSEZC, it consists of: a) C itself, b) REPO(K) nodes
for every & € K;, and c) K,(A) nodes for some A € RespNetﬁz. For D’ in fbsztl
the same applies, however with fewer REPO(K) nodes and a 81 (A) wrapping for
A€ RespNet§1 instead. As S%l c §2, RespNet;21 2 RespNetﬁz, and it is therefore
sufficient to show that the different wrapper and lack of additional REPO nodes
does not change the behaviour. This follows directly as the effect of the addi-
tional wrapper in &, \ &1 can be emulated without changing whether a node is
S%l—respecting, and likewise REPO nodes are trivially ﬁl—respecting, as they do
not produce knowledge-implying objects themselves. It follows that for every
distinguisher D € D &, Wecan construct a semantically identical distinguisher
D' ed &

(3.14) follows directly from (3.13) and Definition 3.8. O

Lemma 3.8 (Agnostic Indistinguishability). For K1 € Ky, any K -agnostic (resp.
semi-{ 1-agnostic) network A and C € =, where & € K1 uses a basic (resp. recursive un-
winding) REPO(&) node:

O,@ﬁ

A 2 K
~ 1(A)

Proof. We consider the semantic behaviour of DCA and DCﬁl(A) forall D e 95‘31'
First, consider the case of A being ﬁl—agnostic. In this case, the §; wrapper
around A has no impact on the semantics - the additional CHARON nodes give

no information to REPO, as there is no information to relay. Their behaviour is
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therefore simply to relay - the same as when they are absent. As a result DCA
behaves exactly like DCK1(4), implying a statistical distance of zero.

If A is only semi—ﬁl—agnostic, CHARON does include some witnesses, how-
ever they are always (INPUT, -). Combined with the fact that these are actively ig-
nored by the recursive unwinding REPO, this again has no impact on semantics.
Through the same reasoning, it is possible to mix fully-&-agnostic and semi-&
agnostic for different knowledge assumptions & € K 1, provided the correspond-

ing REPO(R) are basic and recursive unwinding respectively. ]

3.3.4 A Restricted Composition Theorem

The rules established in Theorem 3.1 still hold, and it is clear why a simplification
as in Corollary 3.2 is not possible — it assumes that the distinguisher set D is
closed under sequential composition with simulators and networks, which is not
the case for Dg.

Theorem 3.1 already provides a sufficient condition for what needs to be
proven to enable this composition, however we can go a step further: While D¢
is not closed under sequential composition with arbitrary networks, it is closed
under sequential composition with knowledge-lifted networks. We can use
this fact to establish a simplified composition theorem when composing with a
K-lifted proof or network component. We observe that this implies composition
with proofs which do not utilise knowledge assumptions, as they are isomorphic
tof = o In particular, Constructive Cryptography proofs directly imply
construction in the context of this paper as well, and can therefore be composed

with protocols utilising our framework freely.

Theorem 3.3 (Knowledge Composition). When composing proofs against Ki0r Ky
distinguishers, where K1NKy=oand & = § 1V K, the following simplified composition
rules of transitivity (3.15) and subgraph substitution (3.16) apply. For all A,B,a €

RespNetﬁz,F € RespNetg,C, D, E,B,y € %, €1, €.

sl,a,‘}).é
A — B .
162, 82(a0)B,Dg

A AnafCex = A C (3.15)
Sz,ﬁ,gﬁz
L B % C -
SyY;gﬁ - 81)’)%5‘% -
D ——% EATOy(F) n104(yE) =2 — K(F)D —— K(F)E (3.16)
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Proof. The proofis done in parts.

Transitivity. By Lemma 3.6 and (3.5):

SZVﬁrgﬁz SZ!Brs)g%ZS%Z(a)
B——(C = B—— (.

. . £,%@,9; -
By Lemma 3.5 and preconditions, 8,(A) ™ K,(B) and, by Lemma 3.7

& ,‘B,@*;‘% (ll)
(3.14), B NCLahe S C. Therefore:

&1 ,ﬁz(ﬂ),@ﬁ B &y ,ﬁ,gﬁ.&z(a)

’

and by Theorem 3.1(3.7) (and afC € x implying K(@)BC € *)

€1+82,5§2(0!)ﬁ,f9§

]

Subgraph substitution. ByLemma 3.6, D s;:fi(c) < D¢. Therefore, the precon-

s,a,@»f&(C)
dition can be weakened (3.5) to A »=—=— B. The rest follows by Theorem 3.1

Equation (3.8) and the honest networks intersection not being affected by the

K-lifting. O

3.3.5 Reusing Knowledge Assumptions

Theorem 3.3 and its supporting lemmas prominently require disjoint sets of
knowledge assumptions. The primary reason for this lies in the definition of K
using the union of the knowledge assumptions §1 and §2 - all statements could
alsobe madeusing a disjoint union here instead. If knowledge assumptions were
not disjoint, this would place an unreasonable constraint on the distinguisher
however: It would prevent it from copying information from one instance of a
knowledge assumption to another instance of the same knowledge assumption,
something any adversary is clearly capable of doing.

Equality for knowledge assumptions is not really well defined, and indeed
knowledge assumptions may be related. The disjointness requirement is there-
fore more a statement of intent than an actual constraint and we stress the im-

portance of it for reasonably constraining the distinguisher set here: If the dis-
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tinguisher is constrained with respect to two instances of knowledge assump-
tions which are related, it may not be permitted to copy from one two to another
for instance, an artificial and unreasonable constraint.

Care must be taken that knowledge stemming from one knowledge assump-
tion does not give an advantage in another. In many - but not all - cases this
is easy to establish, for instance, we conjecture that multiple instances with the
AGM with independently sampled groups are sufficiently independent. If this
care is not taken, the union of two knowledge assumptions may be greater than
the sum of its parts, as using both together prevents the distinguisher from ex-
ploiting structural relationships between the two, something a real adversary

may do.

3.3.6 Formal Renamings and Liftings in Section 3.3

In Definition 3.14, CHARON(S?Q, adv) nodes have the renaming [a/x, b/y][koyg/ké Py

kiyg/k{)’ﬁ, ppi,ﬁ/ilﬁ, ppiyﬁ/olﬁ | & € ey applied to them, where j and [ are uniquely
assigned, and (ilﬁ,o%) are members of the public-read interface providing &’s

public parameters, as defined in Subsection 3.3.2, Definition 3.13. If this public-

parameter interface is already fully used, by the nature of countable infinity,
space can be made by partial renaming.

In Definition 3.15, REPO(R) has the renaming [pp; ¢/pp; ¢, PPo,&/PP, ¢l 2P-

plied to it, for any n € N, selected separately for each knowledge assumption
K.

If the distinguisher consumes the first n knowledge-supplying REPO inter-
faces and m public-parameter interfaces, and the network A consumes the next
a of the former, b of the latter, and c of the knowledge-query interfaces, then
ﬁl(A, n), where n encodes the connections used by the distinguisher, will use
all countably infinite interfaces through a new L instance. This normalises the

connections between multiple different resources.

Definition 3.17 (L-Lifting). The lifting S%L(A, n) for any network A using ag
knowledge-supplying interfaces (for &), bg public-parameter interfaces (for &),
and cq knowledge-query interfaces (for &), and any n: & — N2 is defined as
A'u {L(S%, n’)}, where: A’ is A with all the above ag interfaces renamed to fall
betweenap ¢ +1andap g +ag, and likewise with bg and cg to be between 1 and

cg. n’ isdefined by n’(K) = (ap ¢ +ag,bp g +bg,cg), with (ap g,bp ¢) = n(K).
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In Lemma 3.4, a more formal statement of

£,®§1

- 8,9* -
A1Ay ~7 BiBy = A18,(A7) '~" B18y(By)
using L-lifting is that V(n: S%z — IN?):
, _)J_ - , _)J_ - . , €,g§ ,
let A =S§2(§2(A2),n),B =$§2(@2(B2),n) 1nA1A ~ BlB

The simplified notation for construction without L-lifting is stated with re-
naming below:
V(n: K| - N2): 4B, o, 1y, iy, '
o' B’ = 8L(aB,n) A
o =a[f1] A B = B[] U{L(],n")} A

N s,(x’,®§
K4(A,n) —> B'.
These modifications are necessary to ensure the renaming to use the first n in-

stances can be distributed across « and B.

3.4 A Composable SNARK

To demonstrate the usefulness of this framework, we will showcase an example
of how it can lift existing results to composability. For brevity, we sketch the
approach instead of providing it in full detail. Specifically, we sketch how, using

the bilinear AGM knowledge assumption & ,ogm defined in Subsection 3.1.1 and

an updateable reference string (which will be the focus of Chapter 4, but which
we will briefly use here), we can implement a succinct NIZK functionality.

We rely on the results of Baghery et al. [BKSV21], which demonstrate that
Groth’s zk-SNARK [Gro16] has simulation extractability, with CoCa [KZM"15]
demonstrating how — once extractability is given — the property-based defini-
tion can be lifted to a simulation-secure one. We conjecture that simulation
extractability holds in the AGM for most zk-SNARKSs, however it has not been
proven in most cases.

Once our proof sketch is complete, we also give a clear example of why uni-
versal composition is not possible with knowledge assumptions: Specifically, we
construct a complementary ideal network and simulator which clearly violates

the zero-knowledge properties of the NIZK, and allows distinguishing the real
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and ideal worlds. We stress that this is only possible due to it extracting from the

same knowledge assumption.

3.4.1 Construction

Our construction consists of a real and of an ideal world. Throughout the con-
struction, we assume a set of n parties, identified by an element in Z,,. We assume
static corruption with at least one honest party - specifically we assume a set of
adversaries A c Z, and a corresponding set of honest parties = Z, \ A. These
sets cannot be used in the protocols themselves, but are known to the distin-
guisher and non-protocol nodes (that is, can be used to define ideal behaviour).
In all node specifications except G, public-parameter interfaces are omitted and

should be assumed.

Spacm Parameters. In both worlds, the group initialisation is available as a

common reference string and is specified as the node G:

Node G
This node provides the initialisation of & cm- We assume the domain of init is

Tpp, Koacm

State variables and initialisation values:

Variable ‘ Description

Pp: L+ Tp, g, o = 1NI1(T) ‘ Public parameters

Interfaces and their types:

‘ Type ‘ Description
1/1

init;/init, Initialisation

pp)/pp,

I={init3u{pp} | jeN}
Oz{inito}u{pp}o |]€]N}
A=9o

Public parameter queries

1/1 +1,

P,RbAGM

When receiving T on interface init;:
let pp <= inj,(init)

output T on init,
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When receiving T on interface pp/i:

output pp on pp{)

SNARKs. The ideal world consists of a proof-malleable NIZK node (N1zK),

found below.

Node N1ZKk

statements, W for witnesses, I for proofs.

A proof-malleable NIZK for a relation R. Assumed are the following types: a) X for

State variables and initialisation values:

Variable ‘ Description

m: (X xII)* = ¢ | Accepted proofs
m (X x II)* = ¢ | Rejected proofs

Interfaces and their types:

I = {maul;, wit,, prf,} u{ provejl:, verifyi |jeH}
O = {maul,, wit;, prf;} U { prove],;,verifyi |jeH}

A = {maul;, maul,, wit;, wit,, prf,, prf;}

Type | Description
provejl:/prove{) X xW/1+11 | Proving
verifyi./verify’o X xI1/2 | Verifying
maul;/maul, X xI1/1 | Proof malleability
wit,/wit; 1+ W/X xII | Adversarial witness query
prf,/prf; I[1/X | Proof object selection

When receiving (x, w) on interface prove’l::
if (x,w) ¢ R then
outputinj;(T) on prove{,
else
output x on prf;
require response 7 on prf,
assert (x,m) ¢
letm « (x,m)::m

output inj, () on prove,
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When receiving (x, i) on interface ve rifyi::

if (x, ) ¢ (mu ) then
output (x, 7) on wit;
require response r on wit,
if dw:r = inj,(w) A (x,w) € R then

letm « (x,m)::m

if (x, ) € mthen
output 1 on verifyi

else
letm < (x,7):: 7w

output O on verif)/l:

When receiving (x, ) on interface maul;:
if d': (x, ') € m A (x, 7) ¢ wthen

letm « (x,m)::m

In the corresponding real-world, we use a zk-SNARK scheme S = (S,T, P,
Prove, Verify, SimProve, &,,) satisfying the standard properties of correctness,
soundness, and zero-knowledge in the random oracle model with SRS. Here S,
T,and P, are the structure function, trapdoor domain, and permissible permuta-
tions of the structured reference strings, which will be discussed in more detail
in Chapter 4. SimProve should take as inputs only the witness x and trapdoor
7 € T. In addition, S should be simulation extractable with respect to the AGM -
after any arbitrary interaction, &), should be able to produce the witness for
any valid statement/proof pair, with the sole exception that the proof was
generated with SimProve. Such white-box simulation extractability has been
under-studied for zk-SNARKSs, although it has been established for Groth'’s
zk-SNARK [BKSV21] and is plausible to hold in the AGM for most SNARKSs.
For this reason, we rely on Groth’s zk-SNARK to concretely instantiate this
example, although we conjecture it applies to other SNARKS, notably Sonic. In
the real-world, an adversarially biased updateable structured reference string

(srs), parameterised for the SNARK'’s reference string, is available, specified as:

Node srs
The srs node constructs a (adversarially biased) structured reference string. The
rationale behind this design is formally introduced in Chapter 4 as Fsgs. Assumed

are the following types: a) T for trapdoors, b) S for reference strings, c) P for permis-
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sible permutations over T.

State variables and initialisation values:

Variable | Description

ok:2 = inj;(T) | Initialisation status (j € Z,,)
ty:1+ T =inj;(T) | Honest trapdoor
t:1+ T =inj;(T) | Full trapdoor

Interfaces and their types:

I = {hsrs;, perm,} U { init}l:, ninit{,, srs’l: | jeH}
O = {hsrs,, perm;} U { init{,, niniti:, srs};7 |jeH}

Type | Description
init//init) 1/1 | SRS initialisation
ninit, /ninit, 1/1 | SRS initialisation notification
srs’i/srs’o 1/S | SRS query
hsrs;/hsrs, 1/S | Honest SRS component query
perm,/perm; | P/1 | Permutation query

A = {hsrs;, hsrs,, perm;, perm,} U { ninit{), niniti: |jeH}

When receiving T on interface initi:

if okl = inj;(T) then

let ok « inj,(T)

output T on ninité

require response T on ninit{,
output T on init{,

When receiving T on interface hsrs;:
if t; = inj;(T) then

let t;; < inj,(T)
assert dt': t;; = inj, (')
output S(t') on hsrs,

When receiving T on interface srsjl::
assert Vk € H: ok® = inj,(T)
if t; = inj;(T) then

let t;; < inj,(T)
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assert dt': t;; = inj, (')

if t = inj;(T) then
output T on perm;
require response p on k, ¢
let t — inj,(p())

assert dt': t = inj,(t)

output S(t') on srs{)

Furthermore, for each honest party j € #, an instance of the SNARK pro-
tocol node (SNARK-NODE())) is available, which connects to the corresponding
party’s SRS interface and runs the SNARK Prove and Verify algorithms when
queried. In both worlds, the & ,ogm public parameters are provided by the node
G. SNARK-NODE(j) is specified as:

Node SNARK-NODE(j)
The SNARK protocol relies on the scheme’s Prove and Verify algorithms, and access
to the (adversarially biased) SRS. Each SNARK-NODE depends on the party IDj. As

SNARKSs often rely on a random oracle, an interface to query RO is available.

Interfaces and their types:

Type | Description

provejl:/prove{, X xW/1+11 | Proving

verifyi/verify{, X xI1/2 | Verifying
srs{)/srs]; S/1 | SRS query
ro{,/ ro/l: 2%/2* | Random oracle query

I={ prove]l:, verifyé, srs{7 }
0={ prove{,,verifyﬁ, srs’l: }
A=0g

When receiving (x, w) on interface prove’i:
if (x,w) ¢ R then
outputinj;(T) on prove{)
else
output T on srs)
! .
require response srs on srs),

output Prove(srs, x, w) on prove{,
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When receiving (x, i) on interface ve rifyi.:
output T on srs’i
require response srs on srs),

output Verify(srs, x, 7) on verify'(;

Finally, the SNARK’s Prove and Verify algorithms make use of a random ora-
cle, which is available in the real world, providing query interfaces to all parties
(we do not treat the random oracle as a knowledge assumption in this example).

This is specified as:

Node rO
The random oracle node records queries of arbitrary bit strings and responds either
with an already recorded response, or a value sampled uniformly at random from

PAR

State variables and initialisation values:

Variable ‘ Description

H: (2" x2%)* =¢ ‘ Recorded queries

Interfaces and their types:

‘ Type ‘ Description
2%/2%

Random oracle query

rojl:/ ro{,

I={rd | jeZ,}
0={rd, | jeZ,}
A=2

When receiving x on interface ro{::
leth < 0
for (x’,h)in H do
if x = x’ then
leth < 1
output hon ro{)
if b = 0 then
leth < 2¥
let H « (x,h),H
output hon ro{,
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The ideal-world therefore consists of {N1zK, G} (and the simulator, which
will be introduced in the security analysis) and the real-world consists of SNARKwu
{SRS, RO, G}, where SNARK := { SNARK-NODE(j) | j € H }. The topology of both

worlds is sketched in Figure 3.4.

RO I
| —
— II SRS} IT |- |

Figure 3.4: The Sonic to NIZK topologies. SNARK-NODE is represented by I and

the public parameter node G is omitted for clarity.

3.4.2 Security Analysis

The SNARK simulator «a both faithfully simulates the SRS node, creates simu-
lated proofs for honest proving queries and extracts witnesses using &}, (which
is given access to REPO(&agm)) from adversarial proofs when requested by the
N1zK node. Finally, if the simulator fails to extract a witness when asked for one

for a valid proof, it requests a maul.

Node «
The SNARK to NIzK simulator « makes use of a simulated prover from [MBKM1i9)],
SimProve, as well as an assumed extractor &,, which makes use of the & 5o\ knowl-
edge extraction. Otherwise, the simulator mimics the SrRs node, albeit retaining
access to the full trapdoor. When SimProve and Verify require access to the random
oracle, it simulates the behaviour of RO using H. This simulated behaviour is also

exported on the corrupted parties ro interfaces.

State variables and initialisation values:

Variable | Description

ok:2 = inj;(T) | Initialisation status (j € #)
t3:1+ T =inj;(T) | Honest trapdoor
t:1+T =inj;(T) | Full trapdoor
H: (2" x 2%)" = ¢ | Recorded queries
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Interfaces and their types:

Type | Description
maul,/maul; 1/X xIT | Proof malleability
wit;/wit, X xI1/1+W | Adversarial witness query
prf;/prf, X/I1 | Proof object selection
init/init) 1/S | SRS initialisation
ninit, /ninit, 1/1 | SRS initialisation notification
hsrs;/hsrs, 1/S | Honest SRS component query
perm,/perm; P/1 | Permutation query
W aon’*Sorom Wyp/X,p | Knowledge extraction
roJl:/ ro{, 2*/2¥ | Random oracle query

I = {maul,, wit;, prf;, hsrs;, permy, wg . }U{ initi:, ninit{) | jeH}ud roJl: |je A}
O = {maul;, wit,, prf,, hsrs,, perm;, xg,, . }U{ init{,, niniti: | jeH}ud ro{, |je A}
A = {maul,, maul;, wit;, wit,, prf;, prf,, hsrs;, hsrs,, perm,, perm;, W@bAGM,x.@bAGM} U

{ ninit{,, ninijl: |jeH}

When receiving (x, 1) on interface wit;:
lett’ « ensureSrs
if Verify(S(t'), x, m) then
letw « X, (x,m)
if (x,w) € R, then
output inj,(w) on wit,
else
output (x, 7) on maul;
require response T on maul,
output inj; (T) on wit,
else

output inj; (T) on wit,
When receiving x on interface prf;:
lett’ « ensureSrs
assert dt': t = inj,(t')
return SimProve(S(t'), t’, x)
When receiving T on interface init;:
let ok/ — inj,(T)

output T on ninit’
1
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require response T on ninit{,
output T on init{,
When receiving T on interface hsrs;:
if t;; = inj;(T) then
let t;; < inj,(T)
assert dt': t;; = inj, (')
output t’ on hsrs,
When receiving x on interface ro}l::
leth < 0
for (x’,h)in H do
if x = x’ then
leth < 1
output hon ro{,
if b = 0 then
let h < 2¥
letH « (x,h),H
output hon ro{,

Helper procedures:

procedure ensureSrs

assert Vk € H: ok® = inj,(T)

if t3, = inj;(T) then
let t;, <= injy(T)

assert dt': t;; = inj,(t')

if t = inj;(T) then
output T on perm;
require response p on k, ¢
let t « inj(p(t"))

assert Jt': t = inj,(t)

return t’

Theorem 3.4 (SNARKSs Constructs NIZKs). For any secure SNARK scheme S:

D
K(SNARK) u {SRS, &(RO), G} Siat N {N1ZK, G}. (3.17)

Proof (sketch). All honestly generated proofs will verify in both worlds, by def-
inition in the ideal world and by the correctness of the SNARK in the real
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world. Furthermore, the proofs themselves are indistinguishable, by the zero-
knowledge property of the SNARK.

Adversarial proofs which fail to verify will also be rejected in the ideal world,
as the simulator will refuse to provide a witness, causing them to be rejected.
As per the above, the extractor &), is able to (using REPO(Spagm)) extract the
witnesses for any adversarial proof which does verify, except for cases of mal-
leability. As S is only (at most) proof-malleable, the simulator can, and does,
account for this by attempting to create a mauled proof when extraction fails.

The simulator provides the ideal-world simulation of the srS node, which
is emulated faithfully except that the simulator has access to the trapdoor. As a

result, this part of the system cannot be used to distinguish. ]

3.4.3 The Impossibility of General Composition

The two parts of Theorem 3.3 are limited when compared to Corollary 3.2 in two
separate, but related ways: The closure under subgraph substitution requires the
added node to be a S%-wrapped node, and transitivity requires the two compos-
ing proofs to use separate knowledge assumptions.

We will demonstrate that the nicer results from Corollary 3.2 are not achiev-
able with respect to knowledge-respecting distinguishers, by means of a small

counter-example for both situations.

Theorem 3.5 (Subgraph Substitution is Limited). Subgraph substitution with
knowledge assumptions does not universally preserve secure construction. 4A,B,C,a €
* & E€R, K

£,0,Dz £,0,Dz

A—5 B =% CA——>CB

Proof (sketch). Let A be the SNARK real world and B be the NIZK ideal world re-
spectively, with o being their simulator and K being {8,agm}. Let C be a node

which receives elements in X, ), queries REPO(&,aogm) and returns the witness

pp’
to the distinguisher.

Then the following distinguisher can trivially distinguish the two worlds: a)
Make any honest proving query. b) Request extraction. c) Output whether or not

extraction succeeded. ]

Theorem 3.6 (Transitivity is Limited). Construction with knowledge assumptions
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is not universally transitive. HA, B,C,a,p € *,&1,&3 € R, i‘)ﬁ:

£1,4,Dg &,5,Dz e1+&2,0P,Dg

BAB C % Ar—mm>C

Proof (sketch). Let B be the SNARK real world and C be the NIZK ideal world,
respectively, with f being their simulator and K being {8 agm}- Let A be the
SNARK with additional interfaces for each party to reveal any witnesses of
broadcast proofs, which are shared through an additional broadcast channel.
Let o reproduce this functionality by extracting witnesses from the provided
proofs.

Then a distinguisher which makes an honest proofand extracts it will receive
the witness in the real and hybrid world, but not in the ideal world, where the
knowledge extraction of the proof will fail, as it is simulated by B. It is therefore

possible to distinguish and transitivity does not hold. O

3.5 Relation to Simple UC

Astheremainder of this thesis is stated using the UC model (see Subsection 2.3.1),

it is important to discuss how the result of composable SNARKSs from this chap-
ter can be used together with the rest of the results in this thesis. While the
relation with UC is less clear than that with Constructive Cryptography, it is
still the case that a proof of construction A =27, Bis directly equivalent to a
statement of UC-emulation and vice versa. This is due to both settings having the
same token-passing execution mechanism, and the computational abstractions
of random systems and Turing machines are equivalent. There are two main
inconsistencies: UC has both an environment and adversary, and only two “in-
terfaces” exist for each ITI: the adversarial “backdoor” tape and the honest input
tape, with the difference that any ITI can write to the input tape.

The adversary/environment difference is resolved by UC itself[Canor], which
notes that a dummy adversary can be used without loss of generality. Using this,
the environment and distinguisher are in effect the same entity. Interfaces are
also less of an issue than they may appear. If multiple interfaces exist between
two nodes, this is equivalent to a single interface with appropriate multiplexing.
As UC specifies external writes to provide information about who a message is

from, this multiplexing is already build-in further - it can be separated out into
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a pair of interfaces for each ITI sending a message to another, and message types
can be multiplexed if desired.

In effect, it is possible to naturally transform a UC functionality or proto-
col into a cryptographic network and vice versa, for which the UC-emulation
statement is equivalent to a statement of construction (with negligible ¢ and
the distinguisher set x). This allows results from subsequent chapters to be
“imported” into this framework and, as they are with respect to « and not using
any knowledge assumptions, the SNARK construction from Section 3.4 can be

directly composed with them according to Theorem 3.3.
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SECURE REFERENCE

STRINGS FROM CONSENSUS

This chapter is based on “Mining for Privacy: How to Bootstrap a Snarky
Blockchain” [KKK2Ic], first published at the 2021 Conference on Financial
Cryptography and Data Security, primarily authored by Thomas Kerber, and
co-authored by Aggelos Kiayias and Markulf Kohlweiss.

OLYNOMIAL commitments used in zk-SNARKSs, commonly build on a struc-
Ptured reference string, or SRS, consisting of different powers of a group gen-
erator, for instance gxi for some x € Fp and for alli € Z,. While impossibility
results [GO94] for non-interactive zero-knowledge show that some common ref-
erence string (or other setup, such as random oracles) are required, these strings
are worse, as not only do they need to be randomly distributed, but their underly-
ing trapdoor value (in the toy example of gxi, this would be x) must remain secret.

The obvious way of sampling such a reference string from public randomness
reveals the exponents used — and knowledge of these values breaks the sound-
ness of the proof system itself. To make matters worse, the security of SNARKs
typically relies on knowledge assumptions, which state that to create group el-
ements related in such a way requires knowing the underlying exponents and
hence any SRS sampler will have to know the exponents used and be trusted to
erase them, becoming effectively a single point of failure for the underlying sys-
tem. While secure multi-party computation can be, and has been, used to reduce
the trust placed on such a setup process[Zca18], the selection of the participants
for the secure computation and the verification of the generation of the SRS by
the MPC protocol retain an element of centralisation.

For updateable reference strings, such as[GKM*18, MBKM19], it is possible to

produce an updated reference string from a prior one, such that knowing the
trapdoor of the new string requires both knowing the trapdoor of the old string,
and knowing the randomness used in the update. Groth et al. [GKM*18] conjec-

tured that a blockchain protocol may be used to securely generate such a refer-
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ence string. This conjecture is confirmed by the results of this chapter, which
presents a protocol to do so, primarily relying on the chain quality property of
“Nakamoto-style” ledgers [GKL15]. The reference string updates are integrated
into the block creation process, with special care being taken to accommodate
the high computation and communication cost of processing these updates. A
further important consideration is that an adversary may gain a significant ad-
vantage by “cheating” on the reference string update process, by choosing low-
entropy updates which are easy to compute. This chapter considers both the
adversarial and rational impact of this and demonstrates how the latter can be

controlled.

Related Work. Beyond the obvious relation to the works introducing update-
able reference strings in [GKM*18, MBKM19] (most notably Sonic [MBKM19],

which we follow closely in our instantiation), there have been attempts of

practically answering the question of how to securely generate reference strings.
These have been in a setting where the string is not updateable.

Notably Bowe et al.[BGG19] describe the mechanism used by Sprout, the first
version of Zcash, during the initial setup of the cryptocurrency’s SRS. It uses
multi-party computation to generate a reference string with a root of trust on
the initial group of people participating. Due to performance constraints on the
MPC protocol, the set of parties participating is relatively small, although only
the honesty of a single participating party is required.

For the Sapling version of Zcash, a different approach was used when their
reference string was replaced (due to an upgrade of the zero-knowledge state-
ment and proof system used). Their second CRS generation mechanism, de-
scribed in [BGM17] uses a multiple-phase round-robin mechanism to generate
a reference string for Groth'’s zk-SNARK [Gro16]. They utilise a random beacon
to ensure the uniform distribution of the result and a coordinator to perform
deterministic auxiliary computations.

Finally, Abdolmaleki et al. [ABL"19] demonstrate the UC security of an MPC-
based approach to SRS generation.
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4.1 Updateable Structured Reference Strings

While updateable structured reference strings (uSRSs) are modelled in the works
we are building on [MBKM19, Section 3.2], we model their security in the setting
of universal composability (UC) [Canoi]. Here, a uSRS is a reference string with
an underlying trapdoor 7, which has had a structure function S imposed on it.
S(7) is the reference string itself, while 7 is not revealed to the adversary. In

Subsection 4.1.3, we prove that Sonic[MBKM19](with small modifications for ex-

traction, as described in Subsection 4.1.2), satisfies all the properties we require

in this section. Our main proof is independent of the Sonic protocol however,
and applies to any updateable reference string scheme satisfying the properties

laid out in the rest of this section.

4.1.1 Standard Requirements

A uSRS scheme S consists of a trapdoor domain T, an initial trapdoor 7, a set P
of permissible (and invertible) permutations over T (that is, bijective functions
whose domain and codomain is T), and a structure function S with the domain T.
We require P to include the identity function id and to be closed under function
composition: Vpy,py € P:p1opy € P. An efficient permutation lifting t must exist
(and we will demonstrate its existence for Sonic), such that for any permutation
p € Pandrt € T, pT(S(r)) = S(p(r)). Finally, there must exist algorithms p «
ProveUpd(S(r),p) and b « VerifyUpd(S(r), p, S(p(1))) for creating and verifying
update proofs respectively. The format of these update proofs is not specified,

however the following constraints must be met:

I. Correctness. Applying an honestly generated update proof will verify:
Vp € P,t € T: VerifyUpd(S(t), ProveUpd(S(1), p), S(p(1))).

2. Structure preservation. Applying any valid update is equivalent to apply-
ing some permutation p € P on the trapdoor:
Vp, 1, srs’: VerifyUpd(S(1), p, srs’) = Hp € P:srs” = S(p(1)).

3. Update uniformity. Applying a random permutation is equivalent to se-
lecting a new random trapdoor: Let D be the uniform distribution over
T and, for allr € T, let D, be the uniform distribution over the multiset
{pt) | pe P} ThenVreT:D = D,.
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We define a corresponding UC functionality F,sgrs, which provides a refer-
ence string S(p(r3)), which the adversary can influence by providing the permu-

tation p € P, given only S(r3) as input, for a randomly sampled 74, € T.

Functionality F sgs
The updateable structured reference string functionality Fsgs allows the adversary
to update a reference string by applying a permutation from a set of permissible
permutations P.
The functionality is parameterised by a trapdoor domain T, a structure function

S, and a set of permissible permutations P over T.

State variables and initialisation values:

Variable ‘ Description

73 = L | The honest part of the trapdoor
r:=_1 | Thetrapdoor
When receiving a message HONEST-SRS from A:
ifr), = Lthenletry < T
return S(7,)
When receiving a message SRS from a party :

query A with (PERMUTE, §) and receive the reply p
if r = L then
assertpe PAry # L

lett « p(ty)

return S(1)

We believe this functionality to be of independent interest and it is not
explicitly tied to our implementation. Notably, while we use a distributed
ledger as a weak form of a broadcast channel, other broadcasts can be con-
sidered without modification to this functionality. While, as presented, the
functionality does not dictate any specific usage, we conjecture that when
parameterised with an appropriate structure function and permutation set
it can be used to securely instantiate updateable SRS-based SNARKS, such as
Sonic [MBKM19], Marlin [CHM"20], or Plonk [GWCI9]. Due to the UC setting,
this would require additional lifting to enable UC knowledge extraction, such as
that of CaCo [KZM*15].

Chapter 4. Secure Reference Strings from Consensus 117



4.1.2 Simulation Requirements

In addition to the basic properties of correctness, structure preservation, and
update uniformity, any simulator wishing to help realise Fsgs via updates will

need to have access to two additional properties:

I. Update proof simulation. From an initial SRS S(z) for which the simu-
lator knows the trapdoor, it can produce a valid update to any (correctly
structured) SRS. Formally, with S, a PPT algorithm:

HS,V1y, 19 € T: VerifyUpd(S(r1), Sy(71, S(12)), S(12))

2. Permutation extraction. The simulator must be capable of extracting the

permutation p underlying any valid adversarial update proof.

The most natural method to achieve permutation extraction would be using
white-box extractors, as the updates themselves typically rely on some form of
knowledge assumption, such as knowledge-of-exponent. However, white-box
extractors cannot be used in UC proofs. Instead, we will assume that the update
proofis proven to correspond to a specific trapdoor through a lower-level NIZK.
Crucially, this lower-level NIZK should not require a structured reference string
and can rely only on a common random string, or a random oracle. Fortunately,
itis not subject to stringent efficiency requirements as Section 4.4 demonstrates.

Specifically, we assume that the basic update proofpis a statement in a NIZK
relation R where the witness is an encoding of the corresponding permutation
p. We require each update proof to have one and only one corresponding per-
mutation, formally expressed by requiring R to be a bijection. This results in
a straightforward modification to the ProveUpd and VerifyUpd algorithms that
permits the extraction of the underlying permutations even in the UC setting:
ProveUpd also creates a NIZK proof 7 of (p, p) and returns (p, ), While VerifyUpd
returns true only if this newly embedded NIZK proof also verifies.

The addition of this NIZK trivially preserves all security properties including

correctness, due to the definition of R:

Definition 4.1. A uSRS scheme is permutation extractable if the relation
R = { (ProveUpd(S(z),p),p) |t€T,pe P}
is a bijection and in NP.
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4.1.3 The Sonic uSRS

Sonic’s uSRS [MBKMI9, Section 4.3] consists of a series of exponentiations of
group elements in pairing groups G; and G, of prime order q, where a bilinear
pairing e: G; x Gy — Gr exists. Specifically, given generators g € Gy, h € Gy and
a depth parameter d € Z;, the SRS has a trapdoor of (¢, x) € IF;Z, withrg = (1, 1).

The corresponding structure function is defined as:
o d ~d
. x'opx' pox! ox'
S((@,x)) = ({g Hn] g L_d,#o)

Specification of Sonic Updates. We omit the e(g, h*) term presented in Sonic,
as this can be computed from the rest of the SRS and is therefore immaterial to
the update procedure. The permitted trapdoor permutations are field multipli-

cations:
P={(ax) ~ @B xy) | By eF?}.

Correspondingly, f exponentiates group elements:

p=(a,x) ~ (af,xy) =
’ d ’ d
pl = ({Gi’ H, H i 4 4G }i:—d,i;ﬁO)
d

i i ’B i ’,B i d
- (fef ) o)
i=—d i=—d,i#0

Observe that field multiplications over a or x can efficiently be applied to the corre-

i\ gyl N4
sponding structure through exponentiation: g(“x )/ (g"’x ) . The full update
proof procedure is as follows:

procedure ProveUpd(srs, p)

let (B,y) < p((1,1))
return (¢, g%, 7)

The verification procedure ensures correct computation by checking the consis-
tency of various pairing computations:
procedure VerifyUpd(srs, p, srs’)
let ({G;, Hy, H{}{_4, {G/}. _g40) « s
let ({, Ji, J/ ¥ g 4T }ie_ajz0) < srs’
let (A, B,n) < p
if e(I{, h) # e(B, H{) v e(g, J) # e(B, H{) v e(Iy, h) # e(A, Hy) v e(g, 1) # e(A, Hy) v
Ip#9gV Jo # hthen
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return 0
fori=—-dtoddo

if -(i=dve(l;, 1) =e(ly, J) = e(li1,h) = e(g, Jis1)) v ~(e(L;, Jg) = e(g, J))) v
(i # 0 A -e(l;, J§) = e(If, b)) then
return 0

return 1

Satisfaction of Security Properties.

Theorem 4.1. Sonic, as described in this section, is an updatable reference string scheme,
satisfying correctness, structure preservation, update uniformity, update extraction, permu-

tation extraction, and permutation lifting.

Proof. We prove each property individually.
Correctness. Follows from all pairing checks being satisfied. ]

Structure preservation. Suppose a structured input S(r), an update proof p,

and a new SRS srs’, where:

i i ind 4
S(r) = ({gx LN }i:—d ’ {gax }i:—d,#O)
srs’ = ({gk’} h'™, hni}i—d ’ {gli}i—d,i#O)
p= (gy’gﬁy)

If VerifySRS returns 1, we know all of the following hold, due to the conditions
checked:

+ (g, h) = e(g,A™) = e(¢”, h™)

+ e(gh1,h) = e(g, k™) = e(¢’, h¥)

+ Vie [d,d):e(gh, h™) = e(gt1, k™) = e(gk1, h) = e(g, h™ir1)
. Vie[—d,d]:e(gki, h") = e(g, k™)

. Vie[—d,d]\{0}:e(gk, h™) = e(gh, h)

As e(g, h) is a generator over Gt and each of the above can be expressed as an
equality of exponentiations of the form e(g, h)* = e(g, h)?, we simplify these to

equalities within IF; of their exponents:
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« Iy =ny =afxy
« ky =my =xy
« Vie[-d,d):kimy = kym; = ki1 = mjyy
« Vie[-d,d]:king = n;
« Vie[-d,d]\{0}:king = |;
It follows directly that ng = af, k; = m; = (xy)i, and[; = n; = aﬂ(xy)i. As a result,

srs’ matches exactly the structured reference string S((af, xy)) = pT(S(r)). O

Update uniformity. Lett = (a,x). p < P is defined by a multiplication with
two uniformly sampled field elements in 8,y <— FZ, such that the trapdoor p(r) =
(af, xy). Due to multiplication in prime fields with a fixed element (here a and
x) being a bijective functions, the result (af, xy) is also distributed uniformly at
random in ]F;Z, therefore being indistinguishable from a new, randomly sampled

trapdoor. [

Update proof simulation. We present the following simulation algorithm:

procedure S((a,x), srs)
(G, Hy, HYY 1 4G i0) < sts
-1 1Y/ -1
return <G£x ),Gi(x e ))

This utilises only a small number of efficient group operations and is therefore
PPT. As the VerifyUpd pairing checks all succeed, the returned update proof will
verify. ]

Permutation Extraction. Observe that
R((A,B),p) < let(a,b)=p((1,1)in A=g*AB=g".

A straightforward encoding of p is the pair of field elements (a, b). This relation

is clearly in NP, and is also a bijection due to the relation of G; and Fy. [
Instantiating F,ZﬁZK. We can employ Fischlin’s transform [Fiso5] in combina-

tion with a simple sigma protocol to prove knowledge of pairs of exponents.

Specifically, we propose the parallel composition of two Schnorr proofs of
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knowledge of exponent [Schgo]. It is important to treat these as a single proof
and not two separate proofs, as the latter would enable the adversary to create
proofs which are only partially extractable. We posit that these would still allow
for simulation, however the simulator would be tasked with a more difficult and

implementation specific book-keeping.

4.2 Building uSRS from Chain Quality

This section shows how to securely initialise a uSRS using a distributed ledger
by requiring block creators to perform updates on an evolving uSRS during an
initial setup period. After waiting for agreement on the final uSRS, it can be
safely used. To formally model this approach, we discuss the ideal and real (or
more accurately, hybrid) worlds used in our simulation proof. Both worlds have
access to a ledger, however the ideal world’s ledger is independent of the refer-
ence string (which is instead provided by the independent Fsgs functionality),

while the real world’s ledger is programmed to generate it using updates.

4.2.1 High-Level Overview

This basic premise of this chapter relies on Nakamoto-style ledgers’ basic means
of operation: Different users can extend a chain of blocks if they can satisfy some
condition, with this condition being associated with a type of hardness which en-
sures attackers are limited in the number of extensions they can perform. Given
such a structure, we associate a uSRS update with each block prior to a time ;.
This time is selected such that the security properties of the ledger ensure at least
one of the blocks is honest in each competitive chain at this point.

In our modelling, we construct this from a ledger functionality with an addi-
tional leadership state, which is derived from information miners embed in their
blocks. Specifically for our case, these encode uSRS updates. We leave this suffi-
ciently general to allow other uses as well. The basic idea is to show that a ledger
which performs uSRS updates in its leadership state is equivalent to one which
does not, but is accompanied by the F,sgs functionality. They make up our real
and ideal worlds, respectively. After 6;, users wait a further period 6, until the
common prefix ensures that all parties agree on the reference string.

While ledger functionalities are often treated as global, our approach effec-
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tively constructs one ledger from another - the ledger is not a dependency of
our protocol, but a component. In this context, globality is irrelevant, as the
environment already has direct access to the functionality. We expect protocols
building on the ledger to use it in a global fashion, however. The same is not true
for the uSRS - most usages will likely rely on the simulator being able to extract

its trapdoor.

4.2.2 Our Ledger Abstraction

Our construction of the updateable structured reference string functionality re-
lies heavily on the properties of common prefix, chain quality, and chain growth de-
fined in the “Bitcoin backbone” analysis by Garay et al. [GKL15] for Nakamoto-
style consensus algorithms. Despite our use in the section title, we make use of
all three properties, not just that of chain quality. We emphasise chain quality, as
it is the property central to ensuring an honest update has occurred. We briefly

and informally restate the three properties:

« Common prefix. Given the current chains I1; and I, of two parties, and
[k

removing k blocks from the first, it is a prefix of the second: IT]

< Hz.

« Chain quality. For any party’s current chain II, any consecutive [ blocks

in this chain will include u blocks created by an honest party.

« Chain growth. Ifa party’s chainis of length ¢, then s time slots later, it will

be at least of length c + y.

These parameters determine the length of the two phases of our protocol. In the
first phase, we construct the reference string itself from the liveness parameter
(assuming u > 1), and, in the second phase, we wait until this reference string
has propagated to all users. The length of the first phase is at least §; > [ly~!]s
and that of the second at least 6, > [ky~!]s. Combined, they make up the total
uSRS generation delay 6 > ([ly 1]+ [ky~1)s.

We assume a ledger which guarantees the backbone properties, formally de-

scribed in Subsection 2.4.3.3. Our functionality further depends on the global

clock G|ock, as described in Subsection 2.3.5. For the purposes of this section,

it is sufficient that this is a beacon providing monotonically increasing values

representing the current time to any party requesting them.
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In addition to this, we assume that each block created can contain additional
information, provided by its creator (the “miner”), which can be aggregated to
construct a “leader state”. Each created block is associated with an update a, and
the ledger is parameterised by two procedures, Gen and Apply, which describe
the honest selection of updates and the semantics of updates, respectively. Look-
ing forward, these utilise ProveUpd and VerifyUpd internally, although the for-
malism is sufficiently general to allow usage of the leader state for other, paral-
lel purposes. The exact parameters differ in our ideal and real world, with the
ideal world “hiding” the uSRS updates. Additionally, the real world adds time-
sensitivity: It does nothing to the SRS after the setup period. Gen is randomised,
takes a leader state o and the current time t as inputs, and produces an update
a. Apply takes a leader state o, an update a, and an update time ¢, and returns
a successor state 0’: 0’ = Apply(o, (a,t)). For a chain, the leader state may be
computed by sequentially applying all updates in the chain, starting from an
initial state @.

The adversary controls when and which party creates a new block, as well as
the transactions each new block contains (provided it does not violate the back-
bone properties). For transactions created by a corrupted party, the adversary
can further control the block’s timestamp (within the reasonable limits of not
being in the future and being after the previous block) and the desired update a
itself. For honest parties updates, Gen is used instead.

The UC interfaces our ledger provides are:

« SUBMIT. Submitting new transactions for the ledger.
« READ. Reading the confirmed sequence of transactions.

« PROJECTION. Reading the current chain’s sequence of (potentially uncon-

firmed) transactions.
+ LEADER-STATE. Reading the confirmed leader state.
« ADVANCE. The adversary switches a party to a longer chain.

- EXTEND. The adversary instructs a party to create a block.
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4.2.3 Theldeal World

Our ideal world consists of two functionalities, composed in parallel (by which
we mean: the environment may address either and they do not interact). The
first is a variant of Fsgs, with the modification that it cannot be addressed by
honest parties before 6 time slots have passed. Formally, this modification is

made with a wrapper functionality Wpe|a,(F, 6), formally described as follows:

Functionality Wpe|,, (6, )
The wrapper functionality Wp.,, (6, F) of F accepts honest inputs only after 4 time

slots.

When receiving a message M from a party

send READ to G, and receive the reply ¢
if t <6 A € H then return L
else

send M to F and receive the reply y

returny

The second is the Nakamoto-style ledger functionality, parameterised with
arbitrary leader-state generation and application procedures which are also par-
tially used in the hybrid world: Gen = Genldeal and Apply = Applyldeal, and the

following ledger parameters:

I. A common prefix parameter k.
2. Chain quality parameters y and L.

3. Chain growth parameters y and s.

Formally then, our ideal world consists of the pair (Wpelay (8, Fusrs), F[i\‘d:ﬁ'_edger),

as well as the global functionality Gjock-

4.2.4 The Hybrid World

In our hybrid world, we use a uSRS scheme S, with algorithms ProveUpd,
VerifyUpd, the structure function S, permissible permutations P, permutation
lifting 1, and initial trapdoor ry. The hybrid world consists of a separate

Nakamoto-style ledger F[:Ie;ll_e dger’ 2 NIZK functionality ]-'[zﬁZK, and the global

Chapter 4. Secure Reference Strings from Consensus 125



clock G jock- The ledger is then parameterised by the same chain parameters as
those in the ideal world and the following leader-state procedures:
procedure Apply((srs, o'd¢a) ((srs’, p, , @), 1))
if srs = o then let srs « 5(z()
if t < 6; A VerifyUpd(srs, p, srs”) then
send (VERIFY,p, ) to ]-',ZleK and receive the reply b
if b then
let srs « srs’
return (srs, Applyldeal(o’de® | g'ded 1))
procedure Gen((srs, o'd"), ¢)
if t > 6; then
return (g, ¢, ¢, Genldeal(0'4¢? | t))
else
let p <~ P;p < ProveUpd(srs, p)
send (PROVE, p,p) to ]-',ZﬁZK and receive the reply 7

return (pf(srs), p, m, Genldeal(a'%? t))

Note that these parametrising algorithms use F,ZFIZK and are therefore the
reason the ledger depends on this hybrid functionality.

Key here is that once a block is received after the initial chain quality pe-
riod, any reference string update it may declare is no longer carried out - at this
point the uSRS is not necessarily stable, as the chain may still be reorganised,
but should not change for this particular chain. Furthermore, these procedures
always mimic the ideal-world behaviour, extending it rather than replacing it.
This demonstrates the composability of allowing block leaders to produce up-
dates: One system using updates for security does not impact other parallel uses
of the leadership state.

There is little additional work to be done to UC-emulate the ideal-world be-
haviour, besides ensuring that queries are routed appropriately, especially how
the reference string is queried in the hybrid world. We describe this with a small
“adaptor” protocol LEDGER-ADAPTOR. This forwards most queries and treats
uSRS queries by querying the appropriate part of the leader state after time §,
and by ignoring them before. Formally, it is described by:

Protocol LEDGER-ADAPTOR

The protocol adaptor fits the interface of ‘Fl:le;I!Le dger to match those of F,srs and
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ideal . | .
FlakLe dger” It operates in the (F{7 . dger’ Gelock)-hybrid world.

When receiving a message (SUBMIT, tx) from a party }:

real
send (SUBMIT, tx) to fNakLedger

When receiving a message READ from a party :

real :
send READ to F 7" dger and receive the reply txs

return txs
When receiving a message PROJECTION from a party i:

real s
send PROJECTION to F{% dger and receive the reply txs

return txs

When receiving a message LEADER-STATE from a party }:

_ real : . ideal
send LEADER-STATE to }—NakLedger and receive the reply (-, 0'**?")

return ¢'de?

When receiving a message SRS from a party :

send READ to G, and receive the reply ¢

if t < 6 then return L

else
send LEADER-STATE to F{&2 and
akLedger
receive the reply (srs, )
return srs
Forward SUBMIT, READ, and PROJECTION queries to ]—",[fa‘
akLedger
: _ real R
Formally, our real world consists of LEDGER-ADAPTOR(S, ]-'NakLedger(fNIZK)),
. re real R

the functionalities ]:NakLedger and F, it accesses, and the global G jo-

4.2.5 Alternative Usage of G,

In both worlds, G| is used to determine the cutoff point after which the ref-
erence string is deemed secure. A simple alternative to this usage of the clock
is to instead rely on the length of the chain for this purpose. We did not make
this choice as it complicates the ideal world: The delay wrapper would have to
communicate with the ideal world ledger and query it for the length of parties’
chains. We do not regard a clock as a significant additional assumption, however
little of the remainder of this chapter differs if chain lengths are used instead.
Even in this case, a clock is present to guarantee liveness, although it used only

to constrain the adversary.
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4.3 Security Analysis
Our security is derived through UC-emulation, stated in the following theorem:

Theorem 4.2. For any updateable reference string scheme S, satisfying correctness, struc-
ture preservation, update uniformity, update simulation with S,, and permutation extrac-

. _ ; real R
tion, LEDGER-ADAPTOR (in the (.FNakLedger, Fuiz

Subsection 4.2.4) UC-emulates the pair of functionalities (]-":\f;lfl'_e dger’ Wnelay(6, Fusrs)),

«)-hybrid world, parameterised as in

parameterised as in Subsection 4.2.3, in the presence of the global clock functionality G oy,

with the simulator S; g pGER-ADAPTOR:

As for any UC proof, we require a simulator which ensures the ideal world be-
haves indistinguishably from the real world. Intuitively, this simulator ensures
that the real and ideal world’s ledgers are equivalent and that the real world
uSRS is equal to the uSRS produced in the ideal world.

In order to achieve this, the simulator ensures that the initial honest refer-
ence string provided by Fsgs is the basis of the uSRS of a simulated execution
of the real-world protocol. Doing so relies primarily on three things: First, the
simulator’s ability to extract the permutation from any adversarial reference
string update. Second, the simulator’s ability to, given the adversarial trapdoors,
then produce a valid “honest” update which ensures the reference string is a
random permutation of the ideal-world honest string S(r3;). And finally, the
simulator’s knowledge that the final reference string in its simulation will have
at least one honest update.

The simulator observes each of the competing chains and, when the first hon-
est update occurs in each, coerces the simulated update into a permutation of the
ideal honest reference string. For each subsequent honest update, the simulator
performs the update normally, remembering the randomness used. Combined
with extracting from adversarial updates, the simulator either knows the entire
trapdoor of the reference string (if there was no honest update), or all except for
the first honest update. By the backbone properties enforced by FnakLedger, the
simulator knows that the first case will not apply, and that only one prefix of
valid updates will exist, after § time has passed. As a result, the simulator knows
exactly which permutation to apply to the honest ideal reference string to match
the real world’s result.

As Fsrs only provides a single honest SRS, the simulator applies a random
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permutation to this for each initial honest update, ensuring that the updates of

different chains remain unlinkable. The full specification of the simulator is as

follows:

Simulator S, ;pcer-apaPTOR

It operates in the G, -hybrid world.

: real ideal
The simulator between the protocol adaptor over 77 | dger? and F 05 dger

and quRS'

State variables and initialisation values:

Variable | Description

simul gger | A simulation of the hybrid-world ledger

]-"ZﬁZK A simulation of the low-level NIZK functionality

A =g | Map from honest updates to the applied permutation

I ideal .
When receiving a message (TRANSACTION, tx, t) from F, NakLedger
: : simul
simulate sending (SUBMIT, tx) to 37V dger
.. real .
When receiving a message (SUBMIT, tx) from A for F 7 | dger

ideal
send (SUBMIT, tx) to ‘FNakLedger

When receiving a message (PERMUTE, §) from F sgs:
. . imul
simulate sending LEADER-STATE to 3"\ dger
through ¢ and
receive the reply (srs, )
letd — map(proj,, Fymit - TI())
return X,(d)

When receiving a message (EXTEND, §, B, t, a) from A for F, ,{f;lil_e dger
send READ to G, and receive the reply ¢’
ifpe HAt <[ly !sthen

let d < map(proj,, ]:,i‘i:;(‘iLdger.H(l]J))
let (srs, -) < foldI(Apply, @, a)
letp — X,(a)
if p~1(srs) # S(r,) then
// We cannot extract a trapdoor;
// the SRS is already secure
let p’ < P;p < ProveUpd(srs, p’)
let srs” < p’t(srs)

Chapter 4. Secure Reference Strings from Consensus

129



simulate sending (PROVE, p,p’) to 7%, and
receive the reply 7
else
// We produce an update to match a
// random "initial" SRS
let 7 < p(19)
letp’ < P
send HONEST-SRS to F g5 and
receive the reply srsy,
let srs” — p'T(srsy)
letp < S,(p(7),srs’)
query A with (PROVE, p) and receive the reply 7,
satisfyingm # L A (p, 1) ¢ ]-"Zﬁzwﬁ A, ) ¢ ]:,ZFIZK.H, else sampling
from {0, 1}*
let 7% I« FX Tu{(p, )}
let A(p) < p
letg'de? — |
elseif € 1 then
letsrs’,p,m < ¢
let gdeal |

elselet (srs’,p, m,a'%?) — a

ideal ideal
send (EXTEND, ), B, t,a'°®) to }"NakLedger and

receive the reply (B, a'®® id, t)
if p € 7 then

let 7R op-hon(id) < 1

else

simul .
let fNakLedger.hon(ld) <0

let Iyt o TIAD) = Rt TIGD) | (B, (s’ p, m, a2, id, 8)

assert Vi € P: f;i:kt'edger.n(lp)[k < f;igf(liledger.n(l]f)

return (B, (srs’, p, m,a'%), id, t)

.. ’ real .
When receiving a message (ADVANCE, , 3) from A for 77 | dger

: . ’ simul
simulate sending (ADVANCE, §, 3’) to 73" dger

// Remove SRS updates from 3’
let 3’ « map(A(B, (-, @), t): (B,a'*, ), %)

’ ideal
send (ADVANCE, §, 2’) to }'NakLedger
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and all other adversarial messages for 2! to Fsimu!

R
Forward requests to F, NakLedger NakLedger’

NIZK

Helper procedures:

procedure X),(d)
letp < id
let srs = S(1p)
for (srs’,p,m, ) ina do
// Skip invalid updates
if -VerifyUpd(srs, p,srs’) v (p, ) ¢ frZﬁzK'n then continue

let srs « srs’

if (p,n) e fZﬁZK.W then
letp « frZﬁzK'W((P’ m)ep

elseif p € Athen
// The update is honest.
// Start with its permutation.
letp < A(p)

else
// A witness-less adversarial update
// was encountered.

abort

returnp

We will prove UC-emulation, and will therefore refer to the ideal and real
worlds frequently throughout the proof. Beyond this, the simulator locally sim-
ulates the NIZK functionality and the ledger functionality. To be clear which
functionality we are talking about at any point, we will use ]:rl\?:lie dger’ ]—";':?i'e dger’
and fri]eal to refer to the ideal, simulated, and real ledgers, respectively. We

akLedger

refer to the real-world NIZK functionality as ‘FIZJQIZK and the simulted NIZK as

SLEDGER_ADAPTOR.fGZK. The notation F.x is used to mean “the variable x within
the functionality 7 - it is also used to refer to the ideal trapdoor Fsrs.7%.

Our simulator, which we assume is provided with the update simulation al-
gorithm S, and which can extract permutations from adversarial updates via a
simulated NIZK, is equipped with a helper function &),. Given a series of updates,
X, computes the permutation applied to the reference string’s trapdoor as far
back as possible. It receives as inputs the sequence of updates @, and has access

to a mapping W from NIZK statements and proofs to corresponding witnesses
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(asfar as the simulator knows them)and a mapping A from honest updates to the
permutation applied to the honest SRS. It returns a permutation in P, which can
be applied either to the initial trapdoor 7y, or to the initial honest trapdoor 74, to
create the same SRS as the sequence of updates. We prove this in the following

auxiliary lemma that will be used in the proof of our main theorem.

Lemma 4.1. In the ideal-world execution of S; g pGER-ADAPTOR; Xp(a) outputs a permu-
tation p € P, such that its inverse, applied to the underlying trapdoor of the SRS generated

from the given sequence of updates a, is either the initial trapdoor 1, or the honest trapdoor

Ty.

Proof. The output of &), is either id, a permutation in the mapping A, a permu-
tation recorded by the simulated NIZK, or a series of function compositions of
the above. As only permutations in P are stored in A, id € P and, as P is closed
under composition, the returned permutation is in P. The permutation applied
corresponds directly to how the underlying trapdoor of the uSRS is updated by
longest suffix of updates in a for which the trapdoor is known - that is, the trap-
door permutation is recorded in F’

NIZK
door is recorded in A. When this is not the case, the update is skipped and the

W, or a permutation of the honest trap-

trapdoor reset, ensuring that any trapdoors preceeding a non-extractable value
areignored. The case that the trapdoors are known for all of the updates is trivial;
as by definition inverting this permutation will result in the initial trapdoor 7.

If, however, at any point the trapdoor is not recorded in ]:rZﬁZK'W (despite
VerifyUpd succeeding), at this point the trapdoor must be honestly generated:
As this update was not skipped, the NIZK proofs associated with it must verify.
The only way for the proofs to verify and the NIZK functionality not to have
recorded the corresponding witnesses, however, is that the simulator added the
proof manually to the NIZK’s set of valid proofs. This only happens at one point
- when creating simulated NIZK proofs to accompany simulated update proofs,
which is used only for random permutations applied to the honest reference
string. While (if the adversary is capable of inverting the structure function)
multiple honest updates may exist in the same chain, if at least one of them is a
replayed update, the last such effectively “resets” the reference string to a known
permutation of the honest reference string.

Finally, we note that for this witness-less update, the remaining trapdoor

defines a permutation of Fsgs.73. Algorithm X&), extracts the trapdoors from all
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subsequent updates to compute the permutation applied to this honest trapdoor

- ensuring precisely that inverting this permutation results in Fggs.15.- [

Proof (of Theorem 4.2). 1f the environment can distinguish between these worlds,
there must exist a minimal series of interactions the environment, combined
with its adversary, can make to cause the other UC ITMs to behave sufficiently
differently to allow distinguishing. We will show that for any interaction the
environment makes, it will not learn enough information to distinguish the two
worlds and therefore that across all (polynomially many) interactions it also can-
not distinguish. First, we consider what actions the adversary/environment pair

can take. The interactions fall into the following categories:

I. Honest or adversarial SUBMIT, READ, LEADER-STATE, or PROJECTION
queries

2. Interactions with }"ZFIZK, or Gelock

3. ADVANCE queries

4. EXTEND queries

5

. SRS queries

We will establish the following invariants throughout the execution of the UC

security game:
* Gclock has the same internal state in both the real and ideal worlds.

. SLEDGER-ADAPTOR'f[ZﬁZK has the same internal state as the real-world
F,ZFIZK, except that it does not know the witnesses for honestly generated

proofs or their mauled variants.

. SLEDGER'ADAPTOR"FiIi;?(liLdger has the same internal state as the real-world

ledger F, ;f;lll_e dger and differs from the ideal-world ledger F, rl\?;lfll_e dger onlyin

that all state updates contain an addition SRS update term.

Ledger reads and submissions. Given these invariants, it is clear that the
environment cannot distinguish given the results of READ and PROJECTION
queries - they must return the same value! Furthermore, as the adaptor proto-
col strips the SRS component from the leader state and the ideal world’s leader
state is precisely defined as being without this component, it is clear that also

LEADER-STATE queries will be indistinguishable (even if made directly by the
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adversary, since these are answered by ]-";i;‘?(”LLdger). For SUBMIT queries by either
the environment or the adversary, both worlds will add the transaction, with
the current timestamp, to their ledger’s submitted transactions, and will notify
the adversary once and return the transaction together with the timestamp. This
does not reveal any information to the environment which could be used to dis-
tinguish.

Queries to other functionalities. Likewise, F, ,Zﬁ

mit the environment to distinguish, or invalidate the above mentioned invari-

- queries clearly will not per-

ants - they do not go beyond the NIZK functionality, and this does not read
(only update) the witness map. Similarly for G ., as this exists in both worlds
and is not manipulated by the simulator (or any other entity), beyond read-only

operations, it will behave identically.

ADVANCE queries. Thesimulator first simulates advancing a specified party’s
ledger state on .F;im“' . If this succeeds, the simulator knows that the ad-
akLedger
vancement will succeed in the ideal world as well, where the ledger state is less
constrained. It removes the SRS updates from the ledger state being switched
: : ideal :
to and issues a corresponding advance query to F (%" dger” If the simulated
ADVANCE does not succeed, it will also have failed in the real world execution,
both of which will abort. If the update succeeds, the invariant between the
various ledger states is preserved — up to the lack of SRS updates in the ideal

world, they are the same. If the update fails, both worlds terminate execution.

(EXTEND, {, B, t,a) queries. Letus first detail the function of EXTEND queries.
Called by the adversary, if the party parameter i represents an honest party, the
query runs Gen to generate a new update a to apply to this party’s view of the lead-
ership state. If the party is adversarial on the other hand, an adversary-supplied
update parameter a is used instead. With the timestamp ¢ (or the accurate time
for honestly created blocks), block content B, state update a, and a randomly
sampled ID, a new block is created and appended to §’s projected chain. Finally,
it is asserted that the common prefix property still holds.

Once the simulator intercepts such a query, it needs to ensure not only that
the same EXTENDs are carried out in the simulated and ideal ledgers, but also

that honest SRS updates are (when necessary) sourced from the F,sgs function-
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ality. In the case that the party extending the chain is adversarial, this is simple
- split the adversarial real world update a into an SRS update and an ideal-world
update (it is worth noting that these need not be valid), and forward only the
ideal-world update in an EXTEND query to ]:ri\?:lfll_e dger This already results in
the real and ideal ledgers satisfying the invariant, leaving the simulated ledger.
For this, the simulator manually inserts the ID returned from the ideal-world
ledger, inserts the new block, and asserts the same common prefix condition
as the real world does, ensuring these two ledgers are in the same state and -
crucially — abort under the same conditions. The returned value is identical to
that returned in the real world.

For honest updates, things are more complex. If the current time is after
when honest SRS updates are performed, the honest SRS update is set to ¢, as
in the real world. Otherwise, the SRS is reconstructed from the party’s current
projected ledger view and the simulator attempts to extract the trapdoor permu-
tation from this SRS. If it succeeds in extracting the entire trapdoor, the simula-
tor ensures it is updated such that it can no longer do so: It updates the uSRS to a
permutation of the honest uSRS Fsrs.13, by first applying a fresh permutation
to it, recording this in the map A, and creating the corresponding update proof
using S,

By the update uniformity property, this is indistinguishable from the result
of Gen, which the environment expects. In case the full trapdoor cannot be ex-
tracted, Gen is used to generate the “honest” SRS update, ensuring the simulator
knows the trapdoor for this update as well (as it retains the NIZK witness used).

ideal ot to |, Execution

Finally, the ideal ledger is sent an EXTEND query, with a
proceeds as in the adversarial case, with the SRS part of the update being dis-
tributed equally in the real and simulated ledgers, and the ideal-world compo-
nent being generated directly by the ideal world functionality (and therefore also
being distributed the same as in the real world, which samples from the same

distribution).

SRS queries. Finally, a user may query the SRS. If this happens before time 4,
both worlds return | — the delay wrapper does so in the ideal world and the adap-
tor protocol does so in the real world. Otherwise, the real world reconstructs
the leadership state and returns only the SRS component, while the ideal world

queries the simulator for a trapdoor permutation and, if the SRS is not yet fi-
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nalised, applies it to the honest SRS.

Recall that after every extension, F,kLedger €nsures that the common prefix
property holds. Further, once a party’s projected ledger state has some common
prefix, this is only ever extended - either by extending the whole projection (in
EXTEND), or by switching to a different one with the same prefix (in ADVANCE).
Aftertimes, if chain quality and liveness hold, we can split each party’s projected
chain into two parts: Blocks with a timestamp at or before the time §;, and those
with a timestamp after it. As EXTEND enforces timestamps to be monotonically
increasing, these concatenate to form the entire chain. By the chain growth prop-
erty, and as it is at least time 8, we know that the first part contains at least [
blocks and the second at least k blocks. Chain quality ensures that the first part
contains at least u honest blocks, while Apply ignores updates with a timestamps
after 6;. Combined, these facts imply that, for any party, the valid SRS updates,
taken from their stable chain, are identical.

After the first SRS query, both the ideal and real worlds will not change what
value they return, the former because it has then recorded the final trapdoor and
the latter because the common prefix containing valid reference string updates
cannot change. The first query is therefore the most interesting.

From Lemma 4.1, we know that the permutation p extracted by the simulator
when it is queried for the SRS permutation will, inverted and applied to the SRS’
underlying trapdoor, either result in 7y, or Fsgs.73. From the above we know
that the SRS the simulator is extracting from matches that honest parties gener-
ate — containing at least one honest update (by chain quality). As the first honest
update in any chain is extracted from an Fsgs-provided reference string, (and,
by the correctness property, it is valid) it cannot be ry. Therefore, the simulator,
by providing p to Fsgs, satisfies its requirements of a permissible permutation
in P and ensures that once the permutation is applied, the same SRS is returned:
S(p(r20) = S(p(p~ 1 (1)) = 5.

In the above we have brushed aside the issue of aborts, however these are
also simple to deal with. F,sgs aborts if given an invalid permutation, which the
simulator does not do. In the real world, if liveness or chain quality are violated,
FNakLedger aborts. In each query, the simulator ensures that the same query is
run against the simulated ledger, ensuring that both will abort under the same
conditions. This is the primary purpose for which Fsgs asks for a permutation

on each invocation, despite only using it on the first, as well as why it supplies
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the identity of the calling party to the ideal-world adversary. ]

As it is possible to construct (non-succinct) non-interactive zero-knowledge

schemes from a random oracle, we can remove the requirement on ]-"KFIZK and

instead rely on a random oracle 7 (formally described in Subsection 2.3.5).

As almost all constructions of Nakamoto-style ledgers are in the random oracle

model, our usage of a low-level NIZK is not a major additional assumption.

Corollary 4.1. Forany updateable reference string scheme S, it is possible to realise the pair

of functionalities (J:ri\?aelfll_e dger’ Whelay(6, Fusrs)) in the (]:;Je;llLe dger’ FRro)-hybrid world

and in the presence of G |oc-

4.4 Implementation and Parameter Selection

We have implemented [Ker20] Sonic’s update mechanism (see Subsection 4.1.3)

and, using this, provide performance estimates for SRS generation in a live
blockchain network. Further, we simulate the optimal adversarial attack strat-
egy and demonstrate how this may be used to select optimal parameters for
the secure generation of reference strings. We demonstrate that for currently
typical applications, these parameters are practical for real-world usage.

While we have not modified a full blockchain client to utilise this extended

consensus, we discuss the impact it would have on each of the following points:

« block verification
- block generation
- chain reorganisation

+ network usage

local storage

While the Bitcoin backbone paper [GKL15] provides bounds on chain parameters
in given situations, these have three main drawbacks in the context of this chap-

ter:
I. The bounds are not tight.

2. The criteria for security are stricter than required: It asserts liveness and
persistence are never violated, while this chapter only requires them in a

few select cases.
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3. The analysis is in the synchronous model — while the generation and veri-

fication of reference strings can take a significant amount of time.

To obtain sensible parameters to generate reference strings, we measure the time
taken for computing and verifying updates, and factor this processing overhead
into a simulation of the optimal adversarial strategy to subvert the SRS genera-
tion procedure.

The implementation and numbers provided for execution time and storage
use the commonly used BLS12-381 curve pair. Circuits which have been practi-
cally deployed tend to require a depth of at most half a million, so we will often
assume a Sonic uSRS depth of 500,000. All data shown is available at [KLZO]

and may be reproduced with the provided source code.

4.4.1 Execution Time of uSRS Operations

We tested our implementation of the uSRS generation mechanism on an AMD
Ryzen 7 2700X 8-core processor with hyper-threading enabled. This proces-
sor is a standard consumer-grade CPU - in proof-of-work mining it is likely
that miners will have access to better hardware. All operations have been par-
allelised, and the verification operation has been additionally optimised to use
fewer pairing operations. The workload, especially for uSRS generation, is also
highly parallelisable (consisting of primarily a large number of group exponenti-
ations), suggesting further improvements by utilising GPUs and clusters of ma-
chines are possible. If such improvements are applied, the total time delay re-
quired for the secure generation procedure, as well as the optimal intended block
time could be reduced proportionally to the increase in parallelisation; assum-
ing paralellisation across 10 machines could reduce both by an order of magni-
tude, for instance.

We measured the time taken to create and verify a uSRS update in relation to
the uSRS depth in Figure 4.1. For our NIZK, we use a UC-secure Fischlin proof,

described in Subsection 4.1.3. We measure the overhead of these proofs to be

23.956ms for proving and 1.567ms for verifying (a Fiat-Shamir proof of the same
type was measured to 0.92Ims and 0.870ms respectively), using SHA-3 in place
of a random oracle. For larger dimensions of reference strings, neither have
much impact on the total runtime.

Finally, we implemented aggregate updates: The bulk of Sonic’s update verifica-
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Figure 4.1: The time taken to produce and verify uSRS updates, as a function of
the Sonic SRS depth d.

tion procedure is concerned with verifying the structure of the reference string,
while a few parts of it verify that it is an exponentiation of the previous string.
By retaining only the latter parts, a series of updates can be verified almost as
quickly as a single update. The verification of aggregate proofs has an overhead
of 1.634ms per update included in the aggregate. The bulk of this cost arises from
the verification of the Fischlin proof. This allows for even large chain reorgani-

sations to be quickly verified.

4.4.2 Simulating the Optimal Attack Strategy

The mechanism we have presented in this chapter operates in two phases. In the
first phase, the adversary has the chance to subvert the reference string, while in
the second phase it can carry out a denial of service attack, potentially convinc-
ing users that an incorrect (but not subverted) reference string is the canonical
one.

For the first phase, the adversary’s optimal strategy is to mine entirely in-
dependently from any honest activity: the adversary cannot adopt any honest
block - doing so would break the subversion of its reference string. Further, the
adversary has no reason to share any of its own blocks except if it reached the
threshold of having a fully valid subverted reference string - it only gives the

honest network a chance to catch up, in the case that the adversary is ahead. This
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allows for a straightforward simulation of the consensus protocol: The probabil-
ity of either honest parties, or the adversary creating an individual block is expo-
nentially distributed. In addition to this, honest parties have a fixed processing
overhead before they may start mining: This may include a networking delay,
but more crucially it includes the time taken to verify a newly received block’s
uSRS update and to produce the subsequent update. We assume that the adver-
sary can bypass large parts of this overhead, by virtue of network dominance, by
skipping verification and by producing reference string updates with small (and
therefore insecure) exponents.

The overhead manifests as shifting the honest party’s exponential distribu-
tion for block generation by a fixed constant. More precisely, we parameterise

each experiment by:

« The intended time between blocks b
+ The combined networking and update overhead d

« The fraction of adversarial mining power a

Of these three, d can be seen as fixed, depending on the depth of the uSRS being
generated and the corresponding speed of verification and update generation.
For simplicity, we assume a uSRS depth of 500,000, which corresponds to d
being approximately 250 seconds on our single-CPU setup.

We draw the time of the next adversarial block from the exponential distri-
bution with A = a/b, and the next honest block from the exponential distribution
with A = (1 — a)/b, shifted to the right by d (that is, the probability density is O for
x < d). The simulation is then advanced to the lesser of the two times, which is
resampled from the same distribution. The number of times the adversary or the
honest parties have extended their chain is counted and the honest parties win
at any point if and only if the honest chain is longer than the adversarial chain.

We ran one million experiments in parallel, either up to a fixed end time,
or until a large enough fraction of the experiments end in honest victory. We
refer to the probability of an adversarial success as the probability of subversion
¢. Figure 4.2 demonstrates that for a fixed d, a trade-off exists between the target
time between blocks b and the time until any given subversion threshold ¢ is met.

A practical limit of this simulation approach is that it cannot by itself deter-
mine the length of time needed to wait until ¢ is negligible for most typical secu-

rity parameters. We can however observe that for fixed parameters, £ decreases
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Figure 4.2: The time required to generate a secure uSRS, as a function of the
intended time between blocks. This depends on the proportion of adversarial
mining power a and the bound ¢ on the probablity of subversion. Each data
point represents the time until at most a fraction of ¢ of one million parallel
experiments ended in adversarial victory. Values are given assumingd = 250s

and both axes scale linearly to d.

approximately exponentially as time passes, as seen in Figure 4.3, outside of a
brief initial window.

While the second phase — that where the adversary attempts to create dis-
agreement as to which reference string is the canonical one — may initially seem
different, its optimal strategy is identical, as it essentially wishes to create as
long as possible a fork, starting one block prior to the end of the first phase (to
select a different reference string). As creating the longest fork forking at this
point does not allow the adversary to accept honest blocks after it, nor gives the
adversary a reason to share its blocks, the adversarial strategy is the same and

therefore the same analysis applies.

4.4.3 Storage and Network Usage

A Sonic reference string consists of 4d + 1 elements in G and 4d + 2 elements
in G;. For the commonly used BLS12-381 curve pair, G; elements have a storage
requirement of 48 bytes each and G, elements of 96 bytes each. An update proof

includes an additional two G; elements and a Fischlin proof, which itself con-
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Figure 4.3: The probability of the reference string being subverted ¢, as a function
of the time passed, in multiples of the intended time between blocks b. This
depends on the proportion of adversarial mining power a and the compound
overhead d. b is selected to be approximately at the minimum seen in Figure 4.2,
withd = .15b,d = .4b, and d = 2b for the a = .45,.33, and .1, respectively.

sists of twelve iterations, each with 2 elements in ]Ff; (each of which requires 32
bytes to store), two elements of G1, and a 16-bit nonce. Each part of an aggregate
update has an additional two G, elements.

As it is not necessary to retain intermediate reference strings, and aggregate
updates are sufficient, for a chain of length [, and with an uSRS depth of d, this is
a storage requirement of 576d + 288 bytes for the uSRS itselfand - (2-48 + 2 -
96 +12-(2-32+2-48 + 2)) = 2,232l bytes for storing updates.

For 500,000 gates and chains of length 20,000, this corresponds to a total
storage requirement of 318 MiB, with the reference string itself being the largest
part, at 275MiB. Although this is quite manageable as a storage requirement,
it must be considered that the SRS itself (and a single update of around 2KiB)
has to be re-transmitted with each block. While at the common home-internet
upload speed of 1IoMb/s, a block would take slightly under 4 minutes to transmit,
itisreasonable to assume that miners would invest in high-grade connections to
offset the chance of their block being replaced with a competitors. Speeds up to
10Gb/s are commercially available, which would reduce the transmission time
to under a second.

One remaining issue is that of denial-of-service. The receipt and verification
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of a reference string is costly, and should therefore be done only after a block’s
proof-of-work has been received, which should depend on a commitment to the
subsequently sent reference string - such as the update proofitself. An attacker
can still perform a limited denial of service attack with blocks they legitimately
mined - however this uses no more resources in verification than a legitimate
block would.

4.4.4 Conclusion

Figure 4.2 provides insight into the space of tradeoffs which can be made for the
secure generation of reference strings. While the secure generation of a refer-
ence string is possible even for a small honest majority, the time required to do
so is much higher than for a more relaxed setting, with §; being approximately
three months for a = .45, in contrast to around two days for a = .33. The full
setup is double this: six months for « = .45 and four days for ¢ = .33. Perhaps
surprisingly, the desired probability of subversion ¢ has a more muted effect on
the required setup time.

The minima observed for §; suggest that simply deploying this system on
existing blockchain systems as they are currently parameterised is unwise: Most
blockchains emphasise small values of b to enable transactions to settle quickly,
with even notoriously slow chains such as Bitcoin having values on the lower end
of our scale. This is directly linked to the compound overhead of verification and
update generation — when b is small, the adversary can better use its advantage
of bypassing large parts of the verification and update procedure. As previously
noted, there is a lot of room for speedup by assuming miners use greater compu-
tation power - if each miner used ten machines, even the a = .45 case would be

reduced to under a month in total.

4.5 Low-Entropy Update Mitigation

While our analysis indicates that in a Byzantine, honest majority setting, our
protocol produces a trustworthy reference string, it also asks participants to ded-
icate computational resources to updates. It follows that in a rational setting,
players need to be properly incentivised to follow the protocol. We emphasise

that the rational setting is not our focus, and optimistically, in a setting where
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the majority of miners are rational and a small fraction honest, the few honest
blocks are sufficient to eliminate the issue described in this section.

For Sonic, a protocol deviation exists that breaks the security of the reference
string: By choosing the exponent in a specific low-entropy fashion, (e.g.,y = 21)
the computation of the update, which primarily relies on repeated squaring, can
be done significantly faster. More generally, some permutations in P may be
more efficiently computable. In more detail, instead of using a random permu-
tation p, a specific choice is made that eases the computation of srs” — in the most

extreme case, for any uSRS scheme, the update for p = id is trivial.

4.5.1 Proposed Construction

In order to facilitate a mitigation for this class of attacks, we will need to assume
an additional property of the underlying ledger, in particular it must provide
a “resettable” randomness beacon: With each ADVANCE operation (where the
adversary must be restricted in how often it may do such ADVANCE queries),
a random beacon value is sampled in a variable bcn and is associated with the
corresponding block. Prior work [DGKR18] demonstrates that such beacon val-
ues allow for the adversary to bias them only by “resetting” it at most a certain
number of times, say t, before they are fixed by entering the ledger’s confirmed
state, with the exact value of t depending on the chain parameters.

We can then amend Gen to derive its random values from the random oracle,
by sending the query (bcn, nonce) to Fro, where nonce is a randomly selected
nonce, and benis the previous block’s beacon value. The response isused toindex
the set of trapdoor permutations P, choosing the result p, and the nonce is stored
by miners locally, and kept private. We adapt the Phase 1 period 8, so that at
least I’ = I(1 — )L + ¢ blocks will be produced, where 6 and c are new security
parameters (to be discussed below). Next, after Phase 2 ends, we can be sure that
the beacon value associated with the end of Phase 1 has been reset at most t times.

We extract from ben I’ biased coins, each with probability 8. For each block,
if the corresponding coin is 1, it is required to reveal its randomness within a pe-
riod of time at least as long as the liveness parameter. Specifically, a party which
created one of the selected blocks may reveal its nonce. If its update matches
this nonce, the party receives an additional reward of value R times the standard

block reward.
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While this requires a stricter chain quality property, with the ledger func-
tionality instead enforcing that one of these [ non-opened updates are honest,

we sketch why this property still holds in the next section.

4.5.2 Security Intuition

Consider now a rational miner with hashing power a. We know that, at best, us-
ing an underlying blockchain like Bitcoin, the relative rewards such a miner may
expect are at most a/(1 —«) in expectation; this assumes a selfish mining strategy
that wins all network races against the other rational participants. Now consider
aminer who uses low entropy exponents to save on computational power on cre-
ated blocks and, as a result, boosts their hashing power a to an increased relative
hashing power of &’ > a. The attacker can further try to influence the blockchain
by forking and selectively disclosing blocks which has the effect of resetting the
bcn value to a preferred one. To see that the impact of this is minimal, we prove

the following lemma.

Lemma 4.2. Consider a mapping p — {0, 1} that generates I’ independent biased coin
flips, each with probability 6, when p is uniformly selected. Consider any fixed n < I’ po-
sitions and suppose an adversary gets to choose any one out of t independent draws of the
mapping’s random input with the intention to increase the number of successes in the n posi-

tions. The probability of obtaining more than n(1 + £)0 successes is exp(—Q(s2 6n) + Int).

Proof. In case t = 1, result follows from a Chernoff bound on the event E defined
as obtaining more than n(1 + €)0 successes, and has probability exp(—Q(sZQn)).
Given that each reset is an independent draw of the same experiment, by apply-

ing a union bound we obtain the lemma’s statement. ]

The optimal strategy of a miner utilising low-entropy attacks is to minimise
the number of blocks of other miners are chosen, to increase its relative reward.
Lemma 4.2 demonstrates that at most a factor of (1 + &)~} damage can be done
in this way. Regardless of whether a miner utilises low-entropy attacks or not,
their optimal strategy beyond this is selfish mining, in the low-entropy attack
mining in expectation I'a’/(1 — a’) blocks [GKLI5]. A rational miner utilising
low-entropy attacks will not gain any additional rewards, while a miner not do-
ing so will gain at least I'a/(1 — a)(1 + ¢)"1OR rewards from revealing their ran-

domness, by Lemma 4.2. It follows that for a rational miner, this strategy can be
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advantageous to plain selfish mining only in case:

/

a
- > (1 + 9(1 + 8)_1R)1—_a

If we assume a miner can increase their effective hash rate by a factor of ¢, using
low-entropy exponents, then their advantage in the low entropy case is o’ =
ac/(ac + ), where B = 1 — a is the relative mining power of all other miners. If

follows that the miner benefits if and only if:

ac  ac+f

Ll -1p)<
wp B >(1+6(1+¢) R)ﬁ
= ¢> 1+6(1+¢&) IR
If we adopt a sufficiently large intended time interval between blocks it is possi-

ble to bound the relative savings of a selfish miner using low-entropy exponents;

following the parameterisation of Subsection 4.4.2, if a selfish miner using such

exponents can improve their hashing power by at most a multiplicative factor ¢

then we can mitigate such an attack by setting Rto (c — 1)/(6(1 + e D).

4.6 Discussion

While the clean generation of a new reference string from a ledger protocol is
itself useful, real-world situations are likely to be more complex. In this section

we discuss practical adjustments that may be made.

4.6.1 Upgrading Reference Strings

As distributed ledgers are typically long-lived and may well outlive any refer-
ence string used within it — or have been running before a reference string was
needed - a secure process to upgrade reference strings is important. Indeed,
the Zcash protocol has seen upgrades in its reference string. A reference string
being replaced with a new one is innocuous without further context, however it
is important to consider how they are usually used in zero-knowledge proofs. If
the proof they are used in is stateless, upgrading from an insecure to a secure
reference string behaves as one may naively expect: It ensures that after the
upgrade, security properties hold.

In the example of Zcash, which runs a variant of the Zerocash [BCG*14]

protocol, the situation is more muddy. Zerocash makes stateful zero-knowledge
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proofs. Suppose a user is sceptical of the security of the initial setup — and there
is good reason to be [SWBI19] - but is convinced the second reference string is
secure. Is such a user able to use Zcash with confidence in its security?

Had Zcash not had safeguards in place, the answer would be no. While the
protocol may operate as intended currently and the user can be convinced of that,
due to the stateful nature of the proofs, the user cannot be convinced of the cor-
rectness of this state. The Zcash cryptocurrency did employ similar safeguards
to those we outline below. We stress the importance of such safeguards here, as
not every project may have the same foresight.

Specifically, for a Zerocash-based system, an original reference string’s back-
door could have been used to create mismatched transactions and to effectively
“mint” large coins illicitly. This process is undetectable at the time and the
minted coins would persist across a reference string upgrade. Our fictitious
user may therefore be rightfully suspicious as to the value of any coins he is sold
- they may be a part of an almost infinite pool!

Such an attack, once carried out (especially against a currency) is hard to re-
cover from - it is impossible to identify “legitimate” owners of the currency, even
if the private transaction history were deanonymised and the culprit identified.
The culprit may have traded whatever he created already. Simply invalidating
the transaction would therefore harm those he traded with, not himself. In an
extreme case, if he traded one-to-one with legitimate owners of the currency,
he would succeed in effectively stealing the honest users funds. If such an attack
is identified, the community has two unfortunate options: Annul the funds of
potentially legitimate users, or accept a potentially large amount of inflation.

We may assume a less grim scenario however: Suppose we are reasonably con-
fident in the security of our old reference string, but we are more confident of the
new one. Is it possible to convince users that we have genuinely upgraded our
security? We suggest the usage of a type of firewalling property. Such properties
are common in the domain of cross-chain transfers [GKZ19] and are designed to
prevent a catastrophic failure on one chain damaging another.

For monetary transfers, the firewall would guarantee an upper-bound of
funds was not exceeded. Proving the firewall property is preserved is easy if
a small loss of privacy is accepted — each private coin being re-minted before
it can be used after the upgrade, during which time its value must be declared.

Assuming everything operates fine and the firewall property is not violated,
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users interacting with the post-firewall state can be confident as to the upper
bound of funds available. Furthermore, attacks on the system can be identified:
If an attacker mints too many coins, eventually the firewall property will be
violated, indicating that too many coins were in circulation - bringing the
question of how to handle this situation with it. We believe that a firewall
property does give peace of mind to users of the system and is a practical means
to assuage concerns about the security of a system which once had a questionable
reference string.

In Zcash, a soft form of such firewalling is available, in that funds are split
across several “pools”, each of which uses a different proving mechanism. The
total value of each pool can be observed, and values under zero would be con-
sidered a cause for alarm and rejected. Zcash uses the terminology “turn-
stiles” [Zca19] and no attacks have been observed through them.

A further consideration for live systems is that as Subsection 4.4.2 shows, the

time required strongly depends on the frequency between blocks. This may con-
flict with other considerations for selecting the block time - a potential solution
for this is to only perform updates on “superblocks”: blocks which meet a higher

proof-of-work (or other selection mechanism) target than usual.

4.6.2 The Root of Trust

An important question for all protocols in the distributed ledger setting is
whether a user entering the system at some point during its runtime can be con-
vinced to trust in its security. Early proof-of-stake protocols, such as [KRDO17],
did poorly at this and were subject to “stake-bleeding” attacks [GKR18], for
instance — effectively meaning new users could not safely join the network.

For reference strings, if a newly joining user is prepared to accept that the
honest majority assumption holds, they may trust the security of the reference
string, as per Theorem 4.2. There is a curious difference to the security of the
consensus protocol however: to trust the consensus — at least for proof-of-work
based protocols — it is most important to trust a current honest majority, as these
protocols are assumed to be able to recover from dishonest majorities at some
point in their past. The security of the reference string on the other hand only
relies on assuming honest majority during the initial 6 time units. This may

become an issue if a large period of time passes — why should someone trust the
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intentions of users during a different age?
In practice, it may make sense to “refresh” a reference string regularly to re-
new faith in it. It is tempting to instead continuously perform updates, however

as noted in Subsection 4.6.1, this does not necessarily increase faith in a stateful

system, although is can remove the “historical” part from the honest majority
requirement when used with stateless proofs.

Most subversion attacks are detectable — they require lengthy forks which
are unlikely to occur during a legitimate execution. In an optimistic case, where
no attack is attempted, this may provide an additional level of confirmation: if
there are no widespread claims of large forks during the initial setup, then the
reference string is likely secure (barring large-scale out-of-band censorship). A
flip side to this is that it may be a lot easier to sow doubt, however, as there is
no way to prove this: A malicious actor could create a fork long after the initial
setup and claim that it is evidence of an attack to undermine the credibility of

the system.

4.6.3 Applications to Non-Updateable SNARKs

Updateable SNARK schemes have two distinct advantages which our protocol
makes use of: First, they have an explicit update procedure which allows a party
P to replace a reference string whose security depends on some assumption A,
with one whose security depends on A v ( is honest). Second, they can survive
with a partially biased reference string, a fact which we do not use directly in this
chapter, however the functionality F,sgs we provide permits rejection sampling,
encoding it into the ideal world.

The lack of an update algorithm can be resolved for some zk-SNARKs, such
as [Gro16], by the existence of a weaker property: In two phases, the reference
string can be constructed with (potentially different) parties performing round-
robin updates (also group exponentiations) in each phase. This approach is also
detailed in[BGM17], and it implies a natural translation to our protocol, in which
the first phase is replaced with two phases of the same length, performing the
first and second phase updates, respectively.

The security of partially biased references strings has not been sufficiently
analysed for non-updateable SNARKs, however this weakness can be mitigated.

Following [BGM17], it is possible to use a pure random beacon (as opposed to
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the resettable one used in Section 4.5) to create a “pure” reference string from
the “impure” one presented so far. To sketch the design: The random beacon
would be queried after time §, and the randomness used to select a trapdoor per-
mutation over the reference string. This would then be applied by each party
independently, arriving at the same — randomly distributed - reference string.
As this is not required for updateable SRS schemes, we did not perform this
analysis in depth. However the approach to the simulation would be to perform
the SRS generation identically, and then program the random beacon to invert
all permutations applied to the honest reference string. Since this includes the
one honest permutation applied on every honest update, this is indistinguish-
able from a random value to the adversary. It is worth noting that the require-
ment of a random beacon is on the stronger side of requirements, especially as it
should itself not allow adversarial influence to provide the desired advantage.
Approaches using block hashes for randomness introduce exactly the limited

influence which we are attempting to remove!
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PRIVACY IN

PROOF-OF-STAKE

This chapter is based on “Ouroboros Crypsinous: Privacy-Preserving Proof-of-
Stake” [KKKZ19], first published at the 2019 IEEE Symposium on Security and
Privacy, primarily authored by Thomas Kerber, and co-authored by Aggelos
Kiayias, Markulf Kohlweiss, and Vassilis Zikas.

CONSTRUCTION of both privacy-preserving currency systems, such as Ze-
rocash [BCG*14], and secure proof-of-stake, such as Ouroboros [KRDO17,
DGKR18, BGK*18], has been well-studied. Combining both is a natural goal and

goes beyond a simple parallel composition of two systems, as proof-of-stake is
intrinsically interwoven with the currency, requiring knowledge of how much
stake users own by definition. This poses significant modelling challenges, and
questions of how the leakage from the proof-of-stake protocol can be minimised.

This chapter proposes a mechanism to combine the currency and ledger
(while still allowing for flexible alternative usage), by allowing transactions to
be addressed only to specific users. Furthermore, it presents CRYPSINOUS, a
proof-of-stake protocol which realises this ledger from a privacy-preserving
currency. This is based on the Ouroboros Genesis protocol [BGK'18]. Crucially
this analysis is not only universally composable and privacy-preserving, but
also forward-secure, ensuring that privacy is preserved independently of any
other protocols running concurrently, even considering adaptive corruption.

Proof-of-stake and transaction privacy is, seemingly, a contradiction in
terms: issuing a block by proof-of-stake fundamentally leaks information about
the issuer and the state of the ledger. We circumvent the contradiction by
adapting the techniques of Zerocash’s “transaction pouring” to our setting. A
notable difference is that coins evolve when used in a proof-of-stake eligibility
proof, allowing them to be both reused and spent without being linked to this
proof.
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The design has several subtleties since a critical consideration in the PoS set-
ting is tolerating adaptive corruptions: this ensures that even if the adversary
can corrupt parties in the course of the protocol execution in an adaptive man-
ner, it does not gain any non-negligible advantage by, for instance, re-issuing
past PoS blocks. In non-private PoS protocols such as Algorand [GHM17] and
Ouroboros Genesis [BGK*18] this is captured by employing forward secure sig-
natures. In the context of our protocol however, a more sophisticated combi-
nation of key-private forward-secure encryption — a new encryption primitive
which we formally define and realise — and an evolving coins mechanism is re-
quired to achieve the same level of security. Intuitively, the reason is that we
need to ensure that past coins received provide no significant advantage to the
adversary when it corrupts an active stakeholder. We note that the naive ap-
proach of simply paying oneself with a new coin does not work here, as the same
coin should be able to be elected multiple times in a sequence of PoS invocations
without leaving any evidence in the ledger.

The work presented in this chapter is concurrent and independent, of an-
other paper on privacy-preserving proof-of-stake by Ganesh et al. [GOT18|.
Their work focuses on constructing a generic, privacy-preserving leadership
election, given a list of commitments to each party’s stake. This chapter by
contrast focuses on ensuring the proof of stake leadership election can run with
a provably secure, privacy-preserving transaction scheme. Notably, Zerocash
cannot immediately be used with the system of [GOT18], as it does not maintain
a list of stake commitments - indeed, such a list would appear to reveal more
about the shift in funds than Zerocash does, such as how long an account has

seen no changes.

5.1 Protocol Intuition

To begin with, we give a high-level sketch of the CRYPSINOUS protocol in this
section, to aid in understanding the more formal break-down of the protocol
in Section 5.4, and to introduce core concepts. We will first sketch the design
of two protocols we are building on — Ouroboros Genesis [BGK*18] and Zero-
cash [BCG*14]. We will discuss how these can be combined, and the issues that
arise through this combination. Finally, we will sketch how we have resolved

these issues.
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5.1.1 The Foundations of Genesis and Zerocash

Ouroboros Genesis [BGK*18], divides time into discrete slots. At protocol start,
parties are assigned an initial stake in the system. Typically, only the relative
amount of such a stake is considered, that is, the fraction of the total stake
owned. By protocol-external means, the distribution of this stake may shift
over time, for instance, by users trading it amongst each other. In each slot,
users have a probability proportional! to their relative stake to be “elected” as a
leader of the slot. In practice, this relies on a pseudo-random value being below
a user-specific target. Such leaders may then create a new block and sign it with
a proof of leadership eligibility. In order to prevent so-called “grinding attacks”,
in which parties attempt the leadership election arbitrarily often with different
accounts, transferring themselves the funds, Genesis divides time further into
epochs. In each of these, the distribution of stake considered for leadership is
fixed, and the pseudo-random values used to determine it can only be predicted
once the epoch starts.

Zerocash [BCG*14] achieves complete transactional privacy in a distributed
ledger setting through the use of non-interactive zero-knowledge (NIZK) proofs.
It represents monetary value through coins, which can be created, and spent once.
Crucially, it prevents double-spends and ensures value is preserved, while at the
same time preventing the creation and spending of a coin from being linked. A
transfer allows spending two coins and creating two new coins of the same com-
bined value. This closely mirrors the simplest form of Bitcoin transactions. Each
party holds a secret key used to spend coins, which is simply a random string,
and its corresponding public key is a hash of the secret key. When creating a
new coin, it is created for a public key. Specifically, a nonce is randomly selected
for the new coin, and the transaction creating it commits to the coin’s public
key, nonce, and value. All such created commitments are kept in a protocol-
wide Merkle tree. To spend a coin, a party makes a zero-knowledge proof of two
things: First, the protocol-wide Merkle tree contains a commitment to it, and
second, the spender knows the preimage of the public key. This by itself would
allow double spends, so Zerocash reveals a coin’s serial number, which is defined
as a PRF of the secret key and the coin’s nonce. The transfer finally proves in

zero-knowledge that the transaction is zero-sum.

"Technically it is not linear, however this is a close approximation.
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5.1.2 The Core Protocol

The core principle of CRYPSINOUS is combining the strengths of both the
Ouroboros Genesis and Zerocash protocols. While Ouroboros Genesis assumes
the distribution of stake to be public, this fact is only used in verifying that
leaders of a slot met the appropriate target — to remove this intrinsic leakage,
we have parties hold Zerocash-style coins, with each coin being separately
considered for leadership. As in Ouroboros Genesis, each coin is eligible to
be a leader if a pseudorandom value meets some target. Instead of revealing
the coin’s value, however, in CRYPSINOUS parties produce a NIZK proof of
this, as well as proving that the respective coin is unspent?. This also forces
us to explicitly model the transaction system by which stake is allowed to shift
— as the stake distribution is no longer simply supplied to every party by the
environment, it is necessary to make explicit how it is derived. For this reason,

the core CRYPSINOUS protocol includes a Zerocash-like transaction system.

5.1.3 Freezing Stake in Zero Knowledge

The security argument of Ouroboros Genesis relies on parties not being able to
manipulate whether or not they won a leadership election. Specifically, it as-
sumes the distribution of stakeholders to be fixed before the randomness for the
same epoch is decided. Likewise, the set of coins that are eligible for a slot in the
leadership election is fixed in CRYPSINOUS. The protocol maintains this frozen
set of coins, €' separately to the set of coins usable for spending, €*P¢". In
practice, as coins are anonymously represented as sets of both commitments
and serial numbers, and as any reuse of a serial number would lead to some
privacy leakage, we represent them through two sets of commitments, €'*4 and
C3P*"d and one set of serial numbers, S. In creating the leadership proofs, a coin’s
serial number is revealed. As it may later be spent, this would lead to some pri-
vacy leakage. To mitigate this, we instead evolve the coin in the leadership trans-
action. This new, evolved coin can then be spent and used in further leadership
proofs, the latter being possible as it is derived deterministically from the former

coin, which does not allow influencing the probability of it being elected in the

?More precisely, we atomically spend the coin to ourselves to prove this. An alternative would
be to produce a non-membership proof [BLLoo], which has a higher circuit cost, but is arguably
simpler.
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remainder of the epoch. We note that as this design inherently destroys the old
coin, it is important that even leadership transactions of different branches of

the chain are imported and validated.

5.1.4 Adaptive Corruptions

As Ouroboros Genesis is secure in the adaptive corruption model, it seems natu-
ral that privacy results should be possible in the same model. The construction
described so far is not directly secure against adaptive corruptions. An adver-
sary could, after corrupting a party, attempt to create leadership proofs of past
slots with the newly corrupted party. Furthermore - in the UC framework -
a non-committing encryption [Nieoz2] would be needed for the ciphertexts in
the Zerocash style transactions, as with a committing encryption, the simulator
would be unable to produce ciphertexts that stand up to inspection after corrup-
tion.

We solve the former issue by adding a cheap key-erasure scheme into the
NIZK for leadership proofs. Specifically, parties have a Merkle tree of secret
keys, the root of which is hashed to create the corresponding public key. The
Merkle tree roots act like a Zerocash coin secret key and can be used to spend
coins. For leadership however, parties also must prove knowledge of a path in
the Merkle tree to a leaf at the index of the slot they are claiming to lead. After a
slot passes, honest parties erase their preimages of this part of that path in the
tree. As the size of this tree is linear with the number of slots, we allow parties
to keep it small, by restricting its size. Keys therefore are associated with their
creation time, by committing to this in the corresponding public key. While this
does mean keys can expire, parties can trivially refresh them, and we sketch in
Section 5.6 that this is a rare occurrence for practical parameters. We emphasise
that parties are able to spend and refresh keys, even when expired.

While we could easily present CRYPSINOUS using non-committing encryp-
tion, known realisations of this primitive are not efficient enough for this pur-
pose in practice. Instead, we take advantage of our protocols network assump-
tions, which include an upper bound on message delivery, A, This allows us to
utilise forward secure encryption instead of non-committing encryption, under
the assumption that corruption is “delayed” by A,,,.,. This delay is modelled by

restricting adversarial access to the forward secure encryption secret key at time
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tto the key for time t + A5y

5.2 Components of CRYPSINOUS

In this section we discuss the main components of the real-world execution,
including the hybrid functionalities that the protocol uses. We discuss the
ideal world, and in particular the private transaction ledger functionality in
Section 5.3. We provide all the aspects of the execution model from [BMTZ17,

BGK'18] that are needed for our protocol and proof, but omit some of the

low-level details and refer the more interested reader to these works wherever
appropriate.
As in the case of Bitcoin (see [GKL15, PSs17, BGK*18]), our protocol is im-

plicitly aware of an overestimate A,,,, of the actual (unknown) network delay
A. However, this A,,,, is not used in the message passing; instead the protocol
proceeds in an optimistic manner once messages are received (after at most
A rounds from sending) and A,,,, is only used in the staking procedure to
determine the leader(s) of each slot.

Our protocol makes use of the following hybrid functionalities, similarly
to[BGK*18].

« The global clock functionality Gjock-

- Broadcast channels ]_—Ec and F% _with the delay A.
et Net

 The genesis block generation and distribution functionality Fj,;;, which
captures the assumption that all parties (old and new) agree on the first,
so-called genesis block. In fact, this functionality is slightly different from
the one in [BGK*18] as the blocks in our work have a different structure
to ensure privacy. Concretely, in Ouroboros Genesis this block includes
the keys, signatures, and original stake distribution of the parties that are
around at the beginning of the protocol. Here, for each stakeholder regis-
tered at the beginning of the protocol, F,,;; records his keys and initial coin
commitments in the genesis block; this block is distributed to anyone who
requests it in any future round. As in [BGK"18] we assume without loss
of generality that the global time is t = 0 in the genesis round. The new

genesis block functionality is specified below.
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« A random oracle Frp for abstracting hash function queries.

Functionality F,;;
The functionality F,; is parameterised by the set of initial stakeholders P =
{$1,...,¥,} and their respective stakes S: P — R'. It allows each of these parties

to register keys, and provides them with openings to their generated coins.

State variables and initialisation values:

Variable ‘ Description

® = 1L | The genesis block

C =2 | Mapping from parties to their committed coin
When receiving a message CLAIM from a party
ifp ¢ Pv i e C then return REJECT

sample sk“°'" as CRYPSINOUS on GENERATE
let Pec (*_ {0; 1}K; kaOIN « prff:otskcom (0)

let (C(p), r.) = comm(pk“™™ | S(P) | pc)
return ((pkcom,pc, re, S(P)), skCOIN)

When receiving a message GENESIS from a party :
send READ to G, and receive the reply ¢
ift=0vHdp e P:p ¢ C then abort
if = L then

letn; < {0,136 « ({CW) [$ P}, m)

return ©

To ensure privacy of transactions, we need to equip our model with a couple
of extra functionalities not present in previous works. For instance, the (non-

private) Ouroboros protocol-line[DGKR18, BGK*18] relies on verifiable random

functions and key-evolving signatures to ensure security of the lottery which
defines slot leaders and prevents double spending in the presence of an adaptive
adversary.

In this work we cannot use signatures to authenticate coins/transactions as
we need to keep the spent amount and the identities of the receiver private. For
this reason we introduce key-private forward secure encryption and non-interactive
zero-knowledge proofs (NIZKs). Our protocol will be described as having access

to hybrid-functionalities for these primitives. To our knowledge no definition of
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key-private forward secure encryption or an implementation thereof has been

suggested. In fact, for reasons discussed in Subsection 5.2.3 an implementation

of this primitive against fully adaptive adversaries might be impossible without
additional setup assumptions. Instead, here we make an assumption about the
(in)ability of the adversary to quickly read keys of newly corrupted parties and
prove the security of our protocols under this assumption. Proving impossibility
of the primitive against a fully adaptive adversary (or providing a protocol for it)
is an interesting future direction.

Finally, our construction will make use of non-interactive equivocal commit-
ments and pseudo-random functions (PRFs). Construction of both these primi-
tives exists assuming a CRS under standard hardness assumption, for instance,
hardness of the DDH (Decision Diffie Hellman) problem. Notably we require a

stronger-than-typical form of PRFs, which we capture in Subsection 5.2.4.

5.2.1 Protocol Assumptions Encoded as a Wrapper

The security statements about implementation of ledgers are typically condi-
tional. For instance, the Bitcoin ledger is proved secure assuming the majority
of the system’s hashing power is honest, and the Ouroboros (Genesis) ledger is
implemented assuming the majority of the stake is held by honest parties. These
assumptions can be easily described by explicitly restricting the class of envi-
ronments and adversaries, but this would sacrifice the universal composability
of the statement. We follow the paradigm of [BMTZ17] to capture these assump-
tions without compromising composability: Instead of explicitly restricting the
adversary and environment, we introduce a functionality wrapper that wraps
the functionalities that the protocol accesses and forces the required assump-
tions on the adversary/environment. We refer to [BMTZ17] for a more detailed
discussion. The full wrapper is defined below; as this wrapper only becomes

relevant for interpreting our main theorems (Theorem 5.2 and Theorem 5.3) it

might be easier for the first-time reader to postpone parsing it until then.

: : PoS Rieap TRxrer tx bc )
Functionality W, ", . (]:NIZK s INIZK T Netr et Gelock
The wrapper functionality is parameterised by the bound f on participating stake
ratio, as defined in Ouroboros Genesis [BGK'18], and ¢ > 0, the parameter that de-
scribes the gap between the honest and adversarial stake. The wrapper is assumed

to be registered with the global clock G, and is aware of sets of registered parties
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and the set of corrupted parties.

The wrapper makes checks about the distribution of stake. While this is trivial
in Ouroboros Genesis, it is not immediately obvious that the wrapper knows this in-
formation in CRYPSINOUS. The wrapper observes all network traffic and all NIZK
witnesses however, allowing it to reconstruct any party’s view of the ledger. We do
not describe this extraction in full detail - it is possible as the wrapper is around
all “real-world” functionalities. We can therefore make assertions about the stake

distribution despite the addition of privacy.

State variables and initialisation values:

Variable | Description
Fluso | The simulated leadership NIZK

NIZK
.7:;3';?“ The simulated transfer NIZK

]:L"et The simulated transaction network
FX | The simulated chain network

Net
Getock | The simulated clock

. R
When receiving a message (PROVE, x, w) from a corrupted party P for JF, Ji°:

let ¢ < fraction of honest stake participating in this round

if a is sufficient, as per [BGK*18] then
simulate sending (PROVE, x, w) to ]—ﬁ;&“’ and receive the reply 7
return

else

return L

. R
When receiving a message (PROVE, x, w) from an honest party i for JF| e®:

simulate sending (PROVE, x, w) to fﬁ;&m and receive the reply 7

return

Forward but evesdrop all other requests to their simulated functionalities.

5.2.2 Non-Interactive Zero Knowledge

We utilise the Non-Interactive Zero Knowledge functionality ]-",ZﬁZK constructed
composably in Chapter 3. The reference string for this could be created in a
public proof-of-stake protocol, as suggested in Chapter 4, although this is not
described in detail in this chapter.

NIZKs can be used for signature-like behaviour by embedding the messages

that are to be signed in the statements of simulation-extractable NIZKs, con-
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structing in this way a signature of knowledge (SoK) [GM17]. In particular, we note
that witnesses used to generate proofs in CRYPSINOUS will contain the party’s
secret key and the proved statement commits to the party’s public key. As a
result, the NIZK used in CRYPSINOUS has similar unforgeability properties as

standard signatures.

5.2.3 Key-Private Forward-Secure Encryption

To guarantee the forward-privacy of transactions, a forward-secure encryption
scheme [CHKO3] is necessary to hide information sent encrypted to a party’s
long-term encryption secret key. Traditional forward-secure encryption is in-
sufficient, as it would leak information about the recipient of a transaction. To
preserve the recipient’s anonymity in CRYPSINOUS transactions, we therefore
require key-privacy as well[BBDPo1]. Furthermore, as the simulator must create
simulated ciphertexts, which it may later need to reveal the message of, encryp-
tion in the UC setting needs to be non-committing to withstand adaptive corrup-
tions. Interestingly, however, there are no existing encryption schemes that si-
multaneously achieve key-privacy, forward-security, and the non-commitment
property.

We overcome the above limitation by slightly weakening the above security
requirements and only requiring forward-security with a time-sensitive non-
committing property: Informally, only messages addressed to a time window
of size A,y into the future are protected. As it turns out, this weaker notion is
sufficient for our purposes. Even for this notion, however, it is not evident how
to efficiently realise such an encryption in the UC setting. To understand the
issue, it is useful to recall how we can realise non-interactive non-committing
encryption via erasures. The idea is to have parties update their keys once the
message is received. More concretely, a message is encrypted at round t and sent
over to the receiver so that it can be decrypted with key sk; . Upon receiving it,
the receiver can decrypt it (using sk; ) and immediately update the key to ski/™*
for the next round (and erase sk; ). This way the link between the ciphertext
and the key is eliminated by the time the adversary corrupts the receiver.

The above approach clearly fails if the channel has any delay, as in our setting,
as this gives the adversary a window of opportunity of size A, and bounded only

by Anmax, to attack during which the message is already being transmitted but
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has not yet been received by the recipient. This makes erasures useless in this
window (if correctness is to be maintained).

To bypass the above issue, we make an assumption on the adversary’s adap-
tiveness which, roughly, implies that the adversary cannot immediately access
the secret key of a newly corrupted party. Specifically, we assume that the adver-
sary corrupting a party with key sk;"* at time t does not receive sk; , but rather
the key skffgmax, which this party would hold in time t+ A ,,,,, if it were allowed to
properly update its key. We emphasise that this is a milder assumption than that
of delayed party-corruption which underlines the security of [KRDO17, BPS16].

Indeed, in these works the adversary is forbidden from accessing the entire state
of a corrupted party for a certain number of rounds after corruption; instead,
here we only restrict his access to the present keys, and we even give the adver-
sary an outlook, already upon corruption, of how the key will look in the near
future.

To enforce the above restriction without affecting the universal composabil-

ity of our statements, we use a technical trick inspired by [BMTZ17z, DGHM13]:

We introduce an ideal functionality which captures this restriction/assumption.
This functionality, denoted by Fieymem, Stores keys upon request from parties,
and updates them every round using a one-way function Update; when an honest
party requests a key it has submitted in the past, the functionality sends it the
current key. However, when the adversary asks for a key (on behalf of a cor-
rupted party) Fieymem first applies Update A,y times and returns the updated
key to the adversary.

As an added bonus from using the above functionality-based approach for
restricting the adversary, our treatment ensures that the restriction is localised
to the encryption functionality; thus, if someone comes up with an instantiation
of the encryption functionality against a fully adaptive adversary, our protocol
would immediately be secure against such an adversary. The Fyeymem function-

ality is specified below.

Functionality e mem
FrkeyMem i parameterised by its corruption delay A,,,, and a memory update func-

tion update. We write updateAmax to mean “apply update A, times.”
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State variables and initialisation values:

Variable ‘ Description

My =L ‘ Memory for each party ¢

When receiving a message (IN1T, M) from a party i:
assert My = L
let My, < M,

When receiving a message GET from a party :

if ¢ € H then return M,

else return updateAma*(Mll,)

When receiving a message UPDATE from a party i:

if My # L then let M, < update(M,)

The UC functionality for key-private and forward-secure encryption, Fgygnc and

the accompanying construction, are described in detail below.

Functionality ¢, g
FrwEnc 18 parameterised by a security parameter k, a set of parties P, and amaximum

delay A, ...

State variables and initialisation values:

Variable | Description

K = 2 | Mapping from parties to public keys
T = @ | Mapping from parties to earliest decryptable time slot
M =@ | Mapping from ciphertexts to their recipient, latest decryption time,

and message

When receiving a message KEYGEN from a party :
asserty ¢ K
query A with (KEYGEN, i) and receive the reply pk,
satisfying fly’: K(¢') = pk, else sampling from {0, 1}*
let K() « pk; T(§) < 0
return pk
When receiving a message (ENCRYPT, pk, t, m) from a party :
ifdp K@) = pkAp’ e HAt<T@') + Ao then
query A with (ENCRYPT, t,|m|) and receive the reply c,

satisfying c ¢ M, else sampling from {0, 1}*

Chapter 5. Privacy in Proof-of-Stake 162



else
query A with (LEAK-ENCRYPT, pk, t, m) and receive the reply c,
satisfying c ¢ M, else sampling from {0, 1}*
let M(c) < (pk,m,t)
When receiving a message (DECRYPT, t, ¢) from a party :
ifp € H thenlet$ <~ 0
else let6 < A

ift <T() + 6 v ¢ K then return FAIL
if c € M then
let (pk, m,t") « M(c)
if pk # K() vt # t then return FAIL
else return (OK,m)
else
query A with (DECRYPT, K(), t, c) and receive the reply m
returnm

When receiving a message UPDATE from a party y:

query A with (UPDATE, §)
letT(p) « T(P) +1

We extend the notion of forward-secure encryption (FSE) with a notion of
key privacy, described in detail in Definition 5.1 below. While this definition it-
self is novel, it is possible to combine existing schemes to satisfy it. In particu-
lar, [CHKo3] constructs FSE from hierarchical identity-based encryption (HIBE).

Their scheme, paired with the anonymous HIBE construction of [ BWo6]satisfies

our requirements of key-privacy as we will argue below.

For the argument of key privacy, the FSE from HIBE construction in [CHKo03]
is straightforward, with the ciphertexts simply being the underlying HIBE
scheme’s ciphertexts. The core argument of the anonymity of [BWo6] is the
indistinguishability of ciphertexts from random group elements — and therefore
their independence of the encrypting identity [BW06, Lemmas 8 & 9]. We note
that the ciphertexts’ pseudo-randomness implies a stronger notion than just
anonymity - the ciphertext also does not reveal any information about the HIBE
public key. In particular, as ciphertexts are indistinguishable, our enhanced
security game given in Definition 5.1 is satisfied.

This construction’s time and space complexity is logarithmic in the number
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of time slots. As the number of slots is by necessity less than 2%, the use of this
forward-secure encryption has a linear increase in cost with respect to the secu-

rity parameter compared to standard encryption.

5.2.3.1 Key-Private Forward-Security Against Chosen Ciphertext Attacks

Definition 5.1. A key-evolving public-key encryption scheme S = (Upd, Gen,
Enc, Dec) is called key-privately forward-secure against chosen ciphertext attacks (kp-fs-
CCA)if any PPT adversary has only negligible advantage in the kp-fs-CCA game,
defined in Game 5.1, for any set of parties P and update bound N.

Game 5.1. The adversary wins the kp-fs-CCA game if it can distinguish two arbitrary
ciphertexts. The adversary may choose which parties they are encrypted for, and is given
access to a decryption and corruption oracle which permits corrupting any party, including
parties challenges have been issued for, as long as the corruption is requested for an updated
key.

Setup: For each party p € P, sample (pky, skg,) <= Gen(1%, N). The adversary receives all
public keys pky, Furthermore, a bit b {0, 1} is selected, but not revealed to the adversary.
Attack: The adversary issues multiple challenge(j, (g, mg), (Y1, m1)) queries, multiple
corrupt(i, P) queries and multiple decrypt(k, c, ) queries, where P, Py, P € Pand 0 <
i < N;0 <j < N;k < N. Furthermore, if a corrupt query is made for some party for
which a challenge query is also made for, then the corresponding i must be greater than the

corresponding j. corrupt queries may be issued only once for each party.
« corrupt(i, P) is answered with sk;, = Upd(... Upd(skg, 1),...,0.

« challenge(j, (g, mp), (Y1, my)) is answered by responding with c = Encpk% G, mp),
and (j, ¢, Pg) and (j, c, Py ) are recorded as challenges. my and m| must be of the same

length.

« decrypt(k, c, ) is answered with L if (k, c, ) is recorded as a challenge. Otherwise,

it is answered with Decskk(k, c).
14
Guess: The adversary outputs a guess b’ € {0, 1}, and wins the game iff b’ = b.
For completeness, correctness is defined as usual:

Definition 5.2. A key-evolving public-key encryption scheme S = (Upd, Gen,

Enc, Dec) is perfectly correct, if for any message m, time bound N and time t < N:
Prl(pk, sk”) <= Gen(1¥, N); Decge(t, Encyi(t, m)) = m] = 1,
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where skt = Upd(... Upd(sk’, 1), ..., ©).

5.2.3.2 Lifting to a UC-Protocol

A kp-fs-CCA-secure key-evolving encryption scheme induces the following pro-

tocol for realising FryEn in the Fieymem-hybrid model:

Protocol FWENC
FWENC is parameterised by the corruption delay A,,.,, a time bound N, the un-
derlying FSE scheme S. It operates in the Fy. mem-hybrid world, where Fieypmem
is parameterised by A,,,,, and the following Update function:
function Update((sk, t))
return (Upd(sk,t+1),t+ 1)

State variables and initialisation values:

Variable ‘ Description

t=1 ‘ Earliest time which is decryptable

When receiving a message KEYGEN from a party y:
asserti= 1
let (pk, sko) < Gen(1¥,N)
send (INIT, (skO, 0)) to Fieymem
erase sk’
lett <0
return pk
When receiving a message (ENCRYPT, pk, t’, m) from a party y:
return Enc,, (', m)
When receiving a message (DECRYPT, t’, ¢) from a party y:
if t’ < tthen return L
send GET to Fy. mem and receive the reply (sk, -)
lett” <t
whilet” < t' do
lett” « t” +1;sk « Upd(sk,t”)
let m < Decg (t',c)
erase sk
returnm
When receiving a message UPDATE from a party y:

lett < t+1
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send UPDATE t0 Fyeymem

return T

5.2.3.3 The Simulator

We now present the simulator for which we will show UC emulation.

Simulator Sg gy
In addition to responding to F, .., the simulator S, g, maintains a simulated
Fkeymem, through which it provides the adversary with (delayed) access to secret

keys.

State variables and initialisation values:

Variable ‘ Description

K = o | Mapping from parties to their key pairs

Fkeymem | Simulated key memory

When receiving a message (KEYGEN, §) from Frgnc:
let K() ¢~ Gen(1¥, N); (pk, sk) « K($); T($) < 0
simulate sending (INIT, (sk, 0)) to Fy.,mem on behalf of
return pk
When receiving a message (ENCRYPT, t, ) from Fr, g
let m « 0 (pk,-) <= Gen(1¥,N)
letc < Enc,(t, m)
returnc
When receiving a message (LEAK-ENCRYPT, pk, t, m) from Fr g
return Encp, (¢, m)
When receiving a message (DECRYPT, pk, t, ¢) from Fgenc:
if 3¢, sk: K(P) = (sk, pk) then
lett’ <0
while t’ < tdo
lett’ « t' +1;sk < Upd(sk,t')
return Dec (t, ¢)
else

return L

When receiving a message (UPDATE, ) from a party y:
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simulate sending UPDATE to Fy,, yem On behalf of ¢
On receiving messages to Fyeymem from A: Forward these messages to the simulated

]:KeyMem'

5.2.3.4 UC Emulation

Theorem 5.1. If the underlying key-evolving PKE scheme is kp-fs-CCA secure then
FWENc UC-emulates Fygnc in the Fgeymem-hybrid world.

Proof. The points in which the simulator Sgy g, combined with Frygc, can be-
have differently from FWENC are in how they respond to various queries and
the internal state they maintain. We will use &y, as ¢'s time in both worlds - ¢
in ¢'s state in the real world and T(¢) in the ideal world. FWENC maintains
a public/private key pair for each party, which the simulator selects from ex-
actly the same distribution and both return the public key, while storing skg.
Furthermore, both initialise ¢y to zero. As a result, for KEYGEN-queries, the
simulation is perfect. For UPDATE, while the simulator does not call Upd on the
secret key, this is merely because the call is deferred to the point where it is used,
in DECRYPT. In both worlds however, t; is updating the same way and matches
the ideal functionality’s ty, value.

What remains is showing the correctness of encryption, decryption, and cor-
ruption queries. We will reduce this to kp-fs-CCA security, by showing that if
the environment can distinguish, we can extract a kp-fs-CCA adversary with
black-box access to the distinguishing environment, which wins the kp-fs-CCA
game with a non-negligible advantage. In both the real and ideal worlds, the
public and secret keys for ¢y, ..., 9, are sampled from Gen(1¥, N) — with in the
real-world parties holding their own keys and, in the ideal world, the simula-
tor holding all. We note that while the dummy key pkg,,m, exists only in the
ideal world and its corresponding secret key is never used, we can assume it
also exists in the real world, however remains entirely unused. Therefore as
all (not adversarially generated) key pairs are sampled the same in both worlds,
we can extract this sampling from the UC security definition - if all key pairs
(pky, skp), ..., (pky, skn), (pkdummy7 skdummy) are sampled from the same distribu-
tion and fixed in both the real and ideal executions, the real and ideal distri-

butions are indistinguishable with overwhelming probability. Given an envi-
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ronment Z which can distinguish between the real and ideal world with non-
negligible advantage, we can therefore assume that it can distinguish between
the real and ideal world, with fixed keys, with a non-negligible advantage. We
use Z to construct an adversary A for the kp-fs-CCA game and prove that Ahasa
non-negligible advantage. Specifically, A simulates running Z against the ideal

world, with the following modifications:

- The public/secret key pairs used by the simulator are supplied by A by pro-

gramming the random tape.

- A monitors all messages sent in the simulation, in particular messages to

the ideal functionality from all parties.

- Since A does not hold any party’s secret keys, on a DECRYPT query to the

simulator, it posts a decrypt(t, ¢, ) query and returns the response.

- Wenote secret keys are only used for decryption, as well as being handed to
the (UC)adversary upon corruption. When the simulator hands the keys to
the (UC) adversary, the (kp-fs-CCA) adversary posts a corrupt(ty + Amax, P)
query to obtain sk:,‘l’+AmaX. While Fieymem at the time of corruption stores

sk:,‘l’, by assumption it will first apply A, updates.

- When the ideal functionality receives an (ENCRYPT, pkp, t,m) query, if it
does not reveal m to the simulator, A queries challenge(t, (';I)dummyr()'m')r

(¢, m)) and returns c.

We begin by observing that this adversary does obey the rules of the kp-
fs-CCA game. Specifically, the conditions for the game are as follows: a) A
challenge ciphertext is not queried for decryption, and b) A party is not chal-
lenged after it has been corrupted. For a) challenge queries are performed when
an ENCRYPT message is seen and due to the structure of g, the challenges
will be issued for, at latest, the time ty, + Ap . — 1. On corruption, the corrupt(k, )
query is made with k = ty+An,,. Astyis monotonically increasing and ENCRYPT
is not called after corruption - and therefore no further challenge queries are
issued - the corruption can occur only after all challenges. For b), we note that
on corruption, Frygn Will no longer query the simulator with ENCRYPT queries

for this party, but only with LEAK-ENCRYPT queries. As challenge queries are

Chapter 5. Privacy in Proof-of-Stake 168



only issued on ENCRYPT queries, this party will no longer receive challenge
queries.

Next, if b = 0, the execution perfectly matches a random ideal world exe-
cution with Sgygnc. Specifically, if b = 0 the result of challenge(t, (Ygummy, olmly,
(Y, m)) is Encpkdummy(t, O|m|). Furthermore, decrypt(t,c, ) = Decsk;(t, c), that is, all
points in which A intervenes in the UC execution, the execution is identical for
b=0.

Finally, we will argue that if b = 1, the statistical distance between the
simulated UC execution and the UC execution of FWENC is negligible. Hon-
est parties perform four operations in FWENC: A one-time key-generation,
encryption, decryption, and update. The keys are supplied in kp-fs-CCA, and
sampled from the same distribution as in the protocol. Initially, t is set to 0
for P upon key generation in both the protocol and the simulator. In both
cases, pk is returned, sampled from the Gen algorithm. For encryption, re-
gardless of whether Encrypt or DummyEncrypt is called by the functionality, as
challenge(t, (Ygummy, 0™), (P, m)) = encpk (t, m), the ciphertext will be sampled
from encpkp(t, m), the same distribution used in the protocol. For decryption
queries, if it lies in the past, both the protocol and functionality will return L.
The functionality will, if it supplied the ciphertext itself and the party is the
intended recipient, return the corresponding plaintext. Otherwise it asks the
simulator for decryption, which in turn makes a decrypt query. We note that
by contrast, the protocol will always run Decsk; (t,c). If a decrypt query is made,
we know that - since the ciphertext was not previously challenged (at least not
with the same party and time slot) — the behaviour is identical. Otherwise, we
know by the correctness of the underlying key-evolving encryption scheme that
with overwhelming probability the decryption must return the same plaintext.
For update, ty, is kept the same in the protocol and the simulated execution by
incrementing it. While the secret key is not updated in the simulated execution,
this update serves only to erase information — something the simulator does not

care about. ]

5.2.4 PRFs with Unpredictability Under Malicious Keys

Consider a PRF family {f;}rek such that f,: X — Y for all k € K. The usual PRF

security requires that any PPT distinguisher D with an oracle cannot tell the
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difference between an oracle fi,(-) for a randomly selected k and a truly random
function over X — Y. The definition can be ported to the random oracle setting
where both the function f}, as well as the distinguisher D have access to arandom
oracle H(:). Unpredictability under malicious key generation is an additional
property that, intuitively, suggests the function does not have any “bad keys”
that can eliminate the entropy of the input, a concept introduced in [DGKR18].
In the random oracle model, the property can be expressed as follows: for any
PPT Aand x € X,T € N, the probability of the event Pr[fi(x) < T | x ¢ Qgy]
equals T/2% where A(1%) = k and Qp is the set of queries of A to H.

We will employ the following construction. Let H:{0, 1}* — G be a function
mapping to a cyclic group G generated by g with a compact representation. We
use an elliptic curve group based on the “elligator” curves [BHKL13] that have
the property that a uniform element over G is indistinguishable from a random
k-bit string. We then define f,(m) = H(m)* for k # 0 and we show that it is a PRF
with unpredictability under malicious key generation from X to {0, 1}*. Indeed
observe first that (gk, H(m), H(m)¥)is a DDH triple over the group G. Thus, by the
DDH assumption and the random oracle model, we can substitute all queries to
the PRF by random group elements. Now observe that by the encoding proper-
ties of the curve these elements can be substituted by random strings over {0, 1}*.
Regarding the unpredictability under malicious key generation observe that in
the random oracle model, Pr[H(x)k <T] < Zy<T Pr[H(x)k =y] =T-Pr[H(x) =
yl/k] < T/2¥ in the conditional space x ¢ Qp.

5.2.5 Equivocal Commitments

We make use of a non-interactive equivocal commitment scheme [DGo3], which
is secure in the CRS model assuming hardness of discrete logarithms. For self-
containment we include a high-level description, including some notation used
in our proofs below.

Specifically, we will assume the existence of six algorithms, init.qmm, comm,
deComm, simlnit.omm, simComm, and equiv. init.,mm generates a public key
pk®™ which is given as an argument to comm and deComm and will be part
of the parameterisation of the CRS functionality. In addition to satisfying the
traditional commitment properties of binding, hiding, and correctness, the

scheme also satisfies equivocality. Specifically, simInit.omn provides an equiv-
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ocation key in addition to pk™"™""

. This equivocation key “breaks” the binding
property — simComm can generate a commitment without a message and equiv
can later create a witness matching any message for this commitment. We note
that we do not require additional common properties, such as extraction or
non-malleability, as these are provided by other components of CRYPSINOUS’
design, in particular the NIZK functionality.

We write (cm,r) <« comm(m) to create the commitment cm for message m,
and deComm(cm, m,r) = T if the decommitment to m and r verifies. Likewise,
we write cm < simComm(ek) for simulating a commitment with equivocation
key ek and r < equiv(ek,cm, m) to equivocate, where deComm(cm, m,r) = T. In
all these, we leave the public key pk“®™" implicit, as it is assumed to be globally
known via the CRS.

5.3 The Private Ledger

We next provide the complete description of the privateledger functionality that,
as we prove, is implemented by CRYPSINOUS. Privacy of CRYPSINOUS is cap-
tured by the transactions which are returned from the functionality being blinded
by a function blind. CRYPSINOUS transactions are represented as a tuple of sub-
transactions, denoted tx = (stxp, ..., stxp). Each subtransaction is a pair of recip-
ient ID and message, (id, m), where IDs usually correspond to real-world public
keys. These IDs are generated by the private ledger functionality, allowing it to
show the message on to the party which generated the corresponding ID, or to
the adversary in case no honest party generated it. An exception is the symbol

PUBLIC, which is used to denote subtransactions visible to all parties.

5.3.1 UC Specification

6
DelayLedger

tration (in order to notice disconnections and to exclude these from liveness), all

The private ledger behaves similarly to G , but also tracks party regis-

READ requests are passed through blind. It is additionally parameterised by a

stateful leakage procedure Lkg, which provides the simulator with information

about who wins a simulated leadership election.
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Functionality Gy cdger

6
DelayLedger

(which are divided into addressed subtransactions), a “leakage” function, the output of

GpLedger 18 @a modification of G which supports partially hiding transactions
which is given to the adversary on request. It also supports ID generation, which are
used to address subtransactions. It is parameterised by a mapping S, from parties
to their initial stake.

For computing coin spendability, the mapping of ledger states M retains histor-
ical data, which is accessed through subscript: M, refers to the state of M at the end
of time t. This is used to ensure parties saw a transaction in their ledger state at the

time they spent a coin originating in it.

State variables and initialisation values:

Variable | Description

2 = ¢ | Authoritative ledger state
M = Ap.e | Mapping of parties to ledger states
U =@ | Multiset of unconfirmed transactions
Id = o | Mapping from parties to tag, id pairs

Reg =@ | Tracks registration of parties

Cp = @ | Initial set of party ID, coin ID, and value

When receiving a message MAINTAIN-LEDGER from a party i
send READ to G, and receive the reply ¢
let Reg — Regu (i, t)
if t = 0 then
let coinld <« (GENERATE, COIN)
let € « G u{(coinld, Sy(¥))}
return (coinld, So(¢))
query A with (MAINT, §)
When receiving a message (SUBMIT, tx) from a party }:
send READ to G, and receive the reply ¢
assertt > 0 A (P, t) € Reg
query A with (TRANSACTION, blind 4(H, Id, (L, tx, t,))) and receive the reply
txid,
satisfying (txid, -,) ¢ Z U U, else sampling from {0, 1}*
letU « U u {(txid, tx, t, )}

When receiving a message (GENERATE, tag) from a party y:
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query A with (GENERATE, ), tag) and receive the reply id,
satisfying flyp’: (-, id) € 1d("), else sampling from {0, 1}
let 1d(¢) < Id(¥) U {(tag,id)}
return id
When receiving a message READ from a party :

assert liveness
if p = Athen
send READ to G, and receive the reply ¢
let [kgs « { Lkg(y’, M(¢'),1d, Reg, M, €y, t) |’ € onlinenH }
return (map(blind 4(#, 1d), %), map(blind 4(#, 1d), U), Ikgs)
else
return map(blind({¢}, I1d), M(¥))

return map(proj;, M(¥))
When receiving a message (EXTEND, 2’) from A:

send READ to G, and receive the reply ¢
for txid in ¥’ do

assert Hu, t’, ¢: (txid, u, t,P) e U

letU « U\ {txid, u, t’, ¢}

let X « X | (txid, u,t, )

When receiving a message (ADVANCE, §, ) from A:

if map(proj;, M(¥)) < Z’ < map(proj,, Z) then
let M(p) < take(Z, |Z')).

Helper procedures:

procedure liveness
send READ to G, and receive the reply ¢
ifd(,-,t',) e U:|t—t| > 6 then
return L
elseif H(txid, tx, ', ) € Z: |t —t'| > S A HY’ € H: (txid, tx, t', ) ¢ M(P’) then
return |
else
return T
procedure online
send READ to G, and receive the reply ¢

return{p|pe P,Vt' e N:t —onlineDelay -1 < t' <t = (p,t’) € Reg }
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function blind(P, Id, (, tx, -, -))
lettx’ < ¢
for (pk, m)in tx do
if pk = puBLIC v dP € P: (1D, pk) € Id(i) then
let tx’ « tx" || (pk, m)
else
let tx’ « tx" || (L, |m])
return tx’
function blind 4(#, Id, (txid, tx, t, 1))
lettx’ < ¢
for (pk,m)in tx do
if pk # puBLIC A dPp € H: (1D, pk) € Id(¢) then
let tx’ « tx" || (L, |m])
else

let tx’ < tx" || (pk, m)

return (txid, tx’, t, )

5.3.2 Leakage for Leader-Based Protocols

In our system, we permit the leakage lkg,.,4, which effectively simulates the
protocols leadership election and leaks the winning party. Specifically, for each
time t, the adversary receives a set of parties that won the leadership election.
This set is selected by sampling a random coin for each party, weighted by
their stake using the same algorithm as in Ouroboros Praos [DGKR18]. We
note that while this leakage is protocol-specific, it follows a general principle
of leaking the elected leaders in a protocol. Specifically, honest parties will be
selected by lkg,.,q With the probability of them winning a leadership election
in CRYPSINOUS. This probability is the same as in Ouroboros Genesis, and is
the function ¢y of their stake, where ¢yis the independent aggregation function
described in [DGKR18, BGK*18].

In addition to this, we note Zerocash-style protocols will allow an adaptively

corrupting adversary to compute the serial number of coins it sent to an honest
party after corrupting them. As the serial number is by necessity committing,
the simulator must know when such adversarially sent coins are spent, to ensure

the consistency of the simulation. For this reason, we also leak the points at
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which adversarially sent coins are spent.

To formally capture both of these, defining how coins are distributed in the
ideal world for any given ledger state is required. We capture this through a
function €;4e,, Wwhich takes the ledger state %, the ID mapping id, and the initial
coins € as inputs, returning a triple of spendable coins, spendable coins seen
and owned by honest parties, and transactions spending adversarially created

coins. Formally, the ideal-world semantics are described in Subsection 5.3.3.

Start , . F . .
l.ep " isthe time ep; starts, tfp "*“*is the time

before which the stake for ep; is frozen, and ep(t) is the epoch time t lies in. We

write X< for filter(A(,-,t’): ' < t,%). Then, the leakage is stateful, tracking past

Forthe fullleakage, we assumet

leakages in the variable L - it does not contradict this past leakage, and samples
for each party whether this party won the current slot’s leadership, given its
available stake for this epoch.
procedure Lkg,., (¥, 2, Id, Reg, M, €, t)
let (G, €4/, spends) « Ciye(Z,1d, €y, M)
let epochFreeze « tj;)(i;eeze
let (6,65}, ) « G ge(TecPochFreeze 14 6, M)
if (Y, t) ¢ L then
letv <0
letv, < > yyego V'
for coinld € Id($), (coinld’,v") € €4, n 67 do
if coinld = coinld” thenletv « v + v’
let ay, < v/vy; L(, 1) & PAay)

return (L(y, t), spends)

In a preliminary step of our analysis we also utilise a leakage function leaking
all information, lkg;y. This is effectively the identity function, simply return-
ing the parameters passed to it. With this leakage the private ledger effectively
becomes a “standard” G| ¢qger functionality, as the simulator still receives all in-
formation it would with the standard non-private ledger, with the exception of
the transaction blinding on submission. In our security analysis we will forcibly

disable this, by setting blind 4(;, -, tx) = tx instead.
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5.3.3 Ideal-World Transaction Semantics

We consider ideal-world transactions starting with (PUBLIC, TRANSFER) to be
transfer transactions. While it may appear sufficient to have ideal-world transfers
appear as something like “give 0.05 of Alice’s stake to Bob”, our realisation of
transfers using a Zerocash-like [BCG*14] design introduces some subtleties that
need to be reflected in the ideal world. Specifically, we will require parties to
specify which coins they are attempting to spend. Specifically, as in Zerocash,
two coins are burned and two coins created, in any transfer. As a special case, as
our protocol has no other minting functionality, we allow a zero-value coin to be
burned in place of the second coin. Formally, the transactions have the follow-
ing form: ((PUBLIC, TRANSFER), (pk,, ¢4), (pk,, €1, €2, €3)), where ¢; are ID/value
pairs. This can be interpreted as “transfer the coins ¢; and ¢y to coins ¢3 and
cy.” It is worth noting that c3, while being a newly created coin, is not included
in the component addressed to pk,. It should be seen as a means of returning
“change” from a transaction, corresponding to its real-world usage of Bitcoin
and Zerocash transactions and should therefore also be addressed to the sending
party. Coins are triples of an owner ID, a coin ID, and its value. Owner IDs must
originate from the ledgers GENERATE interface (with the tag cOIN), otherwise
they are treated as invalid. Coin IDs are arbitrary (within {0, 1}*) and are used to
disambiguate coins with the same owner ID and value. Should a coin ID, owner

ID, and value be reused, the coin it would create is ignored.

The function €4, is defined as follows:
function Gy, (2, Id, €y, M)

letC < G,
letCpent < @
// G4 represents coins honest parties see.
let €5, < { (idCoin,v) | (idCoin,v) € €y, 3 € H:(coIN, idCoin) € I1d(P) }
// Map coins to the transaction it was created in.
let coinTx « @
for c € €y do let coinTx(c) « GENESIS
// Adversarial coin IDs.
letids 4 < @
// spends lists when adversarial coin IDs were spent.

let spends < @
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for (txid, tx, t, ) in X do
if ((PUBLIC, TRANSFER),(id,, ¢,), (idg, €1, €y, €3)) « tx then
Vie{r,1,2,3}:1et (ownld;, coinld;, v;) « ¢;
let senderlds < {(coIN, ownld;), (COIN, ownld,)}
if {c;,c,} ¢ C U {(L,0)} then continue
if {coinld{, coinld,, coinlds, coinld,} ¢ {0, 1} then continue
if p € H A (1D, idy) € Id() then let sender — b
else if ) € A then letsender — A
else continue
if sender = A A Hp € H:senderlds n (1d() \ {(coIN, 1)}) # @ then continue
if sender # A A senderlds ¢ Id(sender) U {(CcOIN, 1)} then continue
if sender # A A (COIN, ownldz) ¢ Id(sender) then continue
if sender # A A{coinTx(cy), coinTx(cy)} ¢ M(P) U{GENESIS} then continue
if v, + v5 # v| + v, then continue
let Copent — Cspent U {c1,62}; 6 « Cu{cs, ¢} Copent
if sender = A then letids 4 « ids 4 U {coinld,}
fori e {1,2} where coinld; € ids 4 do
let spends < spends u (txid, i)
let coinTx(c3) « txid; coinTx(c,) « txid
if Y € H:{(coIN, ownlds), (1D, id,)} < Id() then
let €y « €y U{cs}
if 4 € H:{(coIN, ownld,), (1D, id,)} < Id() then
let€Cy <« €y uic,}

let 67{ «— G'H \ Gspent

return (€, €4, spends)

5.4 The CRyPsiNoOUs Protocol

In this section we provide a detailed description of the CRypPsiNous UC pro-
tocol. The protocol has a similar structure as Ouroboros Genesis [BGK*18], but
differs considerably in the leader election and the processing of transactions. As
already discussed, the protocol assumes access to a global random oracle and

clock, and functionalities for network, encryption, and NIZK.
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5.4.1 High-Level Transaction Semantics

Inthereal world, the design looks slightly different than the ideal-world one pre-
sented in Subsection 5.3.3, following the approach of Zerocash[BCG*14]. Specifi-

cally, parties locally maintain, for each coin ¢, nonces, p. and commitment open-
ings, r¢, to their coins. In order to spend a coin, they reveal the deterministically
derived serial number, sn, as well as prove the existence of a valid commitment,
cme, somewhere in a Merkle tree of coin commitments. Like Zerocash, newly
created coins are encrypted with the recipient party’s public key, and the send-
ing party is unable to spend them as it would require the recipient’s private key
to correctly generate the coin’s serial number. The main difference is the design
of addresses, corresponding to the ideal-world IDs. Parties generate a new coin
public/secret key pair when given a GENERATE query, and update their secret
key after spending a coin with it.

To become a leader at a time ¢, parties must prove knowledge of a path in a
local Merkle tree of secret keys sk“°'" | labeled with t. This path is then erased
by the party, to ensure leadership proofs cannot be re-made for past slots. This
Merkle tree is created during key generation, with the coin’s public key being
derived from the Merkle tree’s root, and the time of key generation. Each leafisa
PRF ofthe previous leaf, to reduce storage costs. We employ standard space/time
trade-offs by keeping the top of the tree stored, recomputing parts of the bottom
of the tree as needed. It is parameterised by the number of leaves R, which we
leave as a system parameter, although we note it could also be defined as a per-
user parameter.

A user’s public key is derived from the root of the Merkle tree, root, and the
time it was created, t. It is eligible for leadership so long as there are still paths
in the tree to prove the existence of, after which the coin must be refreshed by
spending it. We stress that this is a rare occurrence, as the assumption of honest
majority relies on coins not only being held by honest parties, but also being
eligible for leadership.

The protocol will take ideal transactions as an input and construct a corre-
sponding Zerocash-style transaction in the real world. This transaction is then
broadcast as usual in a blockchain protocol. On a READ request, the irrelevant
information is not returned and only the information corresponding to the orig-

inal ideal-world transaction is returned back to the requester. In addition to
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transfers, we note that other types of transaction are accepted in the ideal world.
We note that these are not validated, however, making the real-world equivalent
far simpler to construct. Specifically, we encrypt each subtransaction with the
public key of the party it is addressed to. On a READ request, the ciphertexts
that the requesting party can decrypt are decrypted, and all others are replaced
with L.

5.4.2 Protocol Overview

The protocol CRYPSINOUS assumes as hybrids two A-delay networks, fﬁ‘;t and
]—",t\JXet, two non-interactive zero-knowledge functionalities ]-"LQILZEIQD and ]—"Zﬁ’;l?“, a
forward-secure encryption scheme Fgypc, a global clock G|k, @a random oracle
FRro, a non-interactive equivocal commitment protocol, and a CRS used by the
commitment scheme, to supply the commitment public key, f‘énétscomm.

The protocol execution proceeds in discrete time intervals referred to as slots.
As in Ouroboros Genesis, slots correspond directly to rounds given by G jock. In
each slot sl, the parties execute a staking procedure to extend the blockchain. This
proceeds similarly to Ouroboros Genesis, electing leaders to slots, with modifica-
tions to avoid revealing more information about the leader than necessary. We
note that due to network-level attacks, the adversary is able to guess with good
probability which party is the leader. Furthermore, due to serial numbers being
revealed and being committing, the simulator must know when coins whose
serial number the adversary could guess after corruption - specifically those
sent by the adversary itself — were spent. This additional leakage can be avoided
by a paranoid party, by it immediately transferring coins to itself on receipt.
Furthermore, it is only an issue for parties which may be corrupted. In a hypo-
thetical setting where the adversary committed to not corrupting a party, this
party would no longer have leakage of this kind. Similar to Ouroboros Genesis,
time is also divided into larger units, called epochs, with the distribution of stake
considered for leadership purposes being frozen for each epoch.

We specify a concrete transaction system, based on Zerocash [BCG*14]. Par-
ties hold coins with inherent value, and a fixed total value across the system (a
restriction imposed for simplifying the analysis. Adding block rewards would

be a straightforward extension). The Ouroboros Genesis leadership election is

performed on a per-coin basis, with each coin competing separately. If any of
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a party’s coins win the election, the party proceeds to generate a new block, ex-
tending their current chain. The block itself is generated as in Ouroboros Gene-
sis, although the validity of it is proved differently. Specifically, }—r?leEl?D is used
to produce a signature of knowledge of a coin that won the leadership election
during a given slot. This proofis done in a Zerocash style, and involves renewing
the coin in question. Specifically, the Zerocash serial number of the leading coin
is revealed, and a new coin of the same value is minted. We also refer to this
proof, together with its auxiliary information such as the spent serial number
and newly created coin commitment, as a leadership transaction.

We note that Ouroboros Genesis requires the stakeholder distribution to be
frozen to prevent grinding attacks. In order to allow a coin to be used for lead-
ership proofs multiple times in an epoch, we introduce a new resistance mecha-
nism against attacks of this type: The newly generated coin in a leadership trans-
action hasits nonce deterministically derived from the nonce of the old coin. The
leadership test itself utilises only this nonce from the coin as a seed - it follows
that the leadership test for the derived coin is fixed along with the randomness
of the epoch.

Once a block is created, the party broadcasts the new chain, extended with
this block. Furthermore, the party broadcasts the leadership transaction sepa-
rately, in order to ensure the newly created coin will eventually be valid, even if
the consensus does not adopt the broadcast chain.

A chain proposed by any party might be adopted only if it satisfies the follow-
ing two conditions: (1)itis valid according to a well defined validation procedure,
and (2) the block corresponding to each slot has a signature of knowledge from a
coin winning the corresponding slot.

To ensure the second property we need the implicit slot-leader lottery to
provide its winners (slot leaders) with a certificate/proof of slot-leadership. For
this reason, we implement the slot-leader election as follows: Each party ¢
checks, for each of their coins ¢, whether or not it is a slot leader, by locally
evaluating a maliciously-unpredictable pseudo-random function, as described

in Subsection 5.2.4, with entropy supplied by the epoch randomness 7,,, by

being evaluated at the slot index sl and 7, seeded with the “winning coin’s
secret key” root, | pc. The generation of 1, is similar to Ouroboros Genesis - it is
initially supplied through the CRS, then for subsequent epochs, it is sampled in

a maliciously-unpredictable way from “randomness contributions” p provided
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by slot leaders over the course of the previous epoch.

Specifically, we will use the MUPRF construction of Subsection 5.2.4, for a

given group G. If the MUPRF output y is below a certain threshold T, - which
depends on c’s stake — then  is an eligible slot leader; furthermore, he can gen-
erate a signature of knowledge of a valid coin which satisfies these conditions.

In particular, each new block broadcast by a slot leader contains a NIZK proof =,

COIN

signing the rest of the block content, with the knowledge of the nonce p, sk¢ g

for the slot sl the leadership transaction is for, proving that the nonce and secret
key correspond to some unspent coin commitment cm.. The leadership transac-
tion also evolves the coin that wins leadership - this is done in order to establish
adaptive security, and is done by updating the coin nonce used: pos = prf‘f(‘)'(l)tc (Pe)-
A new coin, in the same value, with this updated — and, crucially, deterministic
- nonce is created and committed in the transaction. In particular, parties erase
pc and only maintain p.- after the leadership proofis generated.

As in Ouroboros Genesis, it is possible for multiple parties, or no party to be
a leader of any given slot. Our protocol behaves identically to Genesis in this
regard, and we utilise the same chain selection rule in our protocol.

We next turn to the formal specification of the protocol CRYPSINOUS. We
follow closely the modular design of Ouroboros Genesis, beginning with a mas-
ter protocol described below. Most of the subcomponents will be introduced
throughout the rest of this section, however the details of transaction processing
is omitted. Formally this is done through the FETCH-INFORMATION protocol,
which fetches transactions and chains from the network, and updates the local

ledger state accordingly.

Protocol CRYPSINOUS
The CRYPSINOUS protocol is divided into several sub-protocols. For simplicity,

where these use the same state variable names, these variables are considered
shared.

State variables and initialisation values:

Variable ‘ Description

Ctee =@ | Set of unbound secret keys

pk® = L | Encryption public key

When receiving a message MAINTAIN-LEDGER from a party

run LEDGER-MAINTENANCE
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When receiving a message (SUBMIT, tx) from a party }:

if tx = ((PUBLIC, TRANSFER), (-, -), (pk™™, -, -,-)) then
return SUBMIT-XFER(tx)
else

return SUBMIT-GENERIC(tx)

When receiving a message (GENERATE, tag) from a party }:

if tag = cOIN then
send READ to G, and receive the reply ¢
let sktCOIN < {0, l}er"f
foriin {t+1,...,t+ R}do
let skt +i prf’;‘e’;:om(l)

let rootskCOIN <« merkleRoot ({SktCOIN, . Sk;(});N})
COIN £
let pk < prf’ oot conm ®
let Gfree « Gfree U {I’OOtskcom}
return pk“°'"
else if tag = 1D A pk™™ = L then

send KEYGEN to F, . and receive the reply pk

enc

let pk «— pk
return pk
else

returnr < {0, 1}¥
When receiving a message READ from a party :

return READ-STATE

5.4.3 Real-World Transactions

Before giving further parts of the formal specification we introduce some nec-
essary terminology and notation. Each party i stores a local blockchain C - ¢’s
local view of the blockchain. Such a local blockchain is a sequence of blocks B;
(i > 0) where each B € C has the following format: B = (txjeaq, St); where txje,q =
(LEAD, sf)xref, StXproof) and stxproof = (cMer,sne, ep, sl,p, h, ptr, 7). Here, st is the
encoded data of this block, h is the hash of the same data, sl and ep are the slot
COIN .

[ ] vellper)is

the commitment of the newly-created coin, and sn; = prfigotcom(pc) is the serial
sk

and epoch the block is for, respectively, (cm¢, rer) = comm(pk

number of the coin ¢, which is revealed to demonstrate the coin has not been
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spent. We definep = ySksCIOIN, where p is Fro evaluated at NONCE | g, || sI; p is the
randomness contribution to the next epoch’s randomness, ptr is the hash of the
previous block, and is a NIZK proof of the statement LEAD, defined below. The
component stx,¢ consists of a (typically empty) vector of reference leadership
transactions. These are processed before the leadership transaction itself is pro-
cessed and serve to allow successive leadership proofs with the same coin, even

when the selected chain switches.

Definition of LEAD. Atuple (x,w)isin R g,p ifand only if all of the following
hold:

« x = (cmg,, snc,;, 1, 8L, p, h, ptr, py, iy, root)

w = (path root LCOIN, pathskcom, ¢ Pcyr CMeyy Tey, YV, TCZ)
COIN k

pk = fp ( c)

root ,COIN
vl
° = prffoot kCOIN (pcl
. COIN
Vie{l,2}: deComm(cmci,pk Ivipe,re)=T

path is a valid Merkle tree path to cm, in a tree with root root.

» path o is a valid path to a leaf at position sl — t; in a tree with root

roots COIN,

* Sncl = rOOt ,COIN (pcl
root, coin || Pc rOOtSkCOIN | pe
C

Y==K, pEH,
«y< ord(G)cbj(v)

Note that x of LEAD contains values si, h, ptr that seemingly nothing is proven
about. As the NIZK is non-malleable, this makes them effectively part of a sig-

nature of knowledge message.

Kinds of transactions. CRYPSINOUS handles three kinds of transactions:
Leadership transactions, such as the above tx.,q, transfer transactions tx,f.,, and
general-purpose transactions. Each of these is handled separately. The transfer
transactions and general-purpose transactions correspond directly to ideal-
world transactions with the same behaviour. Leadership transactions by con-
trast exist only in the real world.

General-purpose transactions in the ideal world consist of a vector of sub-
transactions, addressed either to everyone (PUBLIC), or to a specific party. The

corresponding real-world transaction is a vector of the same subtransactions,
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which are either directly the content of the ideal world transaction, in the case of
atransaction addressed to PUBLIC, or an encryption of the content using Frygnc,
to the party specified as the recipient. Upon reading the state, parties attempt to
decrypt ciphertexts and, failing that, replace it with L. To disambiguate transac-
tions, we prefix generic transactions with the label GENERIC.

The implementation of transfer transactions is more involved, as we not only
want to guarantee their privacy, but also their validity. To achieve this, we re-
place transaction which fall into the permissible ideal-world format — which we

ideal

recall, is tx °% = ((PUBLIC, TRANSFER), (pk,, (id4, v4)), (pkq, (id1, v1), (idp, v2),

(id3, v3))) — with a cryptographic construction hiding the respective information.

real
xfer

where stxproof = ({cmCS, cmc4} ,{sncl, anZ} ,t,root, ), ¢, is a Fgygnc-encryption

We define a real transfer transaction to be: tx = (TRANSFER, stXprq0f, Cr),
for the slot the transaction was submitted on, and stx,cpt = (Pes;Tess Ves) 10 pk,.
Similar to leadership transactions, (cm,, 7,) = comm(pkgl?sm I't] ve, || pey) and
(eme,,7e,) = comm(pkgl?rIN I €1l ve, | pc,); sne, and sn, are revealed to spend
the coins c¢; and c;, respectively, and m proves the statement XFER, defined
below, specifically proving the existence of cm¢, and cm,, in the Merkle tree of
coin commitments with the root root, as well as various consistency properties.
The use of Fgygnc implies that parties will not be able to decrypt ciphertexts
addressed to them indefinitely, however they are still required to respond
with the corresponding ideal-world information to READ requests. As a result,
when a transfer transaction is first seen and decrypted, the corresponding ideal
world transaction is locally stored. Furthermore, parties maintain locally the

information needed to spend coins they own - specifically (pksom, PerTer Ve)-

Definition of XFER. A tuple (x,w)isin Ryggg ifand only if all of the following
hold:

.« X = ({cmCZ, cmc4} . {sncl, anZ} ,t, root)
COIN _,COIN

e w = (rootsksfm, pathskgfm, l’OOtsks;IN, pathskszom, kaS , pkc4 , (Cmcl 1Peys
rcl y V1, pathl)) (Cmczrpczy r(127 v, pach)r (p(:37 rC3r V3)) (Pc4; rC47 V4))
. .3 COIN _ pk
- Vie{l, 2}.pkci = prfrOOtSkgpm(l)
(ifi = 2, v = 0, this check may be skipped)

COIN

Viell,..., 4}:deComm(cmci,pkcl_ Ivill pe;pre) =T

(if vo = 0, this check may be skipped fori = 2)

* V1 +Vp) =V3+Vy
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- path; is a valid path to cm, in a tree with root root.
« path; is a valid path to cm, in a tree with root root,

zdrv
orvy = 0and sn¢, = prf;gy o ©c,)-

« path con is a valid path to a leaf at position t in root SO forie{l,2}.

Vi e{l 2}:sng, = prfroot com(pc
(or, if vy = 0, this check may be skipped fori = 2)

5.4.4 Interacting with the Ledger

At the core of the CRYPSINOUS protocol is the process that allows parties to
maintain the ledger. There are three types of processes that are triggered by
three different commands provided that the party is already registered to all its

local and global functionalities.

« The command (SUBMIT, tx) is used for sending a new transaction to the

real

ledger. The party maps tx to a corresponding tx'“*, which is stored in the

party’s local transaction buffer, and is multicast to the network.

« The command GENERATE is used for creating a new address, which can be

used by other parties to transfer funds to this current party.

« The command READ is used for the environment to ask for a read of the
-[k
current ledger state. On receipt, the party maps each transaction st[ to its

ideal-world equivalent, and returns this ideal-world chain.

« The command MAINTAIN-LEDGER triggers the main ledger update. A
party receiving this command first fetches from its network all informa-
tion relevant for the current round, then it uses the received information
toupdateitslocalinfo —i.e., asks the clock for the current time ¢, updates its
epoch counter ep, its slot counter s/, and its (local view of) stake distribution
parameters, accordingly; finally it invokes the staking procedure unless
it has already done so in the current round. If this is the first time that
the party processes a MAINTAIN-LEDGER message then before doing
anything else, the party invokes an initialisation protocol to receive the
initial information it needs to start executing the protocol - in particular

the genesis block.
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The relevant sub-processes involved in handling these queries are detailed in
the following sections. After introducing each of these basic ingredients, we
conclude with a technical overview of the main ledger maintenance protocol
LEDGER-MAINTENANCE, a detailed specification of the protocol READ-STATE
for answering requests to read the ledger’s state, and a detailed specification of

the protocols SUBMIT-XFER and SUBMIT-GENERIC.

5.4.4.1 Party Initialisation

A party that has been registered with all its resources and setups becomes op-
erational by invoking the initialisation protocol CRYPSINOUS-INIT upon pro-
cessing its first command. As a first step the party receives its encryption key
from Fryenc- It receives any initial stake it may have as a single coin from F ;.
Subsequently, protocol CRYPSINOUS-INIT proceeds as in Ouroboros Genesis,
although it does not register any keys. This is managed instead by the ledgers

GENERATE interface. Formally, the initialisation procedure is specified as:

Protocol CRYPSINOUS-INIT
The CRYPSINOUS initialisation procedure claims any initial stake and retrieves the

genesis block.

State variables and initialisation values:

Variable | Description

Ctee = @ | Set of unbound secret keys
€ =g | Set of spendable coins
C = 1L | The currently selected chain

claimed = L | Ifinitial funds have been claimed

Prior to any other interaction, if C = L:

send READ to G, and receive the reply ¢

letep < ep(t)

if t = 0 Ainit = 1 then

COIN,pC’ rc’ VC), SkCOIN)
letC ~Cu {(pksom,pc, Te, vc)} , Chree «— Chree U {skcom}

letinit « T

elseif t > O then

send CLAIM to F,;; and receive the reply ((pk

send GENESIS to F,;; and receive the reply ¢

letC <« ®
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5.4.4.2 The Staking Procedure

The next part of the ledger-maintenance protocol is the staking procedure which
is used for the slot leader to compute and send the next block. A party ¢ is an
eligible slot leader for a particular slot sl in an epoch ep if one of §’s coins, c,
is both eligible for leadership in ep, and a PRF-value depending on sl and the

. COIN
coin nonce p. and secret key sk;

is smaller than a threshold value T,. We
discuss when a coin is considered eligible for leadership and how its threshold
is determined. A coin is eligible for leadership depending on when, and how, its
corresponding commitment entered the chain. Specifically, if its corresponding
commitment was created in a transfer transaction, it is valid in a similar way as
transactions are considered for leadership in an epoch: If it is sufficiently old
by the time the epoch starts, it is taken as part of the snapshot fixing the stake
distribution for ep. Commitments originating from leadership transactions are
always immediately eligible for leadership, as their nonce and secret key are
deterministically derived. It is possible, although unusual, for a coin created in a
leadership transaction in a fork to be used eligible for leadership in an unrelated
fork of the chain. In this case, the coin is still eligible, as the originating leadership
transaction will be added to stx,ef.

Each coin ¢’s value v, induces a relative stake for the coin, «.. We use the
same function ¢g(a.) to determine the probability of a coin winning the leader-
ship election, with the corresponding threshold, T, = ord(G)qbf(ac). Due to the
independent aggregation property of ¢y, the probability of a party winning the
leadership election in CRYPSINOUS and in Genesis is initially the same, regard-
less of how stake is split between coins. One key difference, however, is that
when a coin is transferred in CRYPSINOUS, it is no longer eligible for leadership. As
a direct consequence, any stake transferred during an epoch must be considered
adversarial for the given epoch.

The staking procedure evaluates two distinct MUPRFs for each eligible coin.
If the output of one of these is under the target for some coin, the party is a
slot leader and continues to create a new block B from their current transaction
buffer. Aside of the main contents, the party assembles a leadership transaction
and assigns it to the block. This transaction includes a NIZK proof of leader-
ship - specifically of the statement LEAD — and acts as a signature of knowledge

over the block content, as well as the pointer to the previous block. An updated
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blockchain C containing the new block B is finally broadcast over the network.

Formally, the staking procedure is specified as:

Protocol STAKING-PROCEDURE
The CrRYPSINOUS staking procedure attempts to extend the current chain, and

broadcasts any successful new blocks created. The group used in Subsection 5.2.4

is denoted G, and a mapping from random oracle outputs to corresponding group
elements is assumed, also denoted by G(x). Further, a collision-resistant hash
function H is used to link blocks, and a family of pseudo-random functions labelled
prf, when operating on domain a with key b is used to deterministically derive

random values.

State variables and initialisation values:

Variable | Description

Ctee = @ | Set of unbound secret keys
C =2 | Set of spendable coins
C = 1 | The currently selected chain
txBuf = ¢ | Buffer of transactions to include

donelLead = 0 | The lead time leadership was tested

On invocation:

send READ to G, and receive the reply ¢
if donelLead =t v C = L then return

let donelead « t

for (kaOIN,pc, re,ve) € Cdo

if cis not eligible for leadership then continue

send (QUERY, NONCE | 1,y || 1) to Fro and receive the reply u,
send (QUERY, LEAD | 1,y || t) to Frp and receive the reply p,

. COIN . . COIN
retrievesk.; ,root.,and t.in .. corresponding to pk,

letp < G(u,) ;¥ < G(uy)
if y < ord(G) - p{v.) then
letB < ¢

rOOtskgOIN | pe mOtskSOlN | pe

for tx € txBuf do
if validate(tx, C | B) then
let B« B | tx
let txBuf « ¢
let ptr — H(C); h < H(B)
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|
let pC' - prff(\)lotskcom (pC)’ SNe < prffSOtSkcom (pc)
¢ COIN N
Ivell pe)

let stx,.; be the ordered leadership transactions made by ¢ notin C

let (cmy, 1) = comm(pk

let (root, path) be the root of C'** in C, after applying all transactions in
stx,. and the path to cm, in this tree

let path, be the path to sle(c:;)IN inatreein Gy,

letx = (cmc, sn¢, Nep, SL, p, h, ptr, Wy, iy, root)

let w = (path, root o, pathg, te, pe, cme, r'e, Ve, 'er)

send (PROVE, x, w) to ]-'Zﬁ;lgn and receive the reply 7

let tX]ead = (LEAD; S{)Xl‘efr (Cmc') she, ep, SZ: P, hr ptr: ”))

letC « C | (tXcad, B)

letC ~ ((5 \ {(pksom,pc, re, vc)}) U {(kaOIN,pc,, e, vc)}

send (BCAST, tXje,q) to F,

send (BCAST, C) to FP*

Net
break

From the staking procedure we construct the ledger maintenance protocol,
which in addition to attempting to stake on each block, catalogues received
transactions, ensures information and forward-security is up-to-date, as well

as claiming initial stake.

Protocol LEDGER-MAINTENANCE
The ledger maintenance protocol LEDGER-MAINTENANCE organises received
transactions and chains, claims initial stake and the genesis block, and participates

in staking.

State variables and initialisation values:

Variable | Description

Ceng =2 | Asetofnot-yet spendable coins
log = ¢ | Alogofreceived transaction information
C = 1L | The currently selected chain
txBuf = ¢ | Buffer of transactions to include

trvenc = 0 | The “time” of Fryene

On invocation:

send READ to G, and receive the reply ¢
ift=0vC = L then

run CRYPSINOUS-INIT
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if t = 0 then return

run newTx < FETCH-INFORMATION
let txBuf < txBuf | newTx

send (BCAST,C) to FX,
for tx in txBuf do

send (BCAST, tx) to F\),

for tx in newTx do
if tx = (TRANSFER, 5tXy50f = (€M, -, ", *), Ccpt) then
send (DECRYPT, () t0 Fryenc and receive the reply m

COIN

if m = (OK, (pk,  ,t,pe,T¢, coinldg, ve)) A cm, € cms then

if fisk;°" € G, corresponding to pk;°"" then continue

let (gCnd « (SCnd U {(pk(C:OINIPC7 rCI Vc)}

COIN

let log « log | (tx, RECEIVE, (pk, ,coinld.,v.))

elseif tx = (GENERIC, ¢y, ..., c,) then
forcin{cy,...,c,} do
if c = (puBLIC, m) then continue
elseif c = (PRIVATE, ') then
send (DECRYPT, ¢’) to Fr, e, and receive the reply m

if m = (ok, m’) then let log < log | (PLAINTEXT,c’,m’)

for (skc°'™,t,) € 6. do
COIN

for dc = (pk,
let Gcnd - Gcnd \ {C} ) C<Cu {C}

,...) € 6,4 whose transaction is in C'* do

COIN
Vt' < terasesk;, from Cg.,

while trwene < t— kdo
send UPDATE to Fry g

let tfwenc « tfwenc +1

run STAKING-PROCEDURE

5.4.4.3 Submitting Transactions

Transactions submitted to the CRYPSINOUS protocol are, as previously dis-
cussed, first mapped to corresponding real-world transactions, which then get
handled as standard ledger transactions by being broadcast over a multicast
network, and being assembled into blocks. Specifically, transfer transactions

are mapped to Zerocash-like transactions, where only the first coin received
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to a given address is spent, and other transactions are mapped into encrypted

components. The submitting procedure for transfer transactions is:

Protocol SUBMIT-XFER(tX,fer)
The submission procedure for transfer transactions builds a working zero-knowl-
edge proof to authenticate the transfer. If this cannot be done, it falls back to sub-

mitting the transaction as “generic”.

State variables and initialisation values:

Variable | Description

€ =g | Set of spendable coins
log = ¢ | Alogofreceived transaction information

C =1 | The currently selected chain

On invocation:

send READ to G, and receive the reply ¢
let  ((pk;™, (pk, ", coinldy, vy)), (pke™, Pk, coinldy, v1), (pk, ", coinldy, vy),

C

(pk;oINy COinIdZVS))) - tXxfer

if pki™ # pk™ v vy + vy £ vg vy v pkeo™

C3

¢ Gfree then

return SUBMIT-GENERIC(tX,f,)

let ¢; and c, be the first coins received at (pkslom, coinld;) and (pkfzom, coinld,),
respectively, according to log

let c;, c; € € be the (potentially) evolved variant of ¢, c;.

ensure c;, ¢, values are v;, v, and their transactions are in Clf

(ifvy =0n pkszOIN = 1,ignore cy)
if the above failed then

return SUBMIT-GENERIC(tXe,)

OIN

retrieve (pkg 1Peir Te;r Ve,) from € fori € {1, 2}

retrieve sk:,OIN from Gy, fori e {1,2}
let rootsksiom, path S be the root and path to time t's sub-key in sk:.OIN
if pkszoIN = 1 Avy = 0then
zdrv
let SncZ «— prfrootskz:;)m (pcl)
let I’OOtsk;t;)IN, pathskggéN’pcz’ Teys path, « L
else

SN
let sncz - prfl’ootskcom (pcz)
<2

let p., < coinlds;p., < coinldy

let (cmg,, r¢,) < Comm(PkZOIN I vi || pe,) fori € {3,4}
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letsng,  prit, . (0c,)
let root be the traI;sfer Merkle tree root in ClF

let path, path, be paths to cm, , cmc, in root, if still undefined
if cm¢, or cm, were not found in root then

return SUBMIT-GENERIC(tXyf,)

letx « ({cm,, cm,}, {sncl, anZ} ,t, root)
COIN COIN

letw « (rootskglom, pathskﬁ?f”’ rOOtskEZO‘N’ pathskggznv,pkc3 ,pkc4 ,(CMe , Pe;sTe,, V1,

Pathl), (Cmczypczv rC27 V2, Pathz), (Pc;: rc;v V3), (pc47 rc4v V4))
R .
send (PROVE, x, w) to F 5" and receive the reply 7
enc COIN .

send (ENCRYPT, pk, ¢, (pkc4 st Pe, s Te,, coinldy, v, )) to Fryenc and

receive the reply ¢,
let stx, o0 < ({cmc3, cmc4} , {sncl, anZ}, root, t, )
let tx% — (TRANSFER, StX 00, Crept)

real enc COIN . COIN .
<forr SEND, (pkg ,(pkc1 ,comldl,vl),(pka , coinldy, vy),

(pke. ™, coinld3vs)))}
erasec;5: € « G\ {(pke, e, Tey V) | 1 € {1, 21
let (gcnd - Gcnd U {(pk;oINrPCy rc;v"c; )}

real X
send (BCAST, tx[22) to FU

let log < log U {(tx

real

return tx
xfer

Submitting “generic” transactions is comparatively straightforward:

Protocol SUBMIT-GENERIC(tx)

The generic transaction submission protocol encrypts non-public transactions us-

ing the recipient’s public key.

On invocation:

send READ to G, and receive the reply ¢
let tx™*' — GENERIC
for stxin txdo
if stx = (PuBLIC, m) then
let tx"? — tx™ | stx
else if stx = (pk; ", m) then
send (ENCRYPT, pk’ , t, m) to F, . and receive the reply c

let tx « tx™ | (PRIVATE, c)

send (BCAST, tx") to X,

return tx"?
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5.4.4.4 Reading the State

Thelast command related to the interaction with the ledgeris the read command
READ that is used to read the current contents of the state. Note that in the ideal
world, the result of issuing such a command is for the ledger to output a (long
enough prefix) of the ideal-world state of the ledger, with parts the party does
not have access to being hidden. As the format of real-world transactions differs,
we need to invert the mapping from real transactions to the corresponding ideal
transactions. For generic transactions, this is a little tricky, as the use of forward-
secure encryption implies that the information associated with the transaction
in the ideal world is erased in the real world. To circumvent this, parties main-
tain a log, recording information necessary to reconstruct the ideal-world rep-

resentation of the transaction. The reconstruction process is fully specified as:

Protocol READ-STATE
The read protocol retrieves all information a party can see on their ledger’s current
chain, without the last k blocks.

State variables and initialisation values:

Variable ‘ Description

log = ¢ | Alogofreceived transaction information

C = L | The currently selected chain

On invocation:

run FETCH-INFORMATION
send READ to G, and receive the reply ¢
let Zideal s
for tx in C* do
if tx = (TRANSFER, 5tX,o0f, StXcpt) then
let stx png < StXpepr < L
if dstx’: (tx, SEND, stx”) € log then

let stxcpng < (P, stx”)

if dstx’: (tx, RECEIVE, stx’) € log then
let stx,cp < (P, stx”)

let 32l  3ideal | ((pUBLIC, TRANSFER), StX,cpt, StXchng)
elseif tx = (GENERIC, stxy, ..., stx,) then

let tx'9 ¢
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for stxin tx do
if stx = (T, m) then let tx'%®? — tx'2 | (T m)
else if stx = (1, ¢) then
if dm: (PLAINTEXT, ¢, m) € log then let tx'®® — x4 || (1, m)

else let txidea!  txideal | |

let Zideal - zideal ” (txideal)

return Ydeal

5.4.5 Transaction Validity

Transaction validity again differs in the real and ideal world, as the transactions
themselves differ. The real-world transaction semantics (which formally runs
in FETCH-INFORMATION) maintain three sets, the sets of coin commitments
cspend clead for spending and leadership, respectively, initialised to the initial
set of coin commitments Cy, and the set of spent serial numbers $, initialised to
@. A chain is processed transaction by transaction. Leadership transactions and
transfer transactions are both validated, other transactions are ignored. A lead-
ership transaction is valid if and only if all leadership transactions in stx,ef are
valid adopted leadership transactions and the NIZK proofis valid with respect to
the Merkle root of the current tree, with these adopted transactions inserted, as
well as 1.y, and it has a greater slot number than the previous slot. Furthermore,
the serial number sn revealed in it must not be in the current $. The root used
must either be the root of the predecessor block, or the root of a past leadership
transaction’s Merkle tree, with only this transactions commitment added to the
tree. Finally, ptr must be the hash of the previous block and h must be the hash
of the remaining transactions. After it is successfully validated, § <« S u {sn},
Clead _ lead (j fem1 gspend  gspend | ey,

Transfer transactions are likewise validated by checking the NIZK proof with
respect to the public transaction component. Furthermore, it is checked that root
was at some point the root of CsPend and that {sny,sny} N S = @. If s0, the effect
is updating $ < S u {sny,sny} and cspend  ¢spend G fem, emis). Finally, at the
start of an epoch, old enough spending coins are allowed for leadership proofs:
Clead  lead Cifznd, where C:EZ”d is the set of spending coin commitments k
slots before the start of the epoch.

If a leadership transaction is included normally in a block, or included

Chapter 5. Privacy in Proof-of-Stake 194



in stxef (that is, it is not this block’s leadership transaction), it is considered
an adopted leadership transaction. The validity criteria for these are different,
requiring only that the proof is valid, the serial numbers are unspent, and
the Merkle root was a valid root for €'®2 at some point. The effects of the
transaction remain the same, although is is no longer the leader of a block. A
block’s transactions are validated prior to the leadership transaction, as this may
depend on adopted leadership transactions. The Merkle tree root of C'*2 of any
adopted leadership transactions chain’s is saved and preserved. These are valid
for other leadership transactions in the same epoch. Specifically, they are also

valid for the leadership transaction of the block it is contained in.

5.5 Security Analysis

We split our security analysis of CRYPSINOUS into two parts: In a first part, we
showthat CRYPSINOUS realises a “non-private” version of G| c4ger — specifically,
we show that it realises G| cgger With Ikg set to the identity function Ikg;y and
blind 4(:, -, tx) overridden to return tx; that is, the ledger leaks its entire content to
the simulator, described in detail during the proof. We argue that the simulator
S1 can simulate any real-world attacks on CRYPSINOUS against a non-private
GpLedger- This first part already proves that our protocol satisfies all the prop-
erties of the public ledger, including chain quality, common prefix, and chain
growth. In a second part, we argue that in addition to the above, it also satisfies
privacy. This is done by instantiating lkg to lkg,.,4, in which only the leaders of a
given slot are leaked. For this case we provide a simulator S, which is able, with
access only to this restricted leakage to simulate the outputs of 51, to generate a

view which is indistinguishable from S;.

5.5.1 Stage 1: Public Proof-of-Stake

. PoS R R A
Theorem 5.2. CRYPSINOUS, in the ()/\/H‘(’m,v‘aj(]—"NILZEkAD gk FrwEncs Fet)s FROS

Gelock)-hybrid world, UC-emulates G| edger With Ikg = lkg;q and blind 4(:, -, tx) overrid-

den to return tx, under the DDH assumption.3

3We will be working under this assumption throughout the rest of the security analysis, and
will typically leave it implicit. We will also be assuming the binding (under discrete log, which
is implied by DDH) and hiding of our commitments, and the pseudo-randomness of our PRFs
implicitly.
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Simulator S;

For simplicity, we assume that A does not violate the requirements of W

PoS :
HonMaj* Ifit

does, simulation is simpler, as the adversary relinquishes the ability to make lead-

ership proofs.

State variables and initialisation values:

Variable | Description

Finit | Simulated CRYPSINOUS initialisation

7—\,’LEAD 1 1
Fuze® | Simulated leadership NIZK

7QXFER 1
‘FNIZK Simulated transfer NIZK

fﬁ‘et Simulated transaction network

fgcet Simulated chain network
Frwene | Simulated forward secure encryption
ficnétg"mm = ¢ | Simulated commitment CRS
ek = 1L | Equivocation key
¢y | Simulated protocol for each party ¢ € P
doneMaint = @ | Party, time pairs of when maintenance was done
Ciast = L | The current “best” chain
M =@ | Mapping from ciphertexts to messages

pks =@ | Mapping from parties to their public keys

txs = @ | Set of all transactions ever submitted
On initialisation:
let (Finemm.s, ek) €= siminiteomm
When receiving a message (MAINT, ) from G| cqger’
send READ to G, and receive the reply ¢
if (, t) ¢ doneMaint then
run ¢y.LEDGER-MAINTENANCE
let doneMaint < doneMaint u (i, t)

When receiving a message (TRANSACTION, -, tx, t, ) from GpLedger:

simulate sending (SUBMIT, tx) to ¢, and receive the reply txid
let txs « txs U {txid}

return txid

When receiving a message (GENERATE, i, tag) from G| cqger:

simulate sending (GENERATE, tag) to ¢, and receive the reply id

if tag = ID A Y ¢ pks then
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let pks(y) « id
return id
When receiving a message CLAIM from a corrupted party  for F.i::
send MAINTAIN-LEDGER t0 G, c4er On behalf of ¢
When receiving a message (BCAST, C) from a party i for f'rffet:
if C,;; = L then

send GENESIS to F,;; and receive the reply ¢
letCpy <« ©

if Cp, < CI* then
let 3’ « 2(C*\ Cpq)

send (EXTEND, 2') to Gy cqger

When receiving a message (TARGET, , C) from A for F1¢ :

send (ADVANCE, , 2(C/%)) to G| cqger

Forward all other queries to their simulated functionalities.

Helper procedures:

function 2(C)
letY « ¢
for BinC do
for txin Bdo
run ensureSubmitted(Z’, tx)
let Y « ¥ | tx
return 3’
function ensureSubmitted(2, tx)
if tx € txs then
return
lettx’ « ¢
if Htx”:tx = (GENERIC, tx’) then
lettx’ < ¢
let tx’ « (PUBLIC, GENERIC)
forcintx’ do
if dm: ¢ = (PuBLIC, m) then
lettx’ < tx" | ¢
else

let tx” < tx" || decrypt(c)
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elseif d...:tx = (TRANSFER, ({cm,, cm,}, {sn , sne,}, root, t, ), ¢,,) then
letx < ({cm,, ecmg,}, {sn,, sne,}, ¢, root)
simulate sending (VERIFY, x, ) to ]-",ZEZK and receive the reply b
if -b v J¥’ < 3:root(2’) = root then
continue
letw F,ZﬁZK.W((x, )
determine the corresponding ideal-world coins from w
ensure the change is received by the adversary#
if the ciphertext cannot be decrypted and understood correctly by

the recipient then
modify the recipient to be a new adversarial ID

let tx” be the corresponding ideal-world transfer

send (SUBMIT, tx) t0 G| cger

answer the following TRANSACTION query with tx

function decrypt(c)
if c € M then return M(c)
else
send READ to G, and receive the reply ¢
forpe H;t' et— A, ..-.tdo
simulate sending (DECRYPT, t/, ¢) to Fr, .. and receive the reply r
if dm:r = (oK, m) then
let M(c) « (pks(), m)

return M(c)

return L

Proof (sketch). The backbone of the proof of Theorem 5.2 is similar to the secu-
rity proof of Ouroboros Genesis [BGK*18] with some surgical modifications; in
particular, in Step I we argue that the usage of NIZKs, nonces, and key-private
forward-secure encryption, can replace the usage of forward secure signatures,
and in Step 2 we argue that the usage of NIZKs and MUPRFs can replace the
usage of VRFs in Genesis. In a nutshell, this allows us to argue in Step 3 that lead-
ership transactions in CRYPSINOUS can be used to replace leadership proofs in
Genesis. This allows us to leverage the security analysis from Ouroboros Gen-

esis [BGK*18] in Step 4 for proving that CRYPSINOUS implements, at the very

4Even if addressed honestly, this is an adversarial transaction, and the honest party will not
see the change.
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least, a non-private version of the ledger.

Transactions submitted to CRYPSINOUS are pre-processed, before being
handled as a Genesis transaction would be and, on reading from the ledger, this
pre-processing is partially inverted. This inversion being only partial is what
will later be used to establish the privacy properties of CRYPSINOUS. In Step 5,
we establish that this pre-processing and post-processing has the same effect
as blinding a transaction in the ideal world, and that the validation predicate
of CRYPSINOUS - which is run only against pre-processed transactions — is
equivalent to its ideal-world counterpart. Finally, in Step 6, we argue that
combined, these properties demonstrate realisation of G| eqger With lkg = lkg;y

and overridden blind 4.

Step1. The security properties guaranteed by F,sig and used in[BGK"18], are
those of forward-secure unforgeability, correctness, and authenticity. A proof
of LEAD gives the former two properties and a notion of authenticity that is dif-
ferent to Frys;s, but sufficient for how it is used in [BGK*18]. Non-malleable
NIZKs, such as the ones used in our construction, can be interpreted as “signing”
their public inputs with the knowledge of a witness [GM17]. In particular, if the
witness itself contains a secret key known only to one party, a NIZK over such
a witness effectively acts as a signature. In CRYPSINOUS, the usage of sk“°™"
in the witness for leadership proof effectively acts as a signature over the rest
ofthe block, providing unforgeability and correctness guarantees. Furthermore,
asthe statement LEAD has the same conditions as a leadership proofin[BGK*18],
the desired authenticity property is also satisfied. This is not sufficient to emu-
late Fysig, however using sksClOIN and p. in the witness rectifies this. As honest
parties update both skSClOIN and p, after the proof, and skfloIN and p. are necessary
to generate a new proof for the same slot, the adversary will be unable to create
leadership proof for past slots. This is effective only so long as skflom and p. can-
not be retrieved from elsewhere. sksClOIN is generated locally by an honest party,
is never communicated by it (except to F, Rizan which guaranteesits secrecy)and

NIZK
is erased by the honest party in the same slot.

Step2. The property of VRF provability is directly captured by the correctness
of NIZKs, and that of uniqueness is directly captured by non-malleability. Pseu-

dorandomness is directly supplied by the security under malicious key genera-
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tion of MUPRFs. Two VRF calls are embedded in the NIZK; the VRF is used to
generate the randomness contribution p, and the VRF is used to check the target.
While in CRYPSINOUS the latter is not publicly revealed, it is still present and
is verified by a verification of the NIZK. The NIZK is not as flexible as the VREF,
in that it cannot be used to generate arbitrary VRF proofs at any time, however
it can still be safely substituted, as the relation is stricter. The NIZK inputs in
Ouroboros CRYPSINOUS depend on the coin’s secret key, while in Ouroboros
Genesis, they depend on the party’s secret key. As Ouroboros Genesis anticipates
parties acting as multiple parties in the protocol, we can simply consider each

CRYPSINOUS coin as one Genesis party.

Step 3. A leadership transaction in CRYPSINOUS can be made only if a coin
passes the same threshold check as in Ouroboros Genesis. Due to the inde-
pendent aggregation property of the threshold function, the probability of
this happening for a party holding a specific value of (honest) stake is equal in
CRYPSINOUS and Genesis. Furthermore, the NIZK ensures the impossibility of
creating a leadership transaction without winning this election in CRYPSINOUS,
while the VRF validation and block validity check enforce the same property
in Genesis. The mechanism of “adopted” leadership transaction ensures this
property is preserved, even by a party selecting a new local chain.

Due to the equivalent output distribution of VRFs and PRFs in Genesis and

CRYPSINOUS, respectively, the randomness contribution p is also equivalent.

Step 4. Given we can replace leadership proofs with leadership transactions
in the G| ¢qger proof of [BGK"18], the rest of the proof can be carried out the same
for CRYPSINOUS. This establishes that, CRyPSINOUS effectively runs an inter-
nal ledger. While the transactions posted to this ledger are not directly those
posted to CRYPSINOUS itself, we will establish their relationship and that this

corresponds directly to the difference between the public and private ledger.

Steps5. Submitted transactions are pre-processed before being sent to the net-
work, and transactions from the network are post-processed on a READ request
in CRYPSINOUS. For brevity, we will refer to the former mapping as fand the
latter as f;l. We define consistency of this mapping to be the following property:
f;l o f = blind({$}) - that is, READ requests return the same alsf;1 of the READ in
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the mapped ledger. Specifically, as the real-world validation predicate already
operates on the mapped transactions, this predicate should behave the same as
the ideal-world predicate over the original transactions.

For generic transactions this is straightforward: subtransactions addressed
to PUBLIC are preserved and not affected by the mapping. Subtransactions ad-
dressed to a party § are encrypted with pk"f,nc in the real world, and each party
attempts to decrypt them on the inverse mapping. Specifically, subtransactions
addressed to any other party will fail to decrypt and be replaced with L, while
subtransactions which are correctly encrypted, will be replaced with (pk,, M),
where M is the originally encrypted plaintext. This matches the behaviour of

blind exactly.

Transfer transactions. This leaves us with the consistency of mappings for
transfer and leadership transactions. In addition to being standard transactions,
transfer transactions induce a stakeholder distribution. They are intrinsically
linked with leadership transactions in the real world, so we will consider these
as well. The ledgers, both real and ideal, can be read as a sequence of transfer
transactions and, in the real world, leadership transactions. We will prove by
induction that validity is equivalentin the real and ideal world, as well as that the
inverse mapping of the real-world transaction is the ideal transaction. First, we
note the induction hypothesis: For every vector of transfer and (in the real world)
leadership transactions in the real and ideal worlds, two sets of valid coins are
induced: a) The set of valid ideal-world coins, where each coin has a party, ID

(which the simulator sets to be the coin’s public key pk¢ "™

) and value, and b)
The set of valid real-world coins, which have the same attributes, as well as an
associated coin secret key sk“°™ anonce p,, and a commitment randomness re.
The induction hypothesis is that these sets are equivalent, that is, the ideal set is
equal to the real set without the secret key, nonce and randomness, and that in
the vector of transactions, the same transfer transactions were considered valid
in both worlds.

As abasecase, thisis guaranteed by F|,,;;, which creates the same distribution
of coinsin the real world as was given in the ideal world, selecting random p. and
re values. In the induction step, we increase the real-world transaction vector by
one transaction. There are four cases, depending on whether the transaction is

honest or adversarial, and whether it is a transfer or leadership transaction. We
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will consider the honest cases first.

Honest leadership. Inthecaseofanhonestleadership transaction, the trans-
actionisvalid in the real world, as honest parties would not post an invalid trans-
action. It spends a coin, and recreates a coin of the same value. This is reflected
by updating the set of real-world coins by replacing p. and, r, with new values

per and re. Trivially, this entails the induction claim.

Honest transfers. In the case of an honest transfer transaction, the ideal
world transaction is valid iff the two spent coins were the first coins received at
an ID owned by the sending party, the transaction is zero-sum and the address
of the “change” coin is also owned by the same party. If these conditions do not
hold, the honest party would ignore the request in the real world. If they do, the
honest party is, by induction hypothesis, guaranteed to know the corresponding
sk; *'™  p. and re-values of the coins that are spent, so it is able to generate a valid
transaction and NIZK proof. Afterwards, in the real and ideal world, the coin
is removed from the set of valid coins, and the newly created coins are not yet
added, but will be added once the transaction has been confirmed. We conclude

the induction hypothesis is maintained in an honest transfer transaction.

Adversarial transactions. To consider adversarial transactions, the simula-
tor does not immediately add them to the buffer. Instead, the simulator locally
stores them and waits until the adversary has them sufficiently deep in the chain
that they must be added to the ideal world state. At this stage, the simulator adds
them to the ideal-world buffer and immediately promotes them to the state. This
allows the simulator to manage conflicting adversarial transactions, as it simply
waits for the adversary itself to resolve the conflict. In particular, transactions
attempting to spend the same coin, in either a leadership or transfer transaction,
will be conflicting, as they would reveal the same serial number. Once an adver-
sarial leadership transaction is confirmed in the same way, the adversary will
control the same updated coins as in the honest case and will be unable to use
the old coins again, as the transaction semantics prevents the reuse of the coins’

serial numbers.

Adversarial transfers. As the simulator waits until it enters the state, we

need only consider sufficiently deep, valid transactions in the real world, and
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ensure the simulator can create a corresponding ideal world transaction. The
real-world transaction will need to spend two valid coins, which can originate
only from corrupted parties. It creates two new coins, addressed to any party, or
potentially no party at all, of the same value. This directly corresponds to a legal
adversarial transaction in the ideal world and, by induction hypothesis, all coins
spent will be unused. The adversary cannot spend honest coins, as it does not
know their secret key, with which to create a NIZK proof, cannot spend coins
multiple times, as this would invalidly reveal the same serial number twice.
Finally, it cannot spend non-existent coins, as it could not provide a Merkle

path witness.

Equivalence. Weconcludethatrealandideal transactionsinduce the same set
of valid coins and are valid in the same cases. The simulator delaying adversarial
transactions in the ideal world is not visible to the environment in any way, as
the buffer is only seen by the simulator itself and by the ideal-world coin compu-
tation (which does not care about the order of adversarial transactions until they
enter the state). The set of coins induces a stakeholder distribution, as required
by the proof of [BGK"18].

Finally, the inverse mapping of parties’ views correspond to theirideal-world
views. Specifically, if a party sees anything in the ideal world, it is the recipient or
sender ofa coin. Inthe former case it needs only to be able to supply kaOIN and v,
intheideal world — provided the coin has not since been spent. If the transaction
was honest, the party will have seen them on decrypting its ciphertext and - if
the coin has not been spent — can be found recorded in log. If the transaction
is dishonest, either the ciphertext still correctly encrypts the coin, or, if it does
not, the ideal transaction would not have been addressed to the honest party, but
to the adversary instead. If the party is the sender, it recorded the sending in log
and returns the contents from there. We conclude that honest parties’ responses

to READ requests in the real and ideal worlds match.

Step 6. The private ledger differs primarily from the standard ledger in that
it a) applies blind to the output of READ requests, b) leaks less information to
the adversary, and c) provides a mechanism for unique ID generation (which
are used internally). Difference a) follows directly from the consistency demon-

strated in Step 5. Furthermore, we are considering an overly permissive leak-
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age predicate, lkg;y, which provides the adversary with the same information
it would receive from the standard ledger satisfying b). Finally, CRYPSINOUS
allows ID generation; IDs are generated as either PRF outputs of a PRF seeded
with a random, secret value, which will lead to unique IDs for honest parties
with overwhelming probability. Fg, g, public keys, are guaranteed to be unique,
while other IDs randomly sample from {0, 1}, which has a negligible probability
of collision. We conclude that CRYPSINOUS realises G| cdger With S, under the
leakage predicate lkg;q and blind 4(;, -, tx) = tx. O

5.5.2 Stage 2: Private Proof-of-Stake

. PoS R R A
Theorem 5.3. CRYPSINOUS, in the (WH(c))nMaj (Faizk Frizk s FEwEnes Fet)s T RO

Gelock)-hybrid world, UC-emulates Gy edger With Ikg = 1kgje,q under the DDH assump-

tion.

Simulator S,
The simulator S, behaves like S;, with a few key differences in how information
about transactions is extracted and acted on. Let {_;, be the encoded length of coin

tuples.

State variables and initialisation values as in S;.

When receiving a message (TRANSACTION, -, tx, t, ) from G, cqqer

if dtx": tx = (PUBLIC, TRANSFER) | tx’ then
return simXfer(tx’, )
else

return simGen(tx, {)

When receiving a message (MAINT, ) from G| cdger’

send READ to G, and receive the reply ¢
send READ to | .qq.r and receive the reply (-,-, L)
if (Y, t) ¢ doneMaint then

run simStake(y, t, L)

let doneMaint < doneMaint u (i, t)

When A requests the corruption of :
corrupt ¢

send READ to G, 4er through ¢ and receive the reply >

construct ¢y.log from %
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iflp e ‘FFwEnC'K then

send KEYGEN to ¢, . on behalf of ¢

send READ to G, and receive the reply ¢
let fFWEnC'T(l])) =t+1

determine which leadership and transfer transactions were simulated as origi-

nating from ¢
disambiguate which coins won which leadership transactions
for unspent coin ¢ belonging to y do
if ¢ was created by an honest party then
letp, < {0, 1}
let t be the time the coin creating transaction was submitted
let r, < equiv(ek, cme, pkg°™ | ] pe | ve)
else

COIN

extract (pk~ ,p., ¢, ve) by decrypting the corresponding ciphertext

if cis currently visible to i then
let d)l],"@cnd - d)lll'(gCHd U {(pk

ensure ¢y.Cge, Py.C ng, and ¢y,.C are consistent with a real execution:

COIN

;pC! rC’ vc)}

check which coins are confirmed,
move them to €, and

erase them from €, 4

Other behaviour asin S;.

Helper procedures:
procedure simeer((stxirﬂget", stxic‘:]enag'), P)
send READ to G, and receive the reply ¢

if stxi‘ifft‘[ =(1,-) then

let cm « simComm(ek).

real

query A with (ENCRYPT, t, {_.;,) and receive the reply Stepts

satisfying stxﬁﬁg't & Frwenc-M, else sampling from {0, 1}*,
on behalf of F¢ .
let Ty enc-M(stxiea) < (1,—1, 1)

else
Tet (pkC™, (Pk°°™, -, )) < s,
letp < {0, 1}

let (cm, 1) « comm(pkcoIN

o lv)
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simulate sending (ENCRYPT, pkgnc, t,(pk“°"™  t,p,r,v)) to Frypnc and

real
rept

receive the reply stx
let cm, < simComm(ek)
let sny, sny <= {0, 1}
if pg; 5y were adversarially generated, and can be read then

use p; to compute sn; instead

let root be the Merkle root of (])lp.C[k
let x < ({cms, cmy}, {sny, sny}, root)
query A with (PROVE, x) and receive the reply 7,
satisfying 7 # L A (x,7) ¢ .FR"““.{H, 11}, else sampling from {0, 1}*,

NIZK
7?’XFER
on behalf of .FNIZK
72’XFER 7z’X}FER
let 7 Bien Il « F St ITu {(x, m)}

let stxq0r < ({cm, cmy}, {sny, sny}, root, ¢, 7).
let tx < (TRANSFER, StXproof; stxisglt)
simulate sending (BCAST, tx) to .F,t\jxet on behalf of ¢
return tx
procedure simGen(tx'4? 1)
send READ to G, and receive the reply ¢
let tx"? — GENERIC
for stx in tx'“?' do
if dpk:", m: stx = (pk;" <, m) then
send (ENCRYPT, pk; ", t,m) to Frye,. through ¢ and
receive the reply ¢
let tx™? — tx" | (PRIVATE, )
else if stx = (PUBLIC, m) then
Let tx™?! = txre! | (PuBLIC, m)
elseif d¢:stx = (1, £) then
query A with (ENCRYPT, t,{) and receive the reply c,
satisfying c ¢ Fr, ..M, else sampling from {0, 1}*,
on behalf of F¢ i,
let Frypne-M(c) « (1L, —1, 1)
let tx" = tx™ | (PRIVATE, )

simulate sending (BCAST, tx"%) to .Ff\fet on behalf of ¢
return tx"
procedure simStake(i, t, L)

if P ¢ L then return
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let cm « simComm(ek); p, sn <~ {0, 1}rf

query A with (ENCRYPT, t, {_,;,) and receive the reply c,
satisfying c ¢ F¢, ..M, else sampling from {0, 1}*,
on behalf of F¢ i

letC, B, h, ptr, epoch, sl, root, ngp, Uy, 4y, and stx¢ be defined as in an honest stak-
ing protocol execution by ¢

letx < (cm, sn, g, sl, p, h, ptr, p,, 4, root)

query A with (PROVE, x) and receive the reply 7,

satisfying 7 # L A (x,7) ¢ ]-"RL“D.{H, 11}, else sampling from {0, 1},

NIZK
7?‘LEAD
onbehalfof 7 ¥
let 7 uw IT — FLe T U {(x, 1)}

let stx,oof < (cm, sn, ep, sl, p, h, ptr, )
let tx — (LEAD, stX,f, $tXproof)

simulate sending (BCAST, tx) to f,ijxet on behalf of

simulate sending (BcasT,C || (tx, B)) to fﬁ’]‘;t on behalf of

Proof (sketch). The leakage Ikg.,4 leaks only the leader of any given slot. We
utilise a modified version of S7, which differs only in that it creates simulated
transaction instead of real transactions and reconstructs a corrupted party’s
state when required. In Step I, we argue that the simulated transactions are
indistinguishable from real transactions and, in Step 2, we argue that the re-
constructed party state is indistinguishable from a real party’s state. Finally, in
Step 3, we argue that the simulator S is indistinguishable from &, although
requiring less leakage from the private ledger functionality. As a result, the
same security argument as for S7 holds with respect to G edger With restricted

leakage.

Step1. Therearethree primitives that are simulated in simulated transactions:
Commitments, NIZKs, and Fg, g, encryptions. Due to the simulation security
of NIZKs and the equivocality of the commitments, we know they are indistin-
guishable from real NIZKs and commitments respectively. For Fgy g, the sim-
ulator hands the adversary the same information about the plaintext (namely,
the length) as the functionality itself, leaving the adversary with no information
to distinguish. As transactions consist of these primitives, and the simulator

accurately knows the format and originating party of a transaction, it can create
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a perfect simulated equivalent of the transaction and broadcast it on behalf of

the same party.

Step 2. While the first simulator was effectively running the protocol for real
parties, making corruption trivial, S; must reconstruct the parties’ local state in
a way the adversary cannot distinguish from a real execution. Parties maintain
four important state variables: the local chain C, the local buffer txBuf, the set of
coins € (as well as €. and €, 4), the log of transfer interactions, and ciphertext
to plaintext mappings, log.

Maintaining C and txBuf is straightforward, as the network interactions di-
rectly dictate their contents and the network is not anonymous. This leaves as
the only major issues the reconstruction of €, Cee, €4, and log. When a real-
world party’s corruption is requested, the simulator corrupts the corresponding
ideal-world party. This allows the simulator to extract when the party received,
transfers in the ideal world, all of which are guaranteed to be unspent, as well as
the plaintexts corresponding to the ciphertext of subtransactions addressed to
the party.

At these points, a transfer, or generic transaction will have also been made
in the real world. This transaction is either a real transaction, in which case
the simulator can extract its content from its simulated F¢g,.. The corrupted
party can only be the recipient ¢, of such transactions (as this is the only party
which may read it). There is one commitment in the transaction that is created
for a new coin of this party, and one encrypted Fg, g, message that encrypts the
corresponding secret values used to control it. The simulator randomly samples
pe < (0,1}
transaction.

and retrieves kaOIN and v, from the corresponding ideal-world

Astheideal-world transaction is valid, we know pkEOIN must be a valid ID for

the corrupted party, in which case the simulator provided it and knows the corre-
COIN COIN
[ve Il pe,

sponding secretkey sk, . Itthenopensthe commitment cm, to pk,

with the opening randomness r.. This allows the simulator to populate €, G,
and €.,4 with coins generated by transfer transactions, depending on their stage
of confirmation. We further note that the g, ciphertext can now be opened
tothe appropriate encryption if necessary. Finally log is populated, by recording
the corresponding log action for each of these transactions.

This almost completes the simulator, with the exception of how to handle
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coins that were used in leadership proofs. Recall that the simulator is aware of
which slots the newly-corrupted party was a leader. It is not, however, aware of
which coin won in these slots. For each leadership proof of the corrupted party,
the simulator computes the probability of each of the party’s coins being the win-
ning coin in the given slot, and samples from this distribution a single coin c. It
then ensures this coin is appropriately updated - computing ske, ' = prf: ZCLOIN(I)
and p = prf;\e'éom (pc), opening cm¢/, the commitment in the corresponding real-

COIN

world leadership prooftopk.~ " | v | per, with the resulting randomness being
rc. Thisis added to €, with the preimage being removed. As the adversary cannot
find the preimage of skg""", or p/, the adversary cannot perform consistency
checks involving the previous coin, such as checking serial numbers match what
they should.

As the state of the party handed to the simulator is correct, and any sampled
valueinitiseither purely random, or originates from the equivocal commitment
scheme, the adversary cannot distinguish the corrupted party’s state from the

real party’s state.

Step 3. We conclude from Theorem 5.2, and our observations in Step I and

Step 2, combined with the fact that S; and S, differ only in simulating trans-

actions and corruption, that Theorem 5.3 holds. [l

5.6 Performance Estimation

Coin transfers are modelled after Zerocash’s [BCG*14] pour transactions. This
enables us to reuse much of the existing implementation work invested on opti-
mising the performance critical SNARK operations by the Zcash project in their
Sapling upgrade [HBHW18].

Like Zerocash, our transfer transactions pour two old coins into two new
coins. In contrast, a leadership transaction only updates a single coin. The
additional costs incurred are two evaluations of a PRF to compute p., and sk§2° N
for updating the coin in a deterministic manner, two evaluations of MUPRF, and
one range-proof to determine the winners of the leadership election lottery. We
approximate ¢y using a linear function as in Bitcoin. The PRF is implemented
using a SHA-256 compression function. The MUPRF requires variable base

group exponentiations. As we require equivocal commitments, we replace the
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SHA-256 coin commitments of Zerocash that require 83,712 constraints with the
Pedersen commitments of Sapling[HBHW18] which require only approximately
2,542 constraints. Purely for performance reasons, we also replace the original
SHA-256 Merkle tree of Zerocash with the Pedersen hash-based tree used in
Sapling.

In total, see Table 5.2, the multiplication count of a leadership SNARK rela-
tion is smaller than a transfer relation by about 42K constraints. Furthermore,
the number of constraints used by our transfer relations is within a small margin
of those used in an equivalent Sapling transfer relation. While we have not fo-
cused on optimising this process as Sapling has, by parallelising the NIZK proofs,
we emphasise that even unoptimised, CRYPSINOUS would have a proving time

only around double that of Sapling.

Primitive Approx. constraints
SHA-256 27,904

Exponentiation (variable base) | 3,252 [HBHW18, page 128]
Hidden range proof 256

Pedersen commitment 1,006 + 2.666 per bit3

Table 5.1: Number of multiplicative constraints in SNARK relations

We note in passing that the forward-secure encryption scheme is needed
only for transfers and does not affect the SNARK relations we need to prove
which is dominating performance. Likewise, the usage of a simulation secure
NIZK will increase proving time and proof lengths. Nevertheless, in both
cases, the performance penalty is not intrinsic to the POS setting and it would
equally affect a POW-based protocol like Zerocash if one wanted to make it
simulation-secure in the adaptive corruption setting.

A second performance concern may be the cost of maintaining and updating
Merkle trees of secret keys. There is a trade-off here — larger trees are more effort
to maintain and use, while smaller ones may have all their paths depleted and
hence require a refresh in the sense of moving the funds to a new coin. For a rea-
sonable value of R = 224, this is of little practical concern. Public keys are valid
for 224 slots — approximately five years — and employing standard space/time

trade-offs, key updates take under 10,000 hashes, with less than 500 KiB storage

Shttps://github.com/zcash/zcash/issues/2634
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Constraint count RxEER RieaD
Check pkg"m 2 x 27,904 27,904
Check p,, ske, 2 x 27,904
Path for cmg, 2 x 43,808 43,808
(1 layer of 32) (1,369) (1,369)
Path for root g con 34,225
(1layer of 24) | (1,369)
(leaf preimage) (1,369)
Check sng, 2x 27,904 27,904
Check cmg, 4x 2,542 2x 2,542
Check vy + vy = vz + vy 1

Ensure that v; + v, < 264 65

Checky,p 2x 3,252
Check (approx.) y < ord(G)pav) 256
Total 209, 466 201,493

Table 5.2: Number of constraints per SNARK statement

requirement. The most expensive part of the process, key generation, still takes

less than a minute on a modern CPU.
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PRIVACY IN SMART

CONTRACTS

This chapter is based on “KACHINA - Foundations of Private Smart Con-
tracts” [KKK21b], to appear at the 2021 IEEE Computer Security Founda-
tions Symposium, primarily authored by Thomas Kerber, and co-authored by
Aggelos Kiayias and Markulf Kohlweiss.

ECENTRALISED computation, as provided by smart contracts is seemingly
Dinherently limited to being entirely non-private, as it encompasses repli-
cated computation. This apparent contradiction can be bypassed through the
usage of cryptography - hiding information in plain sight — as has been done in
Chapter 5, and as other privacy-preserving smart contract systems describe in

Subsection 2.6.3. The approaches these different systems suggest are fractured

however - each fitting a niche and solving a part of the larger problem. This
larger problem, arbitrary decentralised private computation, is essentially fully
distributed and universal, multi-party computation, which with current algo-
rithms is too costly to run at a large scale. The motivating question behind this

chapter is then:

Is it feasible to achieve a privacy-preserving and general-purpose smart
contract functionality under the same availability and decentralisation char-
acteristics exhibited by Nakamoto consensus ?

This chapter carves out a large class of distributed computations that we
express as smart contracts, which we collectively refer to as “KACHINA core
contracts”. In particular, this includes contracts with privacy guarantees, which
can be implemented without additional trust assumptions beyond what is
assumed for Nakamoto consensus!. This class allows us to express the pro-

tocol logic of dedicated privacy-preserving, ledger-based protocols such as

"The existence of a securely generated common reference string is also required, which by
the results of Chapter 4 also reduces to Nakamoto consensus.
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Zerocash [BCG'14] as smart contracts. Existing smart contract systems such
as Zexe [BCG"20], Hawk [KMS"16], Zether [BAZB19], Enigma [ZNP15], Arbi-
trum [KGC"18], and zkay [SBG'19] can be expressed, preserving their privacy
guarantees, as KACHINA contracts. These protocols mainly rely on either
zero-knowledge or signature authentication for their security. KACHINA is flexible
enough to allow contract authors to express each of these systems, together
with a concise description of the privacy they afford. It does not supersede these
protocols, but rather gives a common foundation on which one can build further
privacy-preserving systems.

Distributed ledgers put forth a new paradigm for deploying online services
beyond the classical client-server model. In this new model, it is no longer the
responsibility of a single organisation or a small consortium of organisations
to provide the platform for deploying relevant business logic. Instead, services
can take advantage of decentralised, “trustless” computation to improve their
transparency and security as well as reduce the need for trusted third parties
and intermediaries.

We make four contributions to the area of privacy-preserving smart con-

tracts:
a) We model privacy-preserving smart contracts.
b) We realise a large class of such contracts.

c) We enable concurrent interactions with smart contracts, without com-

promising on privacy.

d) We demonstrate a general methodology to efficiently and composably

build smart contract systems.

Combined, they provide a method for both reasoning about privacy in smart
contracts, and construct an expressive foundation to build smart contracts with

good privacy guarantees upon.

Our model. We provide a universally composable model for smart contracts
in the form of an ideal functionality that is parameterised to model contracts
both with and without privacy, capturing a broad range of existing systems. The
expressiveness and relative simplicity of our model lends itself to further analy-

ses of smart contracts and their privacy. Moreover, existing privacy-preserving
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systems benefit from the model as a means to define their security and contrast
their security with other systems.

We consider a smart contract to be specified by a transition function A and
aleakage function A, which parameterise the smart contract functionality ]—"SA C’A.
A models the behaviour of the contract, were it to be run locally or by a trusted
party. It is a program that updates a shared state, and has its inputs provided
by and outputs returned to, the calling party. .FSAC’A models network, ledger, and
contract specific “imperfections” that also exist in the ideal world by interacting
with a §j ¢dger~GUC functionality [CDPWo7]and captures the fundamental ideal-
world leakage through the parameterising function A.

Some combinations of A and A are not obviously realisable, in particular
the more restricted the leakage becomes. They are able to capture existing
smart contract systems however, both privacy-preserving and otherwise. For
instance, a leakage function which leaks the input itself corresponds closely to
Ethereum [Woo14], while a leakage function returning no leakage makes many
transition functions hard or impossible to realise. This chapter focuses on a
more interesting middle ground. By defining the ideal behaviour to interact
with G edger, We avoid having to duplicate the complex adversarial influence
of ledger protocols. We make few assumptions about this ledger, requiring
only the common prefix property, and interfaces for submitting and reading

transactions to be well defined.

Our protocol. We construct a practical protocol for realising many privacy-
preserving smart contracts, utilising only non-interactive zero-knowledge. The
primary goal of this protocol is to provide a sufficiently low-level and general
purpose basis for further privacy-preserving systems, without requiring the un-
derlying system to be upgraded with each new extension or change. We focus
on the Nakamoto consensus setting of a shifting, untrusted set of parties. The
protocol’s core idea is to separate a smart contract’s state into a shared, on-chain,
public state, and an individual, off-chain, private state for each party. Parties then
prove in zero-knowledge that they update the public state in a permissible way:

That there exists a private state and input for which this update makes sense.

Dealing with concurrency in a privacy-preserving manner. There exists

a fundamental conflict between concurrency and privacy that needs to be ac-
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counted for to remain true to our objective of providing a smart contract func-
tionality as decentralised as Nakamoto consensus. Toillustrate, suppose anideal
smart contract is at a shared private state w and two parties wish to each apply
a function fand g respectively to this state. They wish (in this specific case) the
result to be independent of the order of application - i.e. flg(w)) = g(lw)) = w’.
In any implementation of the above in which parties do not coordinate, the first
party (resp. the second) should take into account the publicly known encoding
[w] of w and facilitate its replacement with an encoded state [f{w)] (resp. [g(w)])
as it results from the application of the desired transition in each case. It follows
that the encoded states [flw)], [g(w)] must be publicly reconciled to a single en-
coded state [w’] which necessarily must leak some information about the transi-
tions fand g. Being able to achieve this type of public reconciliation while retain-
ing some privacy requires a mechanism that enables parties to predict transition
conflicts and specify the expected leakage.

We achieve this through the novel concept of state oracle transcripts, which are
records of which operations are performed on the contract’s state, when inter-
acting with it through oracle queries. These allow contract authors to optimise
when transactions are in conflict: ensuring minimal leakage occurs while still
allowing reorderings. We provide a mechanism for analyzing when reordering
transactionsis safe with respect to a user’sindividual private state, by specifying

a sufficient condition for when transactions must be declared as dependencies.

Efficient modular construction. KACHINA is designed to be deployed at
scale: Previous works using zero-knowledge do not explicitly maintain a con-
tract state. If such a state w was modelled anyway, (for instance, as inputs to
these systems), the zero-knowledge proofs involved would scale poorly, with
a proving complexity of ©(Jw|) before any computation is performed. A naive
approach to state cannot scale to handle systems with a large state — such as a
privacy-preserving currency contract, without these being handled as special
cases. Our abstracting of state accesses solves this problem.

Regardless of the size of our state, the state is never accessed directly, but
only through oracles specified by the contract. As a result the complexity of
what must be proven is under the full control of the contract author and can
be optimised for. A proving complexity of O(|7,| + |74[) prior to performing any

computation can be expected in KACHINA, where 7, is the oracle transcript for
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the private state and 7 is the one for the public state. This constitutes a clear
improvement, as the state of smart contracts deployed in practice may be very
large, however transcripts, similar to the inputs and outputs of traditional public
contracts, are generally short. This increase in efficiency allows us to construct
an entire smart contract system, akin to Ethereum [Woo14], as a KACHINA con-
tract in Section 6.7.

Not all contracts a user wishes to write will directly match the requirements
for realising a smart-contract with the KACHINA core protocol. However, our
model is sufficiently flexible to allow direct application of the transitivity of UC-
emulation to solve this: If the originally specified “objective” contract (A, A) is
not in the class of KACHINA core contracts, the author can find an equivalent
(A’, A”) which is. The author can provide a proof that }'SA(;’A’ UC-emulates fSAC’A
and, by the transitivity of UC-emulation, can use the KACHINA core protocol to
realise (A, A). We facilitate such proofs by including adversarial inputs and leak-
ages in our model, which allow the simulator limited control over the objective
smart contract. This method to develop private smart contracts is illustrated in
Figure 6.1. It is further showcased by the implementation of the salient features
of Zerocash [BCG*14] as a KACHINA contract in Section 6.5 and the proof that it

UC-emulates a much simpler ideal payments contract.

6.1 Technical Overview

We first informally establish our goals and core technical ideas of this chapter.
We will discuss each of our contributions in turn and discuss how, combined,
they present a powerful tool for constructing privacy-preserving smart contract

systems.

Our model. We model smart contracts as reactive state machines, which users
interact with by submitting transactions to a distributed ledger. A user submits
a transaction, with the intention to issue some high-level command to the smart
contract, for instance, to cast a vote, or withdraw funds. Once the transaction
is confirmed by the distributed ledger, the user obtains information about the
results of this high-level command: both whether it has been processed, and any
information it may have computed using the contract’s state.

As multiple users can interact with the same smart contract system concur-
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Figure 6.1: An overview of the KACHINA method to develop private smart con-
tracts: 1) An intuitive description of the objective smart contract is developed in
the form of]-"SAC’A. 2) AKACHINA compatible FSAC/’AI, from the set of all equivalent
contracts FSAé’Ai is selected and the equivalence proven. 3) Theorem 6.1is applied

to obtain its realisation.

rently, users cannot always predict the effect of their actions; a vote may end
before a user’s voting transaction is processed, for instance. As a result the user
may not be able to predict the outcome of the command, or even if it can be
carried out.

To capture privacy, the act of creating a transaction to post on the distributed
ledger is the only point at which we permit privacy leakage. As a user may go off-
line at any point, any private information they reveal — a bid during an opening
phase of an auction, for instance — must be revealed in the on-chain transaction
itself. Formally, we model this with a leakage function A, which describes what
information is leaked if a user, seeing a specific contract state, issues a specific
command. This function can also fix choices that an interaction may make - for
instance if the command is “send a coin to Bob”, it may decide which coin to send
to Bob. To give users full control over their privacy, even when these decisions
are complex or randomised, we ask them to sign off on a description of the leak-
age before the transaction is broadcast. The leakage in KACHINA captures infor-
mation which a user purposely decides to reveal, as the functionality they gain

by doing so is worth whatever damage they take to their private information. It
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is further worth noting that nothing prevents a malicious contract from finding
clever ways to leak information without being observable. This highlights the
importance of interacting only with trustworthy contracts and the importance
of the leakage descriptor being accurate.

Similarly to the leakage function, the semantics of the contract itself is
largely dictated by a transition function A. It describes how the state of a smart
contract evolves given a command and a few auxiliary inputs (such as the choice

of coin alluded to above).

The core protocol idea. The KACHINA core protocol restricts itself to con-
tracts which divide their state into a public state ¢ and, for each party ¢, a
private state py. These correspond to the shared ledger and a party’s local
storage respectively. Transition functions are over pairs (o, py) instead of over
all private states — a party may only change their own private state. Honest
users maintain their own private state in accordance with the contracts’ rules,
while the contract must anticipate that dishonest parties may set it arbitrarily
(this can be circumvented by committing to private states, as descripted in

Subsection 6.6.1, although it comes at the cost of increased public state sizes

and loss of anonymity).

A natural construction to achieve privacy in smart contracts utilising zero-
knowledge proof systems is apparent: On creating a transaction, a user i evalu-
ates the transition function against the current contract state (o, pl],), resulting
in a state (0",p"l)). He creates a zero-knowledge proof that 0 — ¢’ is a valid
transition of public states (that is, there exists a corresponding private state and
input such that this transition takes place) and posts the proof and transition as
a transaction. Locally, the user updates his private state to pn,])'

We can also clearly describe the leakage of this sketched protocol: The tran-

sition 0 — 0" is precisely the information which is revealed!

State oracles. The core protocol sketched above has two major problems:

I. Due to each transaction containing a proof of transition from one state to
another, concurrent transactions will almost certainly fail once the state

is changed.

2. The size of the statement being proved, and therefore the size of transac-

tions, grows linearly with the overall size of the contract’s state.
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These drawbacks are especially notable in systems with many users and a
high frequency of transactions: On Ethereum a transaction is almost certainly
applied after many other transactions the author never knew about, nor should
need to know about. The state the contract will be in once it executes a trans-
action, is something the transaction’s author cannot predict accurately. In the
naive system proofs only succeed in the state they were originally created for,
as Figure 6.2 suggests. Instead of capturing a transition from o — o/, we would

rather want to capture a (partial) function from states to successor states.

Transaction creation_

(s)uoryeoridde uorjoesuer],

Figure 6.2: Direct state-transition based transactions can be applied only in the

state o™ they were proven for.

To solve these issues, we add a layer of indirection for accessing and updating
contract states: Instead of the state being a direct input to the transition func-
tion, the contract has access to oracles operating on the public and private states.
The contract makes queries to these oracles: functions which update the state
and return information about it. To prove the interaction with the public state
correct, users capture the queries they made and the responses they expect, in a
sequence ((q1,71), ---,(qn, rn)): a transcript of oracle interactions. The user proves
that, given the responses expected, they know an input which will make this
series of queries.

Conversely, a user validating this transcript can verify this proof and eval-
uate the queries in turn against the public state, ensuring the responses match.
This defines a partial function over public states, which is defined wherever the
responses recorded in the transcript match the results obtained by evaluating
the queries on the current state.

Selecting what queries a contract makes provides a great deal of control over
the domain of the function: a query which has an empty response will always
succeed! In limiting queries to returning only essential information, many con-

flicts can be avoided. Transcripts can also be concise about what changes are
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made, assuming the queries are encoded in a sufficiently succinct language, such
as most Turing-complete languages.

While not all conflicts are resolved through this as the responses may not
match those expected, it allows the proofto focus on the relevant parts of the state,

being compatible with more concurrent transactions, as pictured in Figure 6.3.

Transaction creation

,,,,,,,,,,,,,,,

~
(s)uoryeoridde uorjoesuer],

Figure 6.3: Oracle-transcript based transactions can be applied in any compati-

ble state. The transcript 7 defines a partial function {¢”" — 0", 07 = 07,...}.

In order to be able to model partial transaction success, which is crucial for
modelling transaction fees, we allow for a special query to be made, COMMIT.
COMMIT queries mark checkpoints in a transaction’s execution, such that if an
error occurs after it, the execution up to this point is still meaningful. This ef-
fectively partitions the transcript into atomic segments. We primarily use this
to construct transaction fees within a smart contract itself, the details of which

can be seen in Subsection 6.7.5.

High-level usage. Even when using state oracles, this protocol is limited to
contracts which have their state fit neatly into accessing only shared public state
and local private state. The natural description of many contracts does not match
this. For instance: a private currency contract is most directly described through
a shared private state tracking the balances of all parties.

However, it is simple to express the Zerocash [BCG*14] protocol in terms of
interactions with shared public and local private states. This provides a practical
means to achieve what we can describe using a shared private state. It is important
to have both the most natural description of a contract and the realisation. The
former provides a good understanding of the features and security properties of
a contract, while the latter realises it.

This idea is nothing but the notion of simulation-based security itself! We

use multiple stages of UC-emulation: First moving from our objective contract
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(a private payments contract) to a contract within the KACHINA constraints on
state (a Zerocash contract), and second moving on to the KACHINA core protocol.
Due to the transitivity of UC emulation, we may therefore use this “KACHINA
method” to construct the objective of private payments. This process is outlined
in Figure 6.1.

Our model is designed to facilitate this usage. Specifically for modelling ob-
jective contracts the model allows the adversary to provide an additional adver-
sarial input to each transaction. This input allows the simulator to control some
parts of the ideal behaviour similar to the simulator’s influence on an ideal func-
tionality, for instance to ensure ideal world addresses match real-world public

keys.

6.2 Defining Smart Contracts

Smart contracts are typically implemented as replicated state machines. If a
replicated state machine is the implementation, the natural model is that of the
state machine itself. Inputs are drawn from a ledger of transactions and passed
to this state machine.

This definition is unsuitable for privacy-preserving smart contracts: If the
state machine’s behaviour is known and its inputs are on a ledger, there is no pri-
vacy. A simple tweak can solve this: Inputs are replaced with identifiers on the
ledger, with the smart contract functionality tracking what their corresponding

inputs are.

6.2.1 Interactive Automata Interpretation

Smart contracts are a form of reactive computation: Parties supply an input to the
contract, the latter internally performs a stateful computation and returns a re-
sult to the original caller. The result is returned asynchronously and may depend
on interactions with other users. This is quite close to the concept of a trusted

third party, although real-world systems have caveats:
« They leak information about the computation performed.

« They allow some adversarial influence, partly due to relying on the transac-

tion ordering of an underlying ledger.
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« They may carry some impure execution context: A transaction may depend

on what the state is at the time it is created, for instance.

Often when talking about smart contracts, only the “on-chain” component is
considered. This is insufficient for privacy, as by its nature, everything on-chain
is public. We therefore model the off-chain component of the interaction as well.
This can be as simple as placing inputs directly on the ledger, but can involve
more complex pre-computation. Even without the need for privacy, the need to
model off-chain computation of smart contracts had been observed [CKM*19]
and we believe a formal model should account for it.

To represent a contract, we use a transition function, operating over the con-
tract’s state. We denote the initial state as @. Transition functions are deter-
ministic, although limited nondeterminism can be simulated by including ran-
domness in the execution context. Notably, such randomness is fixed on trans-
action creation, allowing the creator to input (potentially biased) randomness,
which is subsequently used in the (replicated) execution of the contract’s state
machine. Potential uses include the creation of randomised ciphertexts or com-
mitments. The transition function will also output if a transaction should be
considered “confirmed” or not, with the latter indicating failure or only partial
success, which dependant transactions should not build on.

A contract transition function A is a pure, deterministic function with the for-

mat (w’, ¢,y) < A(w, P, w, z,a), with the following inputs and outputs:

 The current state w « The adversarial inputa
« The calling party ¢ « The successor state w’

+ The input w « The confirmation state c
« The execution context z « The outputy

In addition to the transition function, it is necessary to capture what leakage
an interaction with the contract has. The two are separated due to the asyn-
chronous nature of smart contracts - a transaction is made and leaks informa-
tion before the corresponding transition function is run on-chain.

The leakage is captured by a leakage function, which receives the same input,
and in addition receives the creating user {'s “view” w of the contract as an input.
w = (£, Uy, T, w) consists of four items: a) The length of ¢’s view of the ledger {.
b) ¢’s unconfirmed transactions Uy. c) A map T from tx € Uy to (i, w,z,4a, D).
These are A’s inputs and the transaction’s dependencies, which we will intro-

duce shortly, D. d) The contract’s state according to §'s view of the ledger, w.
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This “view” may be used to avoid attempting double-spends by selecting a coin
to spend which no other unconfirmed transaction uses, for instance. For this
purpose the leakage function can also abort by returning L, refusing to create a
transaction. The function returns a leakage value lkg, which is passed to the ad-
versary, a description of the leakage which occurred, desc, alist of transactions to
depend on, D, and the context z. While Ikg may be arbitrary, it is important that
desc provides an accurate and readable description of this leakage. Its primary
purpose is to allow parties to decide not to go ahead with a transaction if they
notice the leakage is more than expected. With complex contracts, anticipating
what will be leaked should not be relied upon. The usage of a descriptor high-
lights that A should not be maliciously supplied and facilitates simulation, as
shown in Section 6.5.

It is worth emphasising that the leakage discussed in this chapter is deliber-
ate; this is not leakage observed over a network, which can be hard to identify,
butisinstead information which users accept toreveal. Forinstance, aleakagein
Zerocash [BCG*14]is the length of the ledger at the time a transaction is created,
with the security of the protocol guaranteeing that this — but nothing more - is
revealed to an adversary.

The list of dependencies D is a list of transactions, which must occur in the
same order before the newly created transaction can be applied. This can be
used to enforce basic ordering constraints between transactions. Finally, the
context z allows information about the state at the time of transaction creation
to be passed to the transition function. This may include the current state, un-
confirmed transactions, and a source of randomness. Its content is left arbitrary
at this point.

A leakage function A is a pure, non-deterministic function with the format

(desc, lkg, D, z) < A(w, P, w), with the following inputs and outputs:

- ’s contract view w + The leaked data lkg
+ The calling party ¢ + The tx dependencies D
« The input w + The context z

The leakage descriptor desc
We consider the pair (A, A) to define a smart contract. The ideal world inter-

action with a smart contract follows the below pattern:

I. A party submits a contract input w.
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2. The corresponding context and leakage are computed.

3. The party agrees to the leakage description, or cancels (in the latter case,

the transaction never takes place and no information is revealed).
4. The adversary is given (lkg, D) and provides the adversarial input a.

5. The submitting party can retrieve the output of A (if any), while other par-

ties can interact with the modified state.

The level of privacy guaranteed depends greatly on the leakage function A: A
leakage function which returns its input directly as leakage provides no privacy,
while one which returns no leakage at all provides almost total privacy (notably
the fact some interaction was made is still leaked). By tuning this, the privacy of
Ethereum, Zerocash, and everything in between can be captured.

Ourmodel relies on users querying the result of transactions manually - they
are not notified of the acceptance of a transaction and can not modify it once
made. If a transaction is not yet confirmed by the ledger, the user gets the result
NOT-FOUND; if the transaction depends on failed transactions, L is returned;
and otherwise the result is provided by the contract itself (which may also in-

form of partial success).

6.2.2 UC Specification

The ideal smart contract functionality }"SAC’A captures the notion of a contract as a
leaky state machine whose inputs are drawn from a ledger. Itis parameterised by
the transition function A and the leakage function A, and it operates in a hybrid
world with a global ledger functionality G| ¢qger- A candidate for such a ledger is

FsimpleLedger, as introduced in Subsection 2.4.3.1, although any compatible func-

tionality is sufficient. Its privacy guarantees stem from only revealing explicitly
leaked data, i.e. Ikg, and only allowing the creator of a transaction to access the

result.

. . AA
Functionality

The smart contract functionality ]-'SA(’:A allows parties to query a deterministic state
machine determined by A and A in a ledger-specified order. The exact semantics

of the call is subject to adversarial influence, which is provided some leakage, as
defined in A.
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State variables and initialisation values:

Variable ‘ Description

T = @ | Mapping from transactions to their executing components.

Uy = ¢ | Sequence of unconfirmed transactions, for all parties

When receiving a message (POST-QUERY, w) from an honest party y:

let 3y, < updateState(i)

let w « (|Zy], Uy, filter(A(tx, -): tx € Uy, T), execState(Zy))
let (desc, lkg, D, z) « A(w, P, w)

if desc = 1 then

return REJECTED

send (LEAK, desc) to i and receive the reply b
if b then
query A with (TRANSACTION, kg, D) and receive the reply (tx, a),
satisfying T(tx) = L A tx # L, else sampling from ({0, 1}, 1)
let T(tx) < (¢, w,z,a, D); Uy < Uy || tx
send (SUBMIT, tx) t0 G| ..., On behalf of ¢
return (POSTED, tx)
else

return REJECTED

When receiving a message (CHECK-QUERY, tx) from an honest party i:

let 3y, < updateState(i)
if tx € 2y then
if T(tx) = (¢,...) then
return execResult(prefix(Zy, tx))
else return L

else return NOT-FOUND

Helper procedures:

procedure updateState(yp)

send READ to G| .yg, through ¢ and
receive the reply 2,

let C « execConfirmed(Zy)

let U!lli < Uy

repeat
let Uy < Uy
for txin Uy do
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let (..., D) « T(tx)
if D¢ (Culy)v(DnC)EZ 2y then
let Uy < Up \ {tx}
until Uy, = Uy,
return 2
procedure execState(Z)
let (w, -, ") < exec(2) in return w
procedure execResult(Z)
let(-,y, ) < exec(2) in return y
procedure execConfirmed(Z)
let(;,-,C) « exec(3) in return C
procedure exec(2)
letw—g;y— L;C«g2
for tx in dedup(2) do
if T(tx) = 1L then
query A with (INPUT, tx) and receive the reply x = ({, w, z,a, D),
satisfying ¢ ¢ #, else sampling from {NONE}
if T(tx) = 1L then
let T(tx) « x
ye<1
if T(tx) = NONE then continue
let (Y, w,z,a, D) « T(tx)
if D\C # 2 v D Z ¥ then continue
let (w',c,y) « Aw, P, w, z,a)
if w # L thenlet w « w’
if cthen let C « C u {tx}

return (w, y,C)

6.3 The KAcHINA Protocol

As mentioned in Section 6.1, a naive construction divides a contract’s state into a
shared public state and a local private state for each party. Specifically, the ideal
state w is defined as the tuple (o, p), where p consists of py, for each party . A user

proves the validity of any public state transition - that there exists a private state
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and input, such that this transition takes place. This clearly does not scale well,
as it assumes that the ledger state does not change between the submission and
processing of a transaction, and requires zero-knowledge proofs about poten-
tially large states - hundreds of Gigabytes in systems like Ethereum [Eth19]!

In reality, a user’s query may not be evaluated immediately and the ledger
may change drastically in the meantime. Simply proving a direct state transi-
tion would lead to a high proportion of queries being rejected. To solve both
problems, we require contracts to access their state through a layer of abstrac-
tion which both tolerates reordering interactions and allows for more efficient
proofs. We further allow for partial transaction success, by introducing transac-
tion checkpoints. Our primary purpose for this notion is to be able to capture the
payment of transaction fees, such as gas. We detail our approach to do this in

Subsection 6.7.5.

6.3.1 State Oracles and Transcripts

We introduce state oracles and state oracle transcripts to abstract interaction with
a contract’s state. We choose this abstraction primarily for its flexibility, and
many other approaches are possible, such as byte-level memory accesses, or spe-
cific data structures such as set of unspent transactions. These can be seen as
instances of state oracles. We make use of the notation [a, b, c] to denote a list of
a, b, and c, with the concatenation operator | and the empty list &. We use the
function last to retrieve the last element of a list and L[i] to denote the ith element
of the list L.

An example. To better motivate the need to abstract interactions with a con-
tract’s state, we will use a representative example smart contract, and discuss
how different abstractions of its state will affect it.

Our example is a sealed bid auction contract?, which we assume has some
means of interacting with two on-chain assets, one public and one private. These
may be constructed similarly as in Section 6.5, however should be holdable and
spendable by other contracts. We do not go into detail of this construction;
this idea is fleshed out in detail in Zether [BAZB19]. The auction is opened by

the seller party and multiple buyer parties may bid on it. The auction has three

2This contract is designed to make a good example, not a good auction - we do not recommend
using it as presented.
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stages: Bidding, opening, and withdrawing. The auction contract allows for the

following interactions:

At initialisation, the seller transfers ownership of the public asset A to the

auction contract.

- In Stage 1, buyers submit their bids, transferring some amount of the pri-

vate asset B to the auction contract, which remains anonymous.

- In Stage 2, buyers reveal their bid. If the buyer’s bid exceeds the currently
maximum revealed bid, they reveal their committed asset, increase the
maximum bid and they record themselves as the winning bidder. Oth-
erwise, they withdraw their bid from the contract without revealing its

value.

- In Stage 3, buyers withdraw any assets they own after the auction - either
their (losing) bids, or the sold asset (for the highest bidder). The seller with-

draws the highest bid, or the original asset if no bids were made.

- In Stage 1 and 2, the seller may advance the stage.

This contract needs to maintain in its state:

« The current stage the auction is in.

« Areference to the asset being sold.

- A set of bids made.

« The winning bid, its value, and who made it, during the reveal phase.

+ A set oflosing bids, which have not yet been withdrawn, during the reveal
phase.

« Privately, a user remembers which bids are theirs and how to reveal them.

Suppose we adopted a naive approach to state transitions, and proved the
transitioning from one state to another directly, with no abstraction of any kind.
During the bidding phase it is easily possible for multiple users to attempt to
bid simultaneously (especially considering the delay until transactions become
confirmed by an underlying ledger). In this case, only one of these transactions
will succeed — as soon as this transaction changes the state by adding its own bid,

the proof of any other simultaneous transaction becomes invalid.
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The simple abstraction of byte-level access would allow a buyer and a seller
to withdraw concurrently, as their withdrawals affect different parts of the state.
It does not do so well in allowing concurrent bids to be made, however. If the set
isimplemented with a linked list, for instance, two users attempting to add their
own bid simultaneously will change the same part of the state: the pointer to the
next element.

A smart abstraction should realise that whichever user bids first, the result-
ing set of bids is the same, even if its binary representation may not be. Even
if the order of the interactions matters, a smart abstraction may allow concur-
rent interactions. When claiming the maximum bid in the auction, Alice may
increase it to 5, while Bob may increase it to 7 concurrently. It should not matter
to Bob’s transaction if the maximum bid is currently 3, or 5 — although Alice’s

must be rejected if the bid is increased to 7 first.

General-purpose state oracles. The abstraction we propose is that of pro-
grams. Appending a value to a linked list can be encoded as a program which a)
traverses to the end of the current list, b) creates a new cell with the input value,
and c) links this from the end of the list. Formally, these programs are executed
by a universal machine called a state oracle with access to the current (public or

private) state « and potentially an additional context z.

Definition 6.1. A state oracle O = U(ag, z), given an initial state ay and context
z,1is an interactive machine internally maintaining a state «, a transcript 7, and
a vector of fallback states a (initially set to the input ay, ¢, and [ag], respectively),

which permits the following interactions:

- Given a COMMIT query, set @ < a | [a] and append cOMMIT to 7.

Given a query g while ' is L, return L.

Otherwise, given a query g, compute (¢, r) < q(a, z). Updateatoa’, append
(q,r)to T and returnr.
state(O) returns (a | [a], 7).

The context z is empty (2) for state oracles operating on the public state and
is used in state oracles operating on the private state for fine-grained read-only
access to the state during transaction creation, for instance, to allow private state
oracles to read the public state. Specifically, the oracle operating on the private

state can read both the public and private states for: a) the confirmed state at
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the time the transaction was created (6° and p°), and b) the projected state, an
optimistic state generated at the time the transaction was created by executing
all of the user’s unconfirmed transactions. It is made of up the pair o™ and p”.
This can be used to make sure new transactions do not conflict with pending
ones: Selecting which coin to spend uses the confirmed state to ensure the coin
can be spent and the projected state to ensure a coin is not double spent. The context
is also used to provide a source of randomness 7 to the private state oracle. In
total, the context of the private state oracle is (¢°, p°, 6™, p™, ). The context to the
public state oracle is empty (2) and we will sometimes omit it.

We say that the oracle aborts if it sets its state to L. The state will then be
rolled back to a safe point, specifically to the last coMMIT where the state was
non-_L. Looking forward, we will decompose the transition function A into three
components: An oracle operating on the publicstate o, an oracle operating on ¢’s
private state py,, and a “core” transition function I'. This process is described in

detail in Subsection 6.3.4, with an overview of the interactions of I' with public

and private state oracles given in Figure 6.4.

2 L w o
I Private e Al e S

| q @ |
E a s E
| ou oilr | u |
: o . a :
i hoo o :

--------------- t---t-o-- Trusted |
p’ y o’

Figure 6.4: The interaction of the core contract I', with two universal machines
U, acting as state oracles over the public state o and the private state p, together

with the context z.

The notion of oracle transcripts is crucial in the functioning of KACHINA, as it
provides a means to decouple the part of a transaction which is proven in zero-
knowledge from both the public and private states entirely: We prove only that
given some input and a sequence of responses recorded in the public state tran-

script, the smart contract must have made the recorded queries.
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Revisiting our example. As an illustration, we show how our auction exam-

ple interacts with state oracles. We define the auction’s states more precisely

first, where users are identified by public keys, denoted with pk:

The current stage: stage € {1, 2, 3}

A reference to the asset being sold and who is selling it: a, pk,

A set of bids made: S

The winning bid, its value, and who made it: b, v, pk;,

A set of not yet withdrawn losing bids: R

Privately, a user remembers openings to their bids, the committed bid it-

self, and its value: bidOpen, bidComm, v

Overall, the public state is defined as o = (stage, pkg, a, b, v, pk;, S, R) and the

private state is defined as p = (bidOpen, bidComm,v). The public state is ini-

tialised by the seller to (1, pk,, a, 2, 0, 7, 2, @).

The oracle queries corresponding to each interaction with the contract are

given as closures, that is, sub-functions which make use of some of their parents

local variables. To clarify where this is the case, we place such variables in the

subscript of the function name. These functions are passed to either the public

or private state oracle as the input g, as specified in Definition 6.1.

Bidding: Given an asset opening bidOpen, with value v, corresponding to
an asset commitment bidComm, which has been bound to the auction con-
tract, I first makes the following public oracle query:
function makeBidy;qcomm((stage, pky, a, b, v, pk;, S, R))
assert stage = 1

return ((stage, pkq, a, b, v, pky, S u {bidComm}, R), T)

Further, it makes the following private oracle query:

function recordBidbidOpen,bidComm,v('v )

return ((bidOpen, bidComm, v), T)

Revealing: Given a public key to redeem the funds in case of losing the
auction, I' first makes a private oracle query to retrieve which bid is owned:

function retrieveBid((bidOpen, bidComm, v), -)
return ((bidOpen, bidComm, v), (bidOpen, bidComm, v))

Next, the contract makes a further private oracle query for the expected

maximum bid, to determine if the buyer’s bid is higher:
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function projMax(p,z = (-,-,0" = (..., v’,...),","))

return (p,v’)

If this query returns v/ < v, the contract attempts to claim the maximum
bid with the public oracle query3:
function C|aimMaXbidopen,bichmm,v,pk(O')
let (stage, pkq, a, b,, vy, pk,, S, R) < &
assert bidComm € SAv > v, A stage = 2
return ((stage, pk,, a, bidOpen, v, pk, S \ {bidComm}, R u {(bo, pko)}), T)

Ifthe original value test fails, on the other hand, instead the contract trans-
fers the ownership of bidComm via the underlying asset system to pk and
runs the public oracle query:
function claimLosspigcomm((stage, pky, a, b, v, pk,, S, R))
assert bidComm € S A stage = 2

return (T, (stage, pk,, a, b, v,, pk,, S\ {bidComm}, R))

- Withdrawing: Given a public key pk, which the caller knows the corre-
sponding secret key for, the contract will make an oracle query to deter-
mine which assets to transfer ownership of and to un-record them in a
public oracle query:

function withdraw,,((stage, pky, a, b, v, pk, S, R))
assert stage = 3
if pk = pk; A b # o then
return ((stage, o, a, 9, g, pk;, S, R), (B, b))
else if pk = pk, Aa # zthen
return ((stage, pk,, @,b,v,2, S, R), (A, a))
else if dc: (c, pk) € Rthen
return ((stage, pk,, a, b, v, pk,, S, R\ {(c, pk)}), (B, c))

- Advancing the stage: The seller (given their public key pk) may advance
the contracts stage from 1 or 2 to 2 or 3, respectively, with a public oracle
query:

function advanceStagepk((stage, pk,,a,b,v, pky, S, R))
assert pk = pk, A stage € {1, 2}
return ((stage + 1, pk,a, b, v, pky,S,R), T)

3Note that the claim may fail if the maximum bid increased from the one projected at the time
of transaction creation.
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This example does not handle corner cases (such as buyers bidding multiple
times) and is not intended for practical use. Instead, its purpose is to illustrate
the advantages state oracles provide: The query an interaction will make and the
response it will receive, are often not affected by other interactions. Concurrent
bids do not conflict, for instance. The representation of data is also not crucial,
as the state oracles may themselves interact with abstract data types.

We complete our example by specifying the core transition functionI', under
the assumptions that a means to call into a separate asset management system
(a contract that permits transferring ownership of assets between public keys),

such as presented in Subsection 6.7.4, exists. We also assume that a user’s public

key can be retrieved with a shared “identity” contract.

Transition Function I, {0

A simple private auction contract.

When receiving an input (BID, v):
send (BIND, v, T, ,.tion) to I'z and
receive the reply (bidOpen, bidComm, v)
send makeBidp;ycomm to O, and receive the reply T
send recordBidyigopen bidcomm,y t0 O, and

receive the reply T
When receiving an input REVEAL:

send retrieveBid to O, and
receive the reply (bidOpen, bidComm, v)
send IDENTITY to [';; and receive the reply pk
send projMax to O, and receive the reply v’
if v/ < vthen
send (ASSERTVALIDFOR, bidOpen, bidComm, v, pk, T, ,ction) to 'z
send claimMaxy;qopen bidComm,v,pk t0 Oy and
receive the reply T
else
send (UNBIND, bidOpen, pk) to I'y

send claimLosspigcomm t0 O, and receive the reply T

When receiving an input WITHDRAW:

send IDENTITY to [';; and receive the reply pk
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send withdraw, to O, and receive the reply (X, x)
if X = Athen

send (TRANSFER, x, pk)to ',
else

send (UNBIND, x, pk) to ['g

When receiving an input ADVANCE-STAGE:

send IDENTITY to ',y and receive the reply pk

send advanceStage,, to O, and receive the reply T

Using transcripts. KACHINA relies on a few key observations on how tran-
scripts relate to the original state oracle execution. To begin with, we define a

few ways in which transcripts may be used.

Definition 6.2. Astateoracle transcript 7 maybeapplied to astateain a context
2. We write @ « T (a,z),orif z = @, & «— T (), the operation of which is defined
through the following loop:
function 7 («, 2)
let O « U(a, z)
for (g;,r;))in 7 do
send g; to O and receive the reply r
if r # r; then return L
let (@, ) « state(O)
return a
If a transcript is malformed (that is, cannot be parsed into a sequence of query

and response pairs), applying it will result in [a, L].

Observe that the application of a transcript mimics the execution of the orig-
inal oracle, diverging only ifit returns | at some point. This allows users to repli-
cate the effect other users’ queries have on the public state, without knowing why

these queries were made.

Lemma 6.1. Foralla,z, T, where:
let O « U(a,z)
for(q,")inT do
send qto O

let (a,-) « state(O)
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letd « T(a,z)

Any prefix of @ not containing a L will match the same length prefix of .

Definition 6.3. A sequence of transcripts and contexts X = ((71,21), ..., (Tn, 2n))
is applied by applying each transcript in order. We write 7;/(a), which has the

recursive definition:
« TH(@) = a
* T3 i@ = T (ast(T (@, 2))

Definition 6.4. A transcript 7 = ((q1,r1),---,(qn,n)) (potentially including

COMMIT messages) induces a transcript oracle O(7), which behaves as follows:
« Recorded COMMIT messages are ignored.

« For the ith query ¢, returnr; if g} = g;, otherwise abort by returning 1 for

this and all subsequent queries.

« When consumed(O) is queried, return T if exactly n queries were made,

otherwise return 1.

If in an interaction with the oracle, consumed holds, the transcript was minimal

for this interaction.

If the transcript oracle O(7") does not abort when used as an oracle in some
function, then it behaves identically to the original universal oracle that was
used to generate the transcript. We use this fact to generate zero-knowledge
proofs about transactions — we prove that each oracle query in a transcript was
made and that the behaviour is correct, given the responses the transcript claims. We
also prove that consumed(O) holds, ensuring the transcript does not just start
with the queries an honest execution would make, but that it matches them ex-
actly.

These are used together to define how a transaction is made and how it is
applied: Alice generates a transcript for the oracle accesses her transaction will
perform and proves this transcript both correct and minimal. She sends the
transcript and proof to Bob, who is convinced by the proof of correctness and
minimality, and can therefore reproduce the effect of the transaction by apply-

ing the transcript to the state directly.
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Inherent conflicts. Abstracting the interaction with the state has many ben-
efits, but it is not a panacea. Some conflicts are inherent and unavoidable - a
contract may operate on a first-come first-serve basis, and no trick will ease the
pain of coming second. A contract may also simply be badly designed, not mak-
ing good use of the abstractions provided - at the most extreme, it can make only

queries retrieving or setting the entire state, negating all benefit of using oracles.

6.3.2 Interaction between Smart Contracts

The example in Subsection 6.3.1, makes the natural assumption (in the setting

of smart contracts), of being able to interact with other components — in this
case with an asset system. Most interesting applications of smart contracts seem
premised on such interactions. We consider how multiple contracts may inter-

act in Subsection 6.7.3, however we stress that a full treatment is left as future

work.

In particular, how various contracts can be independently proven secure and
composed in a general system alongside other, potentially malicious contracts,
is not handled in this chapter. Instead, where we assume interaction, we limit
ourselves to a closed smart contract system with a small set of non-malicious

contracts, such as the auction contract and the asset system in Subsection 6.3.1.

While it is tempting to delegate such interactions to the native composition-
ality and interactiveness of UC, this does not reflect the reality of smart con-
tract interactions, where the executions of multiple contracts are atomically in-
tertwined. While related issues of interaction with the environment have been

considered in the literature, for instance in [CEK"16, CDT19], they do not fully

address our scenario, in which multiple branches can be executed in projection.
We therefore believe that studying the interaction and composition of smart con-
tract transition and leakage functions requires further work, with this work pro-

viding a foundation.

6.3.3 The Challenge of Dependencies

If a transaction tx; moves funds from Alice to Bob and tx; moves funds from
Bob to Charlie, the order txj ... tx; may not be valid, if tx; relies on the funds Bob
received from Alice. When a dependency like this is violated in interacting with

the public state, attempting to apply the dependent transaction first will fail and

Chapter 6. Privacy in Smart Contracts 236



the transaction is rejected.

How such interactions affect a user’s private state is more tricky to handle.
While two different parties cannot conflict with each other on private state
changes due to domain separation, parties may encounter internal dependencies.

A party starting with the private state p;, makes a transaction tx; which ad-
vances their private state to p,. Afterwards, they make the transaction txy, their
private state ending up as p3. If these transactions are made shortly after each
other, tx; may be placed before tx; on the ledger. It is possible that txy uses
information from txp, such as a secret key, and that it makes no sense without
it.

Should a user ignore the reordering and stick with the state pz? This can
introduce inconsistencies between the public state and private state. Should the
user apply the private state transcript of txy and hope for the best — but risk a
catastrophic failure if it cannot be applied? Neither are ideal. Instead, we pro-
pose that tx; should publicly declare that it depends on tx;, and rely on on-chain
validation to ensure they are applied in the correct order.

If a user has a set of unconfirmed transactions U and is adding the new trans-
action tx in the ledger state, dependencies should ensure that any permutation
of U u {tx} results in a consistent interaction with the user’s private state — that
is, result in a non-1 private state. Furthermore, this should even be the case if
these transactions are only partially successful — regardless as to which comMIT
point was reached.

An overeager approach would be to ensure all unconfirmed transactions are
dependencies, and are in the order that they were made. With domain separa-
tion and sufficiently abstract interactions it is likely that only few transactions
actually depend on each other. This can be application specific, and to account
for this we allow for contracts to specify a function dep to declare dependencies.
We constrain how this function may behave, and provide the all-purpose fall-
back of all unconfirmed transactions.

For most practical cases that we have observed, private state oracles do not
conflict or enter into complex dependencies with each other. Most often, their
state management is simple: sampling and storing secrets. The formal machin-
ery presented in this section is to allow this intuition that the transactions do not

depend on each other to be justified in many cases.
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Formal definition. The formal definition of dependency functions is com-
plex; we begin by introducing some mathematical notations. In addition to this
notation, we make use of the following functions: a) the higher-order function
map. b) an index function, which returns the index of an element in a list, idx. c)
the tuple projection functions proj;, which return the ith element of a tuple. d)
the list flattening function flatten, which, given a list of lists, returns a list of the
inner lists concatenated. e) the function take, which returns the prefix of a list
containing a specified number of items. f) the function zip, which combines n

lists into a list of n-tuples.

Definition 6.5. For any finite set X, Sy is the set of all permutations of X, where

each permutation is represented as a list.

Definition 6.6. The subsequence relation X C Y indicates that each element of the

list X is present in Y, in the same order:

XCY=XcYnA(Vabe X:idx(X,a) < idx(X,b)
= idx(Y, a) < idx(Y, b))

We define an expansion of transactions into useful components: As a transaction

has no private data within it, we use this to refer to this data.

Definition 6.7. Atranscript 7's corresponding commit-separated transcript Tisa
list of lists of query/response pairs, corresponding to splitting 7 at each COMMIT.

We write 7 = split(7, cCOMMIT).

Definition 6.8. A secret-expanded transaction is a tuple (, 7', z, D), consisting
of the transaction object 7, the commit-separated private state transcript 71, the

context z, and the dependencies D.

We define the format of transactions handled by the dependency function. We
make use of “confirmation depth”, the vector of which is denoted ¢. This is a
vector of natural numbers, representing how many parts of the corresponding

commit-separated transcript executed successfully.

Definition 6.9. A list X of secret-expanded transactions’ dependencies may be
satisfied given a set of still unconfirmed transaction U and a list of confirmation
depths ¢, denoted by sat(X,¢,U), which is defined formally below. Informally,

it states that each transaction in X must be preceeded by its dependencies, in
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order, and that each of these dependencies should have executed fully, rather

than partially.
. sat(g,c,U) =T

« sat(X | (-, D), ¢ | -,U) = sat(X,c,U) A (D nU) C map(projy,X) A Vd €
D, T,2,D,&:d,T,2,D) = X[i] = [T]=¢il

We write sat*(X,U) as a shorthand for the case where ¢ are maximal, that is,

cli] = [projp(X[iDI.

We define what transcripts will actually be executed for a given sequence of con-

firmation levels.

Definition 6.10. The effective sequence of transcripts (denoted ES(X,¢)), given a
list of secret-expanded transactions and a list of confirmation depths of equal
length, is the sequence of confirmed transcript parts, along with their contexts,
defined as:
ES(X, ) = flatten(map(A((, T, z,-), ¢): map(AT: (T, z), take(T, ¢)), zip(X, ©)))

We write ES*(X) as ashorthand for the case where ¢ are maximal: i.e. proj;(¢) =

[projz(proj;(X))|.

We define the central invariant the dependencies must preserve: The private

state can always be advanced.

Definition 6.11. The dependency invariant J(X,p), given a set X of secret-
expanded transactions, states that any permutation of a subset of X’s private
state transcripts which have their dependencies satisfied can be successfully ap-
plied top. J(X,p) = VY c X, Z € Sy, ¢:sat(Z, ¢, map(proj, X)) = 7;:;(2’2)(,0) # 1

Finally, we define the constraints on the dependency function.

Definition 6.12. A dependency function dep(X, T, z)is a pure function taking as
inputs a set of secret-expanded unconfirmed transactions X, a new private state
transcript 7, and a new context z, returning a list of transaction objects. It must

satisfy the following conditions:

I. If called with non-honestly generated transcripts or contexts, no con-

straints need to hold.
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2. The result must be a subsequence of the transactions in X: dep(X,7,z) C

map(projy, X)

3. When adding a new transaction tx, with the corresponding private state
transcript 7 (where its commit-separated form is 7_)’) and context z, the de-
pendency invariant J is preserved: letY = X || (tx, 7’,2 =(,p°% "), dep(X,
T, 2)in Ty (0°) # LA JX, %) = J(Y,p%)

The dependency function dep(X, 7, z) = map(proj;, X) can always be used, as

it maximally constraints the possible permutations which satisfy dependencies.

6.3.4 The Contract Class

The core KACHINA protocol can realise a class of smart contracts, with each con-
tract being primarily defined by a restricted transition function I'. This tran-
sition function is given oracle access to the calling user’s private state py and
the shared public state o, as described in Definition 6.1. In addition to these
oracle accesses, I' can make (COMMIT, y) queries, which a) send COMMIT to both
oracles, and b) record the value y in a vector of partial results y. We write y «
I‘Om@p(w) as running the transition function against input w, with oracles O,
and O,, returning the vector of partial results y. The final output of T is appended
toy when it terminates. The adversary can program its own private state oracle -
it corresponds to local computation, after all! Two minor functions are also used

to define the corresponding ideal contract:

 The leakage descriptor desc, which receives the time ¢, the sequence of
secret-expanded unconfirmed transactions X, transcripts 75, 7,, original
input w, and context z of new transactions as inputs and returns a descrip-

tion of what leakage this interaction will incur.

+ A dependency function dep satisfying Definition 6.12.

Definition 6.13. Cgcuina i the set of all pairs (Agacaina(l), Akacaina (L, desc,

dep)), for any parameters I, desc and dep, satisfying Definition 6.12.

Ak acuina and Agacuina Operate as follows; we assume the set of honest parties
‘H - in the ideal world, this is known by the functionality, while in the real world

we assume each party ¢ will use H = {{}}.
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Transition Function Ag, ciina (D)
The KACHINA transition function, running an internal transition function I' with
oracle access to the public contract state and the private state of the party making
the query. The query has an associated context z, which the private state oracle may
access, and an associated public state transcript 7,, which must be consistent with

the current public state in order for the query to run successfully.

When receiving an input ((o, p), P, w, (T4, 2),-):
let (,-,p,",y) < run-T(o,p[¢], w,z, P € H)
leto’ < o0,y « 1 T split(7y, COMMIT);C « T
for (T7,0”,p’,y’) inzip(T, &,p,y) do
leto’ < T'(0")
ifo' =1vp' =1vo #0” then
letC « L
break
leto — o”;plp] < p;y <y
return ((0,p),C,y)

Helper procedures:
function run-I'(o,p, w, z, h)
Oy «U(0,2); 0, « U(p, 2)
if -hthenlet O, <z
y < To,0,w)
(0,T,) « state(O,); (B, T,) « state(O,)
return (¢, 75,5, 7,,5)

Leakage Function Ag,cuina (T, desc, dep)
The KAcHINA leakage function reveals the public state transcript generated by I
during the projected transition. This projected transition takes the state of the con-
tract as the party currently sees it, and first replays all currently unconfirmed trans-
actions from the same party. Both the initial (latest confirmed) contract state, as
well as the projected state, and a randomness stream are considered the transac-

tion’s context.

When receiving an input (w = ({,U, T, w = (¢°,p°)), P, w):
let (o™, p") < (¢°,p°[P])
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foruinU do
let (¥, w’,(75,2),-,, D) < T(u)
if 7,(0™) = 1 then
return (L, 1,1,1,1)
let (o,-,p,7T,") < run-T'(o”™, p", W', 2,/ € H)
let 0™ « last(c); p™ « last(p)
let X « X | (u, 7T,z D)

let n be arandomness stream.
letz < (0°,p°[¢], 0™, p", 1)
let (o, 7, p, T5,) < run-T(a™,p", w,2,T)
if last(6) = L v last(p) = L then
return (1, 1,1,1,1)
else
let D « dep(X,7,,2)
return (desc(t, X, T, T,, W, 2), Tg, D, (T4, 2))

6.3.5 The Core KACHINA Protocol

The construction of the core protocol itselfis now fairly straightforward. We use
non-interactive zero-knowledge to prove statements about transition functions
interacting with an oracle. When creating a transaction, users prove that the
generated transcript is consistent with the transition function and initial input.
Instead of evaluating transactions, users apply the public (and, if available, pri-
vate) state transcripts associated with them.

Formally, the relation R of the NIZK used is defined as follows, for any given
transition function I': ((74,-),(w,7,)) € R if and only if, where O, « O(7,),
and O, < O(7)), Iast(l’omop(w)) # 1, and after it is run, consumed(O,) A
consumed(0,) holds. This is efficiently provable provided that 75, w, and 7, are
short, and T itself is efficiently expressible in the underlying zero-knowledge

system.

Protocol KACHINA
The KACHINA protocol realises the ideal smart contract functionality when param-
eterised by a transition functionI’, aleakage descriptor desc, and a dependency func-

tion dep, such that the corresponding (A, A) pair is in Cg,cyna- It Operates in the

Chapter 6. Privacy in Smart Contracts 242



R
(‘FNIZK’

((T5,),w,7,)) € R if and only if, where O, « O(7,) and O, < O(7,),
Iast(I‘Om@p(w)) # 1 and after it is run, consumed(O,) A consumed(O,) holds.

GimpleLedger)-hybrid model, where R is defined below.

State variables and initialisation values:

Variable | Description

T = o | Mapping from transactions to their private state transcripts and con-
texts.

Y = @ | Mapping from transactions to their outputs.

U = ¢ | Sequence of unconfirmed transactions.

When receiving a message (POST-QUERY, w) from a party y:

let ¥ — updateState(y)
let (09, p°) « execState(2)
leto” « 0%p" «p° X «¢
foru=(7,,D,)inU do
let (7,,2) « T(w)
let 0™ « T,(0™);p" < T,(p", 2)
let X < X | (u, split(7,, cOMMIT), z, D)

let n be arandomness stream.
letz < (0°,p°%, 0", p", 1)
let (0, 7,,p,7,,y) < run-IT(c™,p", w, 2)
if last(6) = L v last(p) = L then
return REJECTED
let D « dep(X,7,,2)
send (LEAK, desc(|2|, X, 75, 7,,w, z)) to p and
receive the reply b
if b then
send (PROVE, (T, D), (w, 7)) to F[X, and
receive the reply 7
let tx « (7, D, )
let T(tx) < (7,,2); Y(tx) «y;U « U | tx
send (SUBMIT, tx) t0 GsimpleLedger
return (POSTED, tx)
else

return REJECTED

Chapter 6. Privacy in Smart Contracts 243



When receiving a message (CHECK-QUERY, tx) from a party }:
let ¥ « updateState(y)
if tx € ¥ then return execResult(prefix(Z, tx))

else return NOT-FOUND

Helper procedures:

procedure updateState(yp)
send READ t0 JgimplcLedger a0d receive the reply 3.
let C « execConfirmed(X)
letU’ « U
repeat
letU <« U’
fortx = (-,D,)inU do
if D¢ (CulU)v(DnC)YZ Zthen
letU’ < U’ \{tx}
untilU = U’
return .
procedure execState(X)
let (o, ) < exec(2) in return o
procedure execResult(Z)
let(-,y, ) < exec(2) in return y
procedure execConfirmed(2)
let(,-,C) « exec(2) in return C
procedure exec(2)
leto—g;pe—g;y— 1;C 02
for tx = (7, D, m) in dedup(Z) do
if tx € C then continue
lety « L
send (VERIFY, (T,, D), ) to FX and
receive the reply b
if -b then continue
if D\C # 2 v D ¥ then continue
letC « Cu{tx}
if T(tx) # 1 then
let parts « zip(split(7;, coMMIT), split(T(tx), COMMIT), Y(tx))
for (7;,7,,y") in parts do
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if 7/(0) = Lthen
letC < C\{tx}
break
leto < 7;(0);p < Ty(p)iy < ¥’
else
for 7 in split(7,, coMmMIT) do
if 7,(0) = L then
letC « C\{tx}
break
leto — 7)(o)

return ((g,p),y,C)

6.4 Security Analysis
The security of KACHINA is given through a standard UC security statement:

Theorem 6.1. For any contract (A, A) € Cxacuina, KACHINA UC-emulates FAN in

SC’
the F, IZﬁZK-hybrid world, in the presence of GsimpleLedger-

This is proven through a detailed case-analysis of any action an environment,
in conjunction with the dummy adversary, may take. We define an invariant
I between the real and ideal executions in the UC security statement, roughly
encoding that “the real and ideal states are equivalent”. This ranges from sim-
ple equivalences, such as them having the same ledger states, or the same NIZK
proofs considered valid, to complex invariants, such as all unconfirmed honest

transactions satisfying the sub-invariant J of Definition 6.11. This invariant is

used to argue that the environment, in combination with a dummy adversary,
cannot distinguishing between the real and ideal worlds. Specifically, for any ac-
tion the environment takes, I is preserved, and from I holding, we can conclude
that the information revealed to it, or the dummy adversary, is insufficient to
distinguish the two worlds.

The simulator for KACHINA is quite straightforward; it simply creates simu-
lated NIZK proofs for all honest transactions and forces the adversary to reveal
witnesses to the simulated NIZK functionality in time for these to be input to

the ideal smart contract. Fundamentally, the security proof relies on state tran-
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scripts being interchangeable with full state oracles in the same setting, and this
setting being enforced by both the protocol and functionality.

While a lot of factors must be formally considered, this is derived from re-
ceiving NIZK proofs as part of valid transactions, which prove precisely that if
the preconditions for the transaction are met, then the update performed on the
public state is the same. The private state is a little more tricky, but is guaranteed
by the dependency invariant J holding for honest parties. This lets us similarly
argue that the private state transcript will have the same effect as the ideal-world

execution.

Proof. If an environment can distinguish between the ideal and real executions

in presence of our simulator (see Subsection 6.4.1), then there must exist some

polynomial sequence of interactions permitting it to distinguish with a non-
negligible advantage. Broadly, each of the environment’s actions falls into
one of three categories: a) Honestly interacting with the protocol. b) Honestly
interacting with the ledger. c) Commanding the adversary to perform some
action in the real world. We will consider the responses the environment makes
to queries given to the dummy adversary separately, in each case at the point
where the query is made.

We will consider in parallel two random variables of the state of the ideal
world execution and that of the real world execution at any time. We leave out of

our analysis the “stack” of partial executions (as described in Subsection 2.3.4),

except to show that the flow of each party - that is, when it is waiting for which
query to be answered - is the same in both worlds. In particular, the state of the
ideal world has the following functionalities’ states as a part of it: 1. the state of
the simulator, S, 2. the state of the smart contract functionality, ]-"SA C’A, and finally
3. the state of the ledger, G| . In the real world, for each § € H, §’s protocol state,
which we refer to as ¢y, is part of the state, along with the (shared) NIZK hybrid
functionality ]_-ijng and thereal-world ledger, G/ . For convenience, we will often
talk about these states as concrete variables and not random variables.

We will prove inductively that any action the environment takes will do two
things: First, it will preserve an invariant I, which holds after the state of both
worlds at any point during the two experiments. Second, if the invariant holds,
the environment gains at most negligible advantage in distinguishing from its

next action. To begin, we will specify the simulator, the invariant I, followed by
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a few lemmas helpful in the proof. Finally, we will perform the induction itself.

6.4.1 The Simulator

The simulator for KACHINA has fairly little work to do. Firstly, it creates sim-
ulated transactions by creating a simulated NIZK proof and attaching it to the
leakage x. Secondly, when presented with an unknown transaction and asked
for the corresponding input, it attempts to extract the input from the simulated

zero-knowledge functionality.

Simulator Sk, cyina
The simulator Sy, cuina has two main points of interaction in the ideal world: First,
it gets notified of the leakage of honest submissions, in the form of the new public
state 0/, and decides their format on the ledger. Second, it gets queried when an
adversarial transaction is seen on the ledger, and must assign meaning to them.
Furthermore, it simulates the non-global functionality J:rzﬁzw which the adversary

may interact with.

State variables and initialisation values:

Variable ‘ Description

R : : R
Fzk ‘ Simulation Of'FNIZK

When receiving a message (TRANSACTION, 7T, D) from .7-"5A C’A:
query A with (PROVE, (7, D)) and
receive the reply 7,
satisfyingm # LA (-, ) ¢ ]:,ZﬁZK.H A(x,m) ¢ ]-"ZﬁZK
sampling from {0, 1}* , on behalf of ]-",ZFIZK
let fGZK'H « }",ZFIZK.H u{((7T4, D), m)}
return ((7,, D, 7), @)

I, else

When receiving a message (INPUT, (74, D, 7)) from .FSAC’A:
simulate sending (VERIFY, (7, D), ) to F[ZFIZK and receive the reply b
if b A dw, T, J—",ZFIZK.W((ﬁ, D), n) = (w,7,) then
return (A, w, (75, O(7,)),2, D)
else

return NONE

Forward all queries to ]-",ZFIZK to the simulated instance. Forward all queries to global function-

alities directly.
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6.4.2 TheInvariant]

Definition 6.14. Theinvariant I isthe conjunction of all of the constraints below,
over the state variables of a UC experiment on a pair of matching real and ideal

worlds:

(1) The ledgers are indistinguishable:
GL.3=Gl.E AV e H:GLMW) = GT.M(P)

(2) The simulated and real NIZKs consider the same statement/proof pairs

valid and invalid:

R _ TRr R T- rR' 10
S IOzl = F iz A S F Gz = Fz 1l

(3) Real world witnesses have a corresponding ideal world witness:

VT, D, 7: 3Ty, w: FL8 W(T5, D), ) = (T, w) =
S.FR W((T5,D),m) = (T, w) v
[3p € H,z = (0°,p°,07,p", n):
$p-T((T5, D,m) = (T5,2) A
Foh T(Ty, D,m) = (, w, (T4, 2),2,D) A
run-T(o”, p", w,2,7) = (, Ty, ", Tp, $3-Y (T3, D, m))]

(4) Recorded transactions are proven, and only adversarial witnesses are

known by the simulator:

Vg, D, 1, FeX T(T5, D, ) = (§,..) =
((Ty, D), m) € Fo2 TI A
@WeH = ((T5,D),m) € SFR, W)

(5) Honest parties record transactions correctly:
Vi € H, tx:
(tx € pp.T = txedyY = F Tt = (,..))A
(tx € pyp.U = tx € ¢py.T)

(6) All recorded transactions respect dependencies and transcripts:
AA .
Vixe F 0T
fSAC’A.T(tx) = NONE V
(d7T,D,mtx = (T,D,m) A
FANT(W0) = (-, (T, ), 2, D)
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(7) Recorded as rejected transactions are disproven:

Vg, D, 7: Fo!  T((T5, D,m)) = NONE = ((T5, D), m) € For I

(8) The dependency invariant J holds for all honest unconfirmed transac-
tions: Vi € #H, let 3 be the longest prefix of G/.M() such that % n
$pU = o, define X(u = (,D,?) = let(T,z) = ¢y.T(w)in (u,split(T,
coMMIT),z,D) and ((,p),,C) = ¢y.exec(Z). Then J(map(X, py.U),p) A
sat(map(X, ¢y.U), dyp.U) AV(, D, ) € ¢py.U: D\ C\ ¢py.U = @ holds.

(9) Transactions owned by an honest party and not in their view of the ledger,
are considered unconfirmed, or can never be accepted: Let 2 be the longest
prefix of G[.M(ip) such that Vix € Z:tx € }"SAC’A.T.

Vip e H,tx ¢ B Fo T = (§,..) =
tx € pyU v (2 > GT.M(@): tx € Fyr*.execConfirmed(’ | tx)

(10) Allresults and state updates are consistent with the input and transcripts:
function transcriptConsistent(cg, po, , 2, 75, 7,,Y)
let (0,-,p,y) < run-I'(ag, po, W, 2, T)
let 7%, « split(7T;, COMMIT)
let 71p « split(7,, cOMMIT)
leto « o9;p < po
let parts < zip(c, p, '7'0, '7';,,}, Y)
for (o/,p’, 74,7, ,¥1,y2) < parts do
leto  T5(0)ip « T;(p)
if 0 = 1 then break
elseif o # 0’ vp # p’ vy, # y, thenreturn L

return T

Vl]) € H’ 7:7" tx = (7:7) %y ')7 w, Z: ~F.SA(,:A:T(tX) = (IJ)) w,2z,9, ) i
[37;,: d)dI'T(tX) = (7;, Z)A d)dI'Y(tX) = I‘O(%),@(ﬁ)(w) A
[Vo, p: transcriptConsistent(o, p, w, 2, Tg, Ty, Py-Y (tx))]]
(11) Execution results should be equivalent for prefixes and extensions of the

ledger state containing no new adversarial transactions:

V3, e H: (5 < OL.3v GI% < 5) A Vix € 3
Fe Tt # 1) =
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let (o, p1), ¥, C') « Feexec(Z);

((0",0"),y",C") < py.exec(2);
ino = p' npi[p] = p' ACH=C" A
if]'—SAC’A-T(E‘a[—l]) = (,...)theny" = y'elsey” = L
(12) Recorded transactions which are canonically preceeded by a (yet) un-

recorded transaction, are honest and considered unconfirmed by their

owner:

Vix € (]—"SAC’A.T NG/ .2),tx" € (G[.2\ ]—"SAC’A.T), P e H:

idx(G7.3, tx') < idx(G] .2, tx) A Fer " T(tx) = (@, ...) =
tx € py.U v (#Z > G .Z:tx e }"SAC’A.execConfirmed(Z’ | tx))

(13) Theledgeris ahead of any party’s ledger:

VipeH:G M) < G[.2
(14) The same transactions are unconfirmed in both worlds:

Vip € HyU = Fe Uy,
(15) NIZK proofs have witnesses:

. R,r
Vx,m(x,m) € FNIZK.H —

Hw: J-"ZEQK.W((x, ) =wA
S.J:KFIZK.W((x, ) €{w, L} A
(x,w)eR

(16) Recorded transactions are either on the ledger, considered unconfirmed

by an honest party, or can never be satisfied:
Vix € ]:SAC’A.T: txe G .2V

(dp € Hetx € y.U A Fo " T(tx) = (P, ..)) v
(> - G .3 tx € ]—"SAC’A.execConfirmed(Z' | tx))

Often many of these parts of the invariant are trivially preserved due to the
state variables constrained in them being left unchanged. Such trivial cases will

be omitted in our analysis.
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6.4.3 Supporting Lemmas

Both .FSAC’A and KACHINA have exec functions, which executes an entire ledger
state given toit. Lemma 6.2 is a generalisation of invariant (11), and simply states

that this execution will preserve the invariant and return the same values in the

real and ideal world.

Lemma 6.2. Forany € H, X where. < G/ .3v G/ .% < 3, and after sending the message
(EXTEND, >\ Q[.Z) to G, ((o‘i,pi),yi, CY) is the result of running exec() in FSAC’A and
((a",p"),y",C") is the result of running exec(Z) in by, these interactions preserve I and the
returned values are equivalent: ol = o" npi[P] = p". If the last transaction tx in % is owned
by (ie., ]-"SAC’A.T(tx) = (,...)), theny' = y", otherwisey" = L.

Proof. First, we consider the EXTEND call. This will only extend if ¥ is longer
than G| .2 - otherwise it extends with ¢, which is a no-op. This call preserves I,

as demonstrated in Subsection 6.4.4.

We prove the lemma by induction over 2. In the base case, 2 = ¢. The in-
variant is trivially satisfied and the returned values are equivalent (when o is
interpreted as public/private state pairs). In the induction step, we proceed by

case analysis for the new transaction tx = (7, D, n):

Case1. Thetx € .FSA(’:A.T and all processed transactions so far have also been
recorded (are in FSAC’A.T). If so, then by (11), the return values are equivalent. Fur-
thermore, this iteration does not change the state in the ideal world. By (4) and

(_7), we also know that the transaction is either in ]—"ZﬁgK.H, or ]—"zﬁerﬁ As a re-
sult, no state changes will be made in the real-world execution either, trivially

preserving I.

Casez. tx ¢ Fy!".T,but((T,D),m) € F\7 JL Inthis case, the real world will
skip this transaction and set y to L. In the ideal world, the simulator will ensure
that FSAC’A.T(tx) is set to NONE and equally this transaction is skipped, with y set

to L. This affects and preserves the following invariants:

(3) Asby (15), tx has no witness.

(4) As FSAC’A.T(tx) = NONE, not satisfying the precondition.

(5) As tx was not in .FSAC’A.T in the induction hypothesis and is not associated

with an honest party.
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(6) By Fo*

(6) s¢ -T(tx) being NONE, satisfying the postcondition.

(7) Dueto ((T,D),m) € Fiy JL

—~

) As }"SAC’A.T(tx) = NONE, not satisfying the precondition.

—_

(10) As tx was not in fSAC’A.T in the induction hypothesis, it cannot be in any

d)ll,.Y, by (_5)

(11) By the output equivalence part of the induction step holding.

(12) By tx being previously unrecorded, further restricting the quantification

domain and ]—"SAC’A.T(tx) = NONE, not satisfying the precondition.

(16) By the newly recorded transaction being in the ledger state, as this has

been extended if necessary.

Case3. tx ¢ fSAC’A.T, but ((7,D),n) € f;zng.H. In this case, by (1_5) a witness

must be recorded and by (3) this witness must be accessible to the simulator.
As a result, the simulator will ensure that T(tx) is set to (A, w, (75, O(7,)), 2, D).
As this is an adversarial transactions, the p-value of the adversary is not con-
strained and neither is the output y-value. As a result, to show the execution
equivalence holds, it suffices to show that both worlds will have the same o-value
after this new transaction. In the real world, the commit-separated form of 7
is applied to ¢ in parts, with the last non-1 state being adopted. In the ideal
world, the 7, is recomputed and the parts compared with those passed as in-
puts. The confirmation depth is derived from how many parts match before the
computed and input transcripts diverge, or the result is L. The ideal world runs
run-I'(e, 75, w, O(7,), L). Since (74, D), (7,, w)) € R (by (1_5)), we know that the
public state oracle in run-I' can be replaced with O(7,), up to the confirmation
depth, after which the executions may diverge. As a result, the o returned in the
ideal world - o indexed at the confirmation depth - matches that returned in the

real world. As }"SAC’A.T is set, the following parts of the invariant are affected and

preserved:

(3) By the left hand side of the disjunction already being satisfied.

(4) Bythetransaction being recorded in the NIZK, and the simulator knowing

its witness.
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(5) As tx was not in }"SAC’A.T in the induction hypothesis and is not associated

with an honest party.

—_

) By the newly recorded transaction satisfying the postcondition.

—_~

) By the newly recorded transaction not being recorded as rejected.

—~

) By the newly recorded transaction not being honestly owned, not satisfy-

ing the precondition.

(10) As tx was not in ]-"SAC’A.T in the induction hypothesis, it cannot be in any
¢¢'Y’ by (_5)

(11) By the output equivalence part of the induction step holding.

(12) By tx being previously unrecorded, further restricting the quantification

domain and ]-"SAC’A.T(tx) = (A,...), not satisfying the precondition.

(16) By the newly recorded transaction being in the ledger state, as this has

been extended if necessary.

Case 4. Thetransaction hasnotbeen previously seen —thatis, tx ¢ FSA C’A.T and
((T,D),m) ¢ .FZFI;K.H U Fﬁgwﬁ. In this case, both the real and ideal worlds will

attempt the same NIZK verification (simulated in the ideal world). By (2), they
will both query the adversary for a NIZK witness in the same way, handing off
execution. By the induction hypothesis, I holds as the point of execution transfer
and, as the query made is the same in both worlds, the environment gains no
means to distinguish.

As NIZK verification is the first thing done in both worlds and NIZK veri-
fication is agnostic as to which party is verifying, this is equivalent to the en-
vironment first manually verifying the same statement/proof pair. As will be

shown in Subsection 6.4.4, this preserves the invariant and returns the same

result in both worlds. Therefore, Case 4 is equivalent to either Case 2 (if the NIZK
verification failed), or Case 3 (if the NIZK verification succeeded), as if the NIZK
verification were done externally beforehand, the statement/proof pair must be

. . R,r . Rr T
either in Faz AL orin F o L
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Cases. txe ]—"SAC’A.T, however (I_I) cannot be applied, as other transactions have
since been added. By (12), we know that tx belongs to an honest party ¢’ and
that tx € ¢y,.U. We will use @ to argue that, where (7),2) = ¢y .T(tx), either
7;,(pi[l])'], z) # 1, or the transaction is skipped in both worlds.

First, we consider the possibility that tx ¢ ¢y, .U. By (9) we know that tx can-
not ever be confirmed by a suffix of the ledger state referred to in the invariant.
As this is a prefix of QE.Z, such that it contains no unrecorded transactions, the
current induction is necessarily a suffix of it. As a result, we know that the ideal
world execution will fail. As transactions are rejected in both worlds under the
same conditions — due to dependencies not being satisfied — we can conclude that
these transactions are also skipped in the real world, preserving I as no state
variables are changed and satisfying all conditions by the induction hypothesis.
We will now focus on the case that tx € ¢y, .U

Next, we determine that, given tx € ¢y .U, the longest prefix %" referred to
in (8)is a prefix of the ledger state X we are currently performing induction over.
We know it to be a prefix of G, .M(¢’), such that this prefix contains none of the
transactions in ¢y, .U. As tx € ¢y, .U and is either a prefix or extension of G| .2, of
which G.M(¢’) is itself a prefix by (13), we can conclude that 2* < X.

To apply @, we are only concerned with the party’s private state p, we can ob-
serve all transactions in ¥\ 2" are either not owned by ¢’, will not be accepted in
any context, or are in ¢py,.U. We can ignore the first possibility, as the real world
execution of them will not affect p, regardless. The second can also be ignored, as
these will be skipped by the ideal world execution and, by induction hypothesis,
by the real world execution as well. Next, we consider which of the transaction
in 2 \ 2* owned by § have been successfully processed. exec provides replay
protection, ensuring that each unconfirmed transaction has been processed at
most once. By induction hypothesis, the sequence A of such transactions that
have results associated for this party is the same in both worlds. As exec will not
set the state to 1, we know that there exists a confirmation depth vector ¢, such
that T map(y 1,00 ® |
thereal world. Here, p” is taken to be the private state corresponding to the prefix

¥* in the ideal world.

Y’]) # Lis the result of applying these transactions in

Now that tx is processed, we know by (8) that its dependencies are either in

confirmed, and in order, in 2%, or in ¢y,.U. In either case, tx is skipped in both

worlds if it is a replayed transaction.
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As tx € ¢y .U and is not a replay, B = A | tx is a permutation of a subset
of ¢y,.U. As aresult, by (8), we know that 7;;5(map(¢¢/.T,B),E | ,)(P*[ll"]) # 1. As we
have previously established this holds for A, by definition of 7, this implies that
applying 7, to pl¢’ ]} to any confirmation depth is non-_L, where p[¢’ | is the same
as the ideal world private state for the induction hypothesis, by repeated applica-
tion of (I_o). Likewise, (I_o) allows us to conclude that o' will also be non-_, as the
update applied to it will be equivalent to applying 7, to the same confirmation
depth, which by definition of confirmation depth is not L.

Ifthe transaction is skipped in both worlds, the induction hypothesis still ap-
plies. Otherwise, up to the confirmation depth, applying both public and private

state transcript parts is non-L1. As previously noted in Subsection 6.3.1, this is

equivalent to partial oracle executions to this confirmation depth and therefore
the ideal and real world states match. Likewise, (10) applies (as by (5), ¢y.Y (tx)
is set) and we know the ideal-world result yi = ¢y .Y(tx)[c], where c is the confir-
mation depth.

IfYp = ¢’, by (5), ¢py.T is defined and, as a result, the same update is carried out
topinthereal world, asto pi [¢] in the ideal world. Furthermore, it will return the
same result y" as the ideal world, as proj (¢y.Y(tx)) = Y. Ifp # ¢/, the ideal world
update does not affect p'[i] and the correctness of the returned private state is
guaranteed by the induction hypothesis. y" = L is returned, which satisfies the
requirements. Finally, in both cases, if the confirmation depth is maximal, the
transaction is added to C, ensuring the returned C is the same in both worlds.

Neither world makes any state updates, trivially preserving I. ]

Lemma 6.3. If1 holds, then for all p € H, running updateState(yp) in ]-"SA C’A and running
updateState in ¢y, preserves I.

Proof. Tobegin with, both worlds retrieve the same value 2/ 2y, from G, , due to(1).

As seen in Subsection 6.4.4, this preserves I. Next, by Lemma 6.2, both worlds

receive the same value C and the execConfirmed call preserves I. The worlds now
iterate over ¢by.U and ]-"SA C'A.Ul],, respectively, which by (14) are equal in value. The
operations performed are almost identical, with the exception of the real world
deconstructing u = (-, D, ) for each u € U, while the ideal world extracts (..., D) =
]-"SAC’A.T(u) instead. By (6), ifu € ]-"SAC’A.T, the two are equivalent and, by (5), as
u € ¢y.U, it is also in both ¢y.T and ]-"SAC’A.T. We conclude that both worlds per-
form the same operations. Updated is only ¢y.U and ]-"SA(’:A.UII,, respectively. The
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following parts of the invariant are affected and preserved:

(5) By reducing the scope of ¢y.U.

(8) This consists of three sub-parts: The satisfaction of J, that of sat and that
D\C\U = @. The firstis trivial: ] makes a statement about all permutations
of subsets. A smaller initial set merely reduces the scope of the quanti-
fiers. The second holds due to updateState ensuring that if a transaction is
removed from U, any transactions that depend on it are also removed, with
the remaining transactions being in the same order as before. As a result,
a previously satisfied transaction is either removed itself, or still satisfied,
as it does not depend on any removed transactions and dependencies still
inU being in the same order as before. Finally, D\C\U = @is also preserved
due to the recursive removal. Specifically, if D ¢ (C uU) the correspond-
ing transaction is removed. As a result, only transactions satisfying this

condition will remain.

—_
~—

As the removed transactions either fail confirmation directly (it depends
on a transaction rejected in 3y, or a different transaction order than got
enforced), or depends on a transaction which fails. In either case, any state

37, of which 2, is a prefix, cannot accept these for the same reasons.

(12) Asin(9).

(14) By equal update. O

6.4.4 Proofof Theorem 6.1

We proceed with the main inductive proof of Theorem 6.1. We consider the base
case of the system initialisations in the real and ideal worlds. The induction
hypothesis is that after k < 2¥ interactions with any environment, the state of
both worlds satisfy the invariant I and the environment has not gained a non-
negligible advantage in distinguishing. We will assume, without loss of gener-
ality, the adversary being a dummy adversary. We provide a concrete list of
actions the environment may take before taking the induction step. We note that
as at any point the environment cannot distinguish, we can assume that it takes

the same action in both worlds without loss of generality.
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Base Case.

Proof. Most base cases hold either due to equal initialisation of variables con-
strained to be equal, or due to initialisation leaving forall quantifiers to quantify
over the empty set. The former is the case for: (1), (2), (5), and (14). The latter is

the case for: (3), (4), (6), (7), (9), (10), (12), and (16). The remaining hold for the

following reasons:

(_) At initialisation, the only prefix of G|.M(¢) is e. py-execState(e) = (2, 2).
The base case therefore holds iff J(2, 2) holds. This in turn holds iff 7,*(2) #
1l,oro # 1.

(11) Atinitialisation, the only ledger state ¥ which satisfies the condition that

Vix € Z:]—"SAC’A.T(tx) # 1 is &. For this, as both worlds are initialised to

equivalent contract states, the outputs of exec will be equal.

(13) By the reflexivity of <. O

Induction Step.

Proof. We observe that the environment is capable of the following queries:

« Vip € H,w:4 Sending (POST-QUERY, w) to ]—"SAC’A or KACHINA.
« Vi € H, tx: Sending (CHECK-QUERY, tx) to ]-"SAC’A or KACHINA.
« Vi € P, tx: Sending (SUBMIT, tx) to G .

« Vi € P: Sending READ to G.

« VX’: Sending (EXTEND, 2’) to G .

« Vi, 2’: Sending (ADVANCE, {, ") to G .

- Vi € P\ H: Sending (PROVE, x, w) to F 5.
- Vi € P:3 Sending (VERIFY, x, ) to }"[ZFIZK.

We will prove that I is preserved across any of these queries and that they

reveal the same information in both worlds.

4We omit without loss of generality the environment’s ability to make honest queries with
corrupted parties. The environment may simulate running the honest protocol to replicate these.

5Technically, as in PROVE, the environment can only instruct corrupted parties to verify. As
verification for honest parties preserves the invariant as well, and is a useful lemma, we prove
the more general statement.
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Case (POST-QUERY,w). We proceed by sub-case analysis. We identify the fol-
lowing cases: 1. The transaction is rejected by the contract. 2. The transaction
is rejected by the user. 3. The transaction is posted. In all cases, updateState is
first run. By Lemma 6.3, this preserves the invariant and also ensures that the
returned value 2y = G| .M()p) is the value returned in both worlds (by (1)). In the
ideal world, A is called. The real world largely emulates the same, computing
most of the same values identically. Of note are the values 0° and p°/p°[], which
are computed in both worlds using execState(2y). By Lemma 6.2, this preserves
the invariant and returns the same values.

The only place where the two worlds diverge in their computation is in han-
dling the unconfirmed transactions - the ideal world executes run-I' and updates
o™, p", and X according to the confirmation depth, while the real world partially
applies 75 and 7, to the confirmation depth. Before we go into the main three
cases, we will argue that, if the transaction is not rejected by the contract, then
these two approaches will yield the same result and that they will reject equally.

To begin with, in the ideal world the confirmation depth is derived from the
number of transcript parts matching between the newly generated and input
transcripts. As a transcript application is non-_1 if and only if it can be generated
in the same way in the current state, this ensures that the confirmation depth
matches in the two worlds.

Furthermore, we observe that in the real world, the final value of p™ cannot
be L - to begin with, updateState guarantees that 2 n ¢y.U = . This in turn,
along with @ ensures that J(X) holds, as well as that sat”(X, U) holds. It follows
T*(p°) # L, where 7 performs the same repeated applications of To(p, 2) as the
loop in the main protocol, using the same values. Furthermore, by (3) and (4), we
can conclude that the transcripts 7, and contexts z are the same in both worlds.
By (10) , we can conclude that the final p" values are also the same in both worlds.
Furthermore, as 7, and z are equal in both worlds and, by (6) both D and the
sequence X are also equal in real and ideal worlds. Subsequently, o, p, and D
are computed equivalently in both worlds.

We now consider the main case analysis: If the contract rejects the transac-
tion in the ideal world, the returned description is L. This happens if and only
if last(0) = L v last(p) = L, the same condition as the real world protocol has for

rejecting the transaction before querying the user. If the transaction is rejected,

no variables are modified, preserving I, and the same value is returned in both
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worlds, giving the environment no means to distinguish.

Ifthe contract does not automatically reject the query, the leakage descriptor
is computed equally in both worlds and sent to the party to acknowledge. The
party has the opportunity to accept the described leakage, or cancel the trans-
action. At the point of handing over execution to the environment, no state has
been modified, trivially preserving I and, as the same leakage descriptoris given,
it has no means to distinguishing.

In the case of the environment subsequently cancelling the transaction, both
worlds immediately return with REJECTED, again trivially preserving I and giv-
ing no means to distinguish.

Finally, if the environment accepts the leakage, both worlds obtain the
transaction identifier tx: The simulator ensures that the real-world adversary is
queried for the same NIZK proofasitisinthereal-world and that the transaction
format matches that of real-world transactions. At the time of the proof query,
no state has been modified, trivially preserving I. As the same statement is
queried for, the environment gains no information to distinguish.

Subsequently, both worlds record the transaction’s information (in ]-"SAC’A.T
and ¢y.T) and note it as unconfirmed (in }"SAC’A.U and ¢y.U). In the real world,
the result is further recorded in ¢by.Y. The following parts of I are affected and

preserved (including the PROVE query):

By ((74, D), m) being added to both worlds’ IT equally.

o~
S

(3) As ¢y.T, fSAC’A.T, and ¢y.Y are appropriately set to satisfy the RHS of the

disjunction.

(_) As for the newly added transaction, € H and ((74, D), ) ¢ S'}—Kﬁzww (by

the uniqueness of statement/proof pairs).

. AA
(5) As the newly added transaction is added to all of ¢.T, ¢y.U, and F 2T,

where it is associated with .

—_
()
~

As the newly added transaction does consist of transcript, dependencies

and proof, and the former two are recorded in }"SAC’A.T correctly and S re-

turns @ for a.

(7) As the newly recorded transaction is not recorded as NONE.
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(8) By J being preserved when appending a new transaction, J holds after the
induction step (as p remains unaffected). sat holds by induction hypothesis
and as D C U \ {tx}. For the new transaction, D\ C\ ¢y.U = @as D < ¢y.U;

for previously transactions this still holds, as ¢.U is expanded.
(9) Asthe newly added transaction is also unconfirmed by the owning party.

(10) By 74, 7,, and y having been extracted from run-T, operating in the context
of w, z, and some o, p, with these values being recorded in the correspond-
ing state variables (except o and p). As the transcripts are transcripts of
oracle evaluations against w and y is the result of T operating with these
oracles, executing I'o(7. )’0(7;)(“)) has the same effect. Furthermore, as the
transcripts accurately reproduce the state change in the original state con-
text, by definition of transcript execution, if the sequence of transcripts
up to the confirmation depth can be applied to be non-_L, they are indistin-
guishable from making the original queries to the state oracle. Combined
with the sequence of queries made depending only on w and the state ora-
cle itself, we can conclude that the transcript applications are the same as
executing against the state oracles up to the confirmation depth, regard-

less of which initial state the transcript could be successfully applied to.

(11) As a new transaction has been recorded, we must now additionally con-
sider transaction sequences X which contain this new transaction at some
point. We cannot directly use Lemma 6.2, however we can make use of
its induction: If we can show that any 2 ending with the new transaction
tx satisfies the execution equivalences, then induction from Lemma 6.2
can apply on that as a base case (in particular, the precondition for Case 5
applies for all subsequent transactions). The execution equivalence holds
for this new base case, as we know that this new transaction is both honest
and considered unconfirmed for this party. Therefore, the argument for
Case 5 holds for tx itself as well. As the execution equivalence defined in

Lemma 6.2 is the same as that of (11), this part of the invariant is preserved.

(12) By the newly added transaction being unconfirmed, it satisfies any quan-
tification where tx is set to it. By now being recorded, the range of quantifi-

cations for tx’ is restricted, relaxing the condition.

(14) By equal update.
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(16) By the newly recorded transaction being considered unconfirmed by an

honest party.

Finally, both worlds submit to the ledger the same transaction tx, which
is simply sent to the adversary. At this point I holds as argued above and,
as the same transaction is sent, the environment cannot distinguish. Finally,
(POSTED, tx) is returned, giving the environment no information to distinguish

for the same reasons.

Case (CHECK-QUERY, tx). AfterrunningupdateState, Lemma 6.3 preserves the
invariant, but also ensures that 2y = GL-M(¢), where 2y is the value returned in
both worlds (by (1)).

We consideralree cases: L. tx ¢ Xy, 2. ]-"SA(’:A.T(tx) = (¢,...), and 3. otherwise.
In Case 1, both worlds return NOT-FOUND without updating any state, not allow-
ing the environment to distinguish and preserving I. In Case 2, both worlds run
execResult(prefix(Zy, tx)), preserving I according to Lemma 6.2, and returning
the same value in both worlds, giving the environment no information to dis-
tinguish. Finally, in Case 3, only the real world runs execResult, while the ideal
world returns L. As previously in updateState the sub-function execConfirmed
was run, we know that all NIZK-verifications performed in this exec call have
previously been made — as a result the call modifies no state and preserves I.

Furthermore, by Lemma 6.2, it returns L, as in the ideal world, giving the en-

vironment no information to distinguish.

Case (SUBMIT, tx). In both worlds tx is handed to the adversary and no other
action is taken. As the same information is relayed, the environment cannot

distinguish and, as no state is changed, I is preserved.

Case READ. By/(1), both worlds will return the same result; therefore the envi-

ronment cannot distinguish. As no state is changed, I is preserved.

Case (EXTEND, 2’). As nothing is returned, the environment gains no infor-
mation allowing it to distinguish. By (1), the updates done are the same in both

worlds. The parts of the invariant affected and preserved are the following:

(1) By equal update.
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(11) Extending G, .2 further constrains the possible X values quantified over.

(12) Without loss of generality, we can assume single-transaction appends to
QI':.Z. If anew unrecorded transaction is added, it (at first) does not precede
any transactions, leaving the quantification unchanged and relaxing the
non-existence quantifier. If a recorded honest transaction is added, then

by (9) and (13), this transaction satisfies the conditions.

(13) By the append-only nature of EXTEND.

(16) By relaxing the constraint.

Case (ADVANCE, §,%"). As nothing is returned, the environment gains no in-
formation allowing it to distinguish. By (1), the updates done are the same in

both worlds. The parts of the invariant affected and preserved are the following:

(1) By equal update.

(8) Without loss of generality, we can assume single-transaction advances. If
GL-M() n ¢pyp.U # @, or the newly added transaction tx € ¢y.U, this is
preserved as the longest prefix remains equal. Otherwise, 2 in the induc-
tion step is that of the induction hypothesis, with one transaction tx ¢
¢y.U appended. If tx is not owned by ¢, by (5), ¢y.T(tx) = L and therefore
execState(Z | tx) returns the same p as execState(2), preserving the invari-
ant. If tx is owned by ¢, by (9), this transaction will be rejected, likewise
returning the same p. Furthermore, as D\ C \ U is already @ for all depen-
dency lists D and extending ¥ can only lead to C growing, this condition

remains satisfied.

(9) By further restricting all-quantification and non-existance quantification.

(1_3) By condition that G| .M() < G .2.

Case (PROVE, x,w). Intheideal world, this query is handled by the simulated
functionality S .F,ZFIZK. If (x,w) ¢ R the call returns immediately with L in both
worlds and no variables are modified, giving the environment no information to
distinguish and preserving I. Otherwise, the adversary is immediately queried
with (PROVE, x) in both worlds. Again, at this point no variables have been mod-

ified, preserving I, and the information handed to the adversary is the same in
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both worlds, giving the environment no information to distinguish. The adver-
sary will eventually respond with a proof 7, which is verified against constraints
in both worlds and randomly sampled if it does not meet them. By (2), the con-
straints are identical in both worlds. Finally I1 and W are set and 7 returned
in both worlds, giving no distinguishing information to the environment. The
following parts of the invariant are affected and preserved:

(2) By equal update.

(3) By equal insertion into ]—"LzéK.W and S.]-"KFIZK.W.

(4) By relaxing the constraint.

(9) As the possible results of executing transactions consisting of unrecorded
statement/proof pairs is constrained - the environment can no longer de-

cide if they should be processed or not.

(11) Asin(9).

(1_2) Asin (9).

(15) As only members of R are recorded.

(16) Asin(9).
Case (VERIFY,x,m). The flow for verification is only slightly more complex
than that for proving. At a high level, the adversary may be given a chance to
produce a last-moment witness for the statement being verified. If it refuses to
do so, the proofis recorded as definitively invalid. We consider three sub-cases:
I. The statement/proof pair is recorded as either valid or invalid. 2. The adver-
sary returns a valid witness. 3. The adversary does not return a valid witness.
In Case I, VERIFY returns the same value in both worlds by (2), giving the
environment no means to distinguish. Case 2 is equivalent to the adversary
first sending a PROVE query for the given statement, supplying it with the
corresponding proof, and then running the VERIFY query. We therefore refer to
Case I and the case of PROVE. In Cases 1 and 2, no state is changed, preserving I.
Finally, for Case 3, FﬁgK.ﬁ is updated equally in both worlds and L is returned
in both worlds, giving the environment no information to distinguish. In this

case, the following parts of the invariant are affected and preserved:
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(2) By equal update.

(7) By relaxing the condition on }—IZlezrkﬁ

—_~ ]~

) As the possible results of executing transactions consisting of unrecorded

statement/proof pairs is constrained - the environment can no longer de-

cide if they should be processed or not.

(11) Asin (9).

(12) Asin(9).

(16) Asin(9). ]

As the environment cannot distinguish with non-negligible probability be-
tween thereal and ideal world in any single action if ] is preserved and, as I is pre-
served with overwhelming probability across each action by the environment
and holds at protocol initialisation, we conclude that the environment cannot

win the UC game. ]

6.5 A Case Study: Private Payments

To demonstrate the versatility of KACHINA, we take a closer look at the (private)
token contract, which is prone to the scalability issues KACHINA addresses. Pub-
lic token contracts are well understood and standardised [VB15], with the typical
implementation being to maintain a mapping of “addresses” (hashes of public
keys) to balances in the contract’s public state. We write the first provably private
token contract to demonstrate the expressive power of KACHINA.

A private token contract also implies that currency is not a primitive - it can
be built as a contract, a key factor in simplifying our model, as it does not need to
encode currency as a special case. It provides an asset to build contracts around
in the first place, as well as a means of denial-of-service mitigation, through
transaction fees. Bad fee models have resulted in devastating DoS attacks [Wil16],
highlighting the necessity of well-chosen transaction fees.

We detail how to construct a fee model in Subsection 6.7.5. The fundamental

idea of this construction is to embed the transition function I'in a wrapper which

performs the following steps:
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I. Inthe private state oracle, estimate the cost of transaction fees.

2. Given an input gas price and this estimate, pay these fees using a desig-
nated currency contract.

3. Commit this as a partial execution success.

4. Execute I' with a modified O, which deducts from available gas for each
operation and aborts if this runs out.

5. Transfer any remaining gas back to the transaction author.

6.5.1 Indirect Construction

Following the design of Zerocash [BCG*14], we write a contract that maintains
the necessary Zerocash secrets: coin randomnesses, commitment openings,
and secret keys. The private state oracle computes the off-chain information
required to make a Zerocash transaction: Merkle-paths to your own commit-
ments, the selection of randomness for new coins, and the encryption of the
secret information of these coins. This information is handed to the central,
provable core of the contract, which computes a coin’s serial number, verifies
the Merkle-path, and verifies the integrity of the transaction. Finally, the serial
number and new commitment are sent to the public state oracle, which ensures
the former is new and adds the latter to the current tree.

This design is not self-evidently correct and is not the objective itself. Speci-
fying what goal it achieves, in terms of an ideal leakage and transition function,
allows us to build a clean ideal world, with a clear private token contract. This
ideal world is constructed in two steps: First showing that the Zerocash contract
UC-emulates it, and second showing that the Zerocash contract is in turn UC-

emulated by KACHINA.

6.5.2 Ideal Private Payments

To simplify the external interface, we only use single denomination coins. The
same approach can be applied to the full Zerocash protocol, with some caveats
on coin selection and leakage.

We formally specify the private token contract through its transition and

leakage functions, Ay, and A,,. The contract supports the following inputs:

- INIT, giving a party a unique public key
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- (SEND, pk), sending a coin to the public key pk
« MINT, creating a new coin for the calling party

- BALANCE, returning the current balance

Transition Function A,
The state transition function for a private payments system. Parties have associated
public keys and balances. The payments system allows for parties without a public
key to generate one, and for parties to transfer and mint single-denomination coins,

as well as query their own balance.

State variables and initialisation values:

Variable ‘ Description

K = o | Mapping of parties to public keys
B = A:0 | Mapping of parties to their spendable coins

When receiving an input (w, P, INIT, -, pk):
if w.K(¢) = L then
while d¢’: pk = w.K(Y') v pk € {g, L } do
let pk < {0, 1}*
let w.K(y) « pk
return (w, T, pk)
else

return (L, 1, 1)

When receiving an input (w, P, (SEND, pk) , -, a):
ifp ¢ HAra+othen
let pk’ < a
assert iy € H:pk’ = w.K{@")
elseif w.K(i) # L then let pk’ < w.K(1)
elsereturn (1,1, 1)
if w.B(pk”) > 0 then
let w.B(pk") < w.B(pk’) — 1
let w.B(pk) < w.B(pk) + 1
return (w, T, T)
elsereturn (1,1, 1)
When receiving an input (w, {, MINT, pk, -):
let w.B(pk) « w.B(pk) + 1

return (w, T, T)
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When receiving an input (w, ), BALANCE, B, -):

return (w, T, B)

Leakage Function A,

Each operation on A, has minimal leakage, revealing only which operation was

performed, and, in the case of a transfer, the time and the recipient - if and only if

the recipient is corrupted.

When receiving an input (w = {,U, T, w), P, w):
letw" <« w
letB~ <0
foruinU do
let(,w',z,a,-,-) « T(u)
if w = (SEND,-)thenlet B~ « B~ +1

let (wnr ) <« AI;)p((“)”r ll); W,r Z, a)

if w = INIT then
if w.K() = w".K(P) = L then
return (INIT, INIT, &, @)
elsereturn (1,1,1,1)
else if dpk: w = (SEND, pk) then
letc <~ {0,1}"
if w.B(w.K()) — B~ > 0 A w.K(¢) = W () # L then
letlkg <t
if iy’ € H:pk = w.K(¢’) then let Ikg « (£, pk)
return ((SEND, £, pk), lkg, €,2)
elsereturn (1,1,1,1)
elseif w = MINT A w.K(¥) # | then
return (MINT, MINT, &, w.K(¥))
elseif w = BALANCE A w.K(¥) # L then
return (BALANCE, BALANCE, &, w.B(w.K(})) — B7)
else

return (1,1, 1,1)
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6.5.3 The Zerocash KAcHINA Contract

The contract implementing Zerocash, which we will use to realise the private to-
ken contract, follows its source protocol closely, albeit with single denomination

coins.

Transition Function I,
The state transition function for a Zerocash-based token contract. In blue are parts

run in the public state oracle, in red are parts run in the private state oracle.

Public state variables and initialisation values:

Variable | Description

cms = @ | Public coin commitment set

sns == @ | Public serial number set

¢ | Vector of commitment Merkle tree roots

==y

= ¢ | Vector of encrypted messages

Private state variables and initialisation values:

Variable | Description

=0 | Index of M processed.

Oy o~

= ¢ | Vector of coins available.

K, = 1 | Encryption secret key.

K, =1 | Zero-knowledge secret key.

When receiving an input INIT:

send INIT to O, and receive the reply pk
return pk
When receiving an input (SEND, (pk,, pk,)):

send (SEND, pk,) to U, and
receive the reply (p,r, K,,p’, 1, rt, path, M)

assert path is a valid Merkle tree path with root rt, to the element
comm, ((prff (1), p)

letsn « prf‘;g((p, r)

let cm < comm,. (pk,,p’)

send (SPEND, sn, rt) to O,

send (MsG, M) to O,

send (MINT,cm) to O,

return T
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When receiving an input MINT:
send MINT to O, and receive the reply cm
send (MINT, cm) to O,
return T
When receiving an input BALANCE:
send BALANCE to O, and receive the reply B

return B

When receiving a private oracle query INIT:
assertp”.K, = LAp".K, = L
let p.K, < {0, 1}"
let (p.K,, pk,) < keyGen(1¥)
return (prfpp.'}z(l), pk,)
When receiving a private oracle query (SEND, pk,):
let p° « update(p®, 0°)
let p™ « update(p™, 0™)
let p — update(p, 0™)
assert (p°.C np".C) # ¢
let (p,r) « (p°.C n p™.C)[0]
let p.5 — p.é \{(p, )}
let rt — merkleroot(c®.cms)
let path < merklepath(comm,((prfppf.Kz(1),p)), rt)
let (p',r") < {0, 1} x {0, 1}"
let M « enc((r,p’), pk,)
let K, « p°.K,
return (p,r,p°.K,,p’,r’, rt, path, M)
When receiving a private oracle query MINT:
assertp’ K, # L Ap°.K, # L
let (p,r) < {0, 1} x {0, 1}*
letcm « commr(prfg,l,(.Kz(l),p)
letp.C — p.é I (p, 1)
returncm
When receiving a private oracle query BALANCE:
let p° « update(p®, 0°)
let p” « update(p™, 0™)

return |p°.C n p".C|
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When receiving a public oracle query (SPEND, sn, rt):

assertsn € o.sns
assert rt € 0.R

let 0.sns « o.sns U {sn}

When receiving a public oracle query (MSG, M):
let o.M « o.M | M

When receiving a public oracle query (MINT, cm):

let 0.cms « o.cms U {cm}

leto.R < o.R | merkleroot(a.cms)

Helper procedures:

function update(p, 0)
let N « 0.M[p.i:]; p.i — max(p.i, |o.M])
for M € N do
if dr, p: (r,p) = dec(M, p.K,) then

if comm,((prfgﬁ(z(l), p) ¢ o.cms then continue
if prf); (p) € 0.sns then continue

letp.C — p.C| (r,p)

returnp

function dep, (X, T, 2)
return ¢
function desc,(t,-,-,-, w,")
if w = INIT then return INIT
else if pk: w = (SEND, pk) then return (SEND, t, pk)
else if w = MINT then return MINT
elseif w = BALANCE then return BALANCE

else return L

Lemma 6.4. T',. and dep,. satisfy Definition 6.12, and therefore the pair (A, A,c) =

(AkacuinaT20), Akacuina (Tze, desc,e, dep,.)) is in the set Cx ycpina-

Proof (sketch). Transcripts generated by run-T fall into three categories: They set
a private key (initialisation), they insert a coin (minting), or they remove a coin

and insert some number of coins (sending).
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Consider first a new initialisation transaction. It does not affect the be-
haviour of unconfirmed minting and sending transactions, as these do not use
the current private state’s secret key. Furthermore, it cannot co-exist with an-
other unconfirmed initialisation transaction, as this would initialise the private
keys, ensuring an abort, which violates the preconditions of dependencies.

If the new transaction is a minting or balance transaction, this functions in-
dependently of other transactions, not having any requirements on the current
private state. Likewise for sending transactions, the state transcript itself only
depends on p{®™ not the dynamic p. The only thing varying is which coins get
added and removed from the set of available coins, but this information is not
directly used - its purpose is to reduce the necessary re-computation the next

time around. O]

We can observe that (with some help from the simulator) the ideal Zerocash
contract, given by (A,.,A,c) = (Axacuinazc), Akacuina(l, desc,c, dep,.)), is
equivalent to the ideal private payments contract (A,,,Ayp). Formally, we
instantiate two instances of }"SAC’A, as presented in Subsection 6.2.2 and show
that any attack against (A,, A,c) can be simulated against (App, App)

6.5.4 Security analysis

We can observe that (with some help from the simulator), the ideal Zerocash con-

tract, given by (A, Azc) = (Akacuina(Tz), Akacuma (', descye, dep,)), is equiva-

lent to the ideal private payments contract (A, A,,). Formally, we instantiate

pp’

two instances of]-"gAC’A, as presented in Subsection 6.2.2, and show that any attack

against (A, A,c) can be simulated against (App, App)-

’A : AzcrAzc ;
Theorem 6.2. 7 " ™" is UC-emulated by F ' * in presence of GsimpleLedger-
Ay Ay . .
Corollary 6.1. F """ * is UC-emulated by KACHINA, parameterised by I';, dep,, and

desc,, in the F 1%

iz -Twbrid world, in the presence of GsimpleLedger-

This proof can also be carried out via invariants. Here the invariant tracking is
simple: The real and ideal world have the same coins owned by the same users at
any time. Our simulator, described below, has a lot of book-keeping to do, mostly
to conjure up fake commitments and encryptions for the real-world adversary,

and replicating them in the real world.
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Simulator S,

The fully detailed Zerocash simulator.

State variables and initialisation values:

Variable | Description
B =g | Unspent adversarial coins.
K =2 | Honest public/private key pairs.
T = @ | Mapping of transactions to created coin commitments.

.. Ao A
When receiving a message (TRANSACTION, X, D) from F( 2" ¥

if x = INIT then
let7, < ¢

query A with (TRANSACTION, 7, D) and

receive the reply (tx, ),

satisfying T(tx) = L Atx # L, else

sampling from ({0, 1}, 1)
let (K,, pk,) < keyGen(1¥)
let K, <~ {0, 1"
let pk, — prf';(l:(l)
let K « K u{((K,, K,), (pk;, pk,))}
let T(tx) « @
return (tx, (pk,, pk,))

elseif x = (SEND, ¢, (pk,, pk,)) then
letp < {0,1}";r < {0,1}"
letsn < prfo. (0, 1} x {0, 1}°)

{0,1*

let rt « root(t)

let cm « comm,(pk,, p)

let B+~ Bu {(pkz, pk,, cm)}

let M < enc((r, p), pk,)

let 7, < ((SPEND, sn,rt),2) | (MsG,M),2) |

((MINT,cm), @)

query A with (TRANSACTION, 7,, D) and

receive the reply (tx, -),

satisfying T(tx) = L Atx # L, else

sampling from ({0, 1}, 1)
let T(tx) « {cm}

return (tx, @)
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elseif x = (SEND, t) then
let (-, pk) <= keyGen(1¥)
let rt « root(t)

* k
letcm comm{oyl}x(prfsovl}x(l), {0,1}9

fio. 1,10, 1} x {0, 1}
let M <~ enc(({0, 1}, {0, 1}), pk)
let 7, < ((SPEND, sn,rt),2) | (MsG,M),2) |

let sn < pr

((MINT,cm), @)
query A with (TRANSACTION, 7,, D) and
receive the reply (tx,-),
satisfying T(tx) = L Atx # L, else
sampling from ({0, 1}, 1)
let T(tx) « {cm}
return (tx, @)
elseif x = MINT then
let cm € commyg 1y (prft (1), {0, 1))
let 7, « ((MINT,cm), 2)
query A with (TRANSACTION, 7, D) and
receive the reply (tx, -),
satisfying T(tx) = L Atx # L, else
sampling from ({0, 1}, 1)
let T(tx) « {cm}
return (tx, @)
elseif x = BALANCE then
let7, < ¢
query A with (TRANSACTION, 7, D) and
receive the reply (tx,-),
satisfying T(tx) = L Atx # L, else
sampling from ({0, 1}, 1)
return (tx, @)
else abort
return (tx,a’)

. . ,A
When receiving a message (INPUT, tx) from ]-’SA é’p PP,

send (INPUT, tx) to A and
receive the reply (p, w, (75, 0,), ", D)
if T(tx) # 1 then return NONE
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let T(tx) « @
if w = (SEND, (pk,,-)) then
if 7, = ((SPEND, sn, rt),2) | (MsG, M), 2) | (MINT,cm’), o) then
send (SEND, pk,) to O, and
receive thereply (p,r, K,,p’, ', rt’, path, M")
letcm « comm,,((prflp(lz(,p))
leth T
send READ to0 §| .4gr and receive the reply >
if fit: 0 < t < |Z| Art = root(t) A Htx: (T(tx) = cm A tx € 2[:t]) then
leth < L
if sn # prf‘;g((p, r))vrt#rt’vM# M then
leth « L
if cm’ # comm,.(pk,,p’) thenleth — L

if -b then return NONE
// We now know the transaction is valid.
// We must determine if M can be
// honestly decrypted, and which
// adversarial coin is being spent.
if 4((, K,), (pk,, pk,)) € K then

letd = dec(M, K,)

ifd = (r',p’) then

letw < (SEND, (pk,, pk,))
else

letw < (SEND, (SIMKEY, 1))

else
let B —« BU{(SIMKEY, L,cm’)}
letw « (SEND, (SIMKEY, 1))
if d(pk,, pk;,cm) € B: pk; = prf?;: then
leta < (pk,, pk,)
else abort
let T(tx) « {cm’}
letz — o
else return NONE
elseif w = MINT A 7, = ((MINT, cm), @) then
let B — BU{(SIMKEY, L,cm)}
let T(tx) « {cm’}
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letz « (SIMKEY, 1);a « @
else return NONE

return (Y, w, z,a, D)

Helper procedures:
procedure root(t)
letcms « @
send READ to §| .qq.r and receive the reply 3.
for tx € X[:t] do

let cms <« cms U T(ix)

return merkleroot(cms)

Proof (sketch, of Theorem 6.2). To begin with, observe that from the collision resis-
tance of PRFs, commitments, and sampling from {0, 1}, all coin commitments,
serial numbers, and public keys will be unique with overwhelming probability.

The environment can perform the following primary actions: a) For any hon-
est party, run (POST-QUERY, w). b) For any honest party, run (CHECK-QUERY,
tx). c) For any party, run (SUBMIT, tx) against G,. d) For any party, run READ
against G, . e)Run (ADVANCE, p, ¥") against G| , and f) for any party, run (EXTEND,
Y’) against G .

All but the first two of these are trivial. The simulator forwards all queries to
G, and the state of G| depends on no other functionality (transactions “submit-
ted” in the ideal functionality are only passed to the adversary). As a direct re-
sult, the state and return value of G| follow the same distribution in both worlds,
giving the environment no means to distinguish.

During the running of CHECK-QUERY the environment does have a signif-
icant additional means of input, in the form of being able to assign meaning
to adversarial transactions as they get executed for the first time. It is sufficient to
show the following: a) From the ideal-world leakage, the simulator can create
indistinguishable real-world leakage. b) Ideal-world transactions have the same
leakage descriptions sent to the environment (and are rejected under the same
conditions). c) An invariant holds between the ideal and real-world contract
state, such that it is preserved across both honest and adversarial transactions’
transition function executions.

We omit the full detail of this invariant. To sketch the idea behind it, we must
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prove that the following are preserved: The public keys recorded in the ideal con-
tract state and the simulator must correspond directly to secret keys recorded in
the real contract state and the same public keys are returned by the real contract.
Furthermore, the coins held by honest parties in the real contract should be valid
at any time and correspond directly to the balance of the same party in the ideal
contract. Honest unconfirmed transactions in both the real and ideal contracts
should still be valid when they are finally executed (also implying they do not
conflict with each other).

These are preserved across honest INIT calls, as the simulator ensures the
keys it stores and the public keys returned in the ideal contract are generated in
the same way as in the real contract. They are preserved across honest SEND
calls, as they remove one commitment from an honest party’s coins and poten-
tially add it to the respective recipient party. Furthermore, the leakage function
ofhonest SENDsin the real contract ensures the same coin cannot be spent again.
They are preserved across honest MINTs, as again the balance is incremented
alongside a new coin being recorded. For adversarial transactions, as the simu-
lator has all honest private keys, it can, and does, check if an honest party would
register receiving a new coin. If a coin is sent, but no honest party receives it,
the simulator records it as adversarial — even if it may not be spendable by the
real-world adversary. Furthermore, the simulator manages which real-world
coin commitments are associated with which adversarial public key in the ideal
world. This ensures the simulator can always spend a corresponding ideal coin
to whatever was spent in the real world (assuming the real world adversary does
not spend a coin they do not own, violating the one-wayness of the PRF).

Transactions remaining valid in the ideal world is guaranteed by ensuring
the balance of a party cannot fall below zero — by assuming the worst case of only
balance removing transactions becoming confirmed. Likewise, in the real world,
the coins eligible for spending are those received in confirmed transactions, but
not spent in unconfirmed ones, ensuring they will not conflict. In both cases, key
generation will be refused if one is currently unconfirmed. MINT and BALANCE
queries both only require initialisation to have taken place in either world.

To observe that the simulator creates indistinguishable leakage, we first note
that the leakage for real-world INIT transactions is an empty transcript, which
the simulator indeed recreates. For SEND transactions, the simulator creates a

public state transcript following the same structure of one in the real contract
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execution - spending a coin, creating a new one, and sending a message. Here
there are two cases: either the recipient is adversarial, or they are honest. In the
case of an honest recipient, the simulator does not know the exact public key of
the recipient. Fortunately, however, the environment does not know their secret
keys for the same reason. As a result, it is sufficient to commit to an arbitrary
coin and encrypt arbitrary secrets. Due to the hiding of the commitments and
the key-privacy of the encryption scheme, the environment cannot distinguish
this from a real transaction. The simulator creates a random serial number -
revealing nothing due to collision resistance — and from the leakage of the length
of the ledger, can reconstruct the corresponding Merkle tree root, revealing the
same root as the corresponding real-world transaction.

Ifthe adversary is the recipient, the simulator is given the actual public keys
- and can use these directly as in the real protocol, creating a valid spendable
commitment and a message the adversary can decrypt. Minting is similar to the
case of sending to an honest party - except no message is encrypted. For the
same reason, the leakage is indistinguishable. Finally, honest balance queries
have no leakage in the real world.

For honest parties, theleakage descriptor the environment is asked to sign off
onisidentical - for INIT, MINT, and BALANCE consisting of just this string, and
for SEND, itis (SEND, t, pk), where pkis the recipient, if it is adversarial, and oth-
erwise is omitted. In each case, assertions made about the current and projected
states are satisfied in either both worlds, or neither, ensuring the transaction is
rejected or posted equally in both worlds. Specifically, all have tests for whether
keys are initialised (asserting negatively in INIT and positively everywhere else).
During spending, a positive spendable balance is also asserted in both worlds.
These holding simultaneously is guaranteed by the invariant holding.

Finally, the transaction outputs the environment receives are the same in
both worlds: For INIT, the simulator ensures it sees equally distributed public
keys. For BALANCE, the equal distribution is guaranteed by the invariant. For
all other messages, it will only see if they are in the ledger state — as the honest

transactions cannot fail and return nothing. ]

6.6 Expansionsto KACHINA

KACHINA is intended as a basis to build more complex systems on. By itself it
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has many limitations, however it presents a more flexible basis to interact with
than the entirely public state machines of traditional smart contract systems. In
this sections a few expansions are sketched, notably how the adversary’s ability
to arbitrarily set its private state can be constrained and how to model transac-
tions which go beyond a single atomic interaction. This section also explores
potential future work, discussing how the two-state model of KACHINA might

be expanded.

6.6.1 Enforcing Private State Consistency

The protocol presented so far allows an adversary to arbitrarily set their own pri-
vate state. Often it may be desirable to ensure that parties must follow the rules
ofthe contract, even when it comes to the private state, however. Thisis possible,
although it also introduces extra costs and has the caveat of not functioning with
nondeterminism.

The core idea is to store commitments to private states within the public state
of the contract. The contract itself can then verify that the private state is con-
sistent with this commitment, update it, and then re-commit to the new state,
proving the correctness of every step along the way. Clearly this adds more work
to be verified about the contract, however a more worrying change is that again
the contract needs to be able to process the entirety of the private contract state.
Fortunately using slightly more complex updateable cryptographic datastruc-
tures, such as Merkle trees, can mitigate this problem - although it cannot be
eliminated entirely, as computation which aggregates the entire private state

will still be as costly.

6.6.2 Non-Atomic Executions

Smart contracts are typically closely linked to transactions made on the under-
lying ledger and indeed we explicitly make the same link in this chapter. That
being said, there are numerous applications which do not rely on a single trans-
action per interaction with a contract, from Hawk [KMS*16], which requires at
least two transactions per round of interaction, to state channels[DFH18], which
have many of the same properties of smart contracts, but may (under optimal
conditions) not require transactions at all.

While the model of smart contracts presented in Section 6.2 technically ex-
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cludes both of these, and a full treatment of both would require further work, it
is nonetheless worth considering how they can be - albeit imperfectly — embed-
ded in this model. First, let us consider contract queries which require multiple
on-chain interactions to “complete”. As an example from Hawk, consider Alice
posts a query to a Hawk-style contract. Naturally, this will not immediately re-
turn - even if Alice’s transaction has made it on-chain. Instead, the transaction
could return a “future object” — a concept often used in concurrent programming
design, essentially just being a reference ID and a promise to associate some
data with it later. Both Alice and the manager party would have to regularly
poll the contract - for instance, send a contract query POLL every 10 minutes.
On the manager’s next POLL query, he would update the Hawk private state,
and encrypt and post the result for Alice. Finally, when Alice next polls, she
would retrieve the result and associate it with the previous “future object” as an
output. This sketches a protocol running on top of KACHIN A, which achieves this
style of interaction. It is worth noting that this requirement for end-users to
interact is also a limitation of the underlying model of universal composability:
The environment must manually instruct parties to resume, or messages to be
forwarded by the adversary.

In a similar vein, we can observe that some transactions need not be placed
on a ledger. In particular, if the shared, public state is not used, the transaction
is essentially “offchain” and there is no need to publicly post it. Furthermore,
if the public state is used for message passing (such as in the construction of a
Zerocash contract above), this part of the transaction need not be on-chain -
sending an out of band message is cheaper. Using the same UC-based approach
described above, it would therefore be possible, for example, to first define an
ideal payment-channel contract and prove that thisis UC-emulated by a contract
implementing, for instance, Perun [DEFM19]. Finally, we can argue that most
transactions in this contract can be omitted from the ledger, as they are just two-
party channel interactions. This is a rather roundabout means of constructing
off-chain communication, however it brings a crucial guarantee with it, namely

that it behaves the same underledger reorderings as a purely on-chain contract.
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6.6.3 Meta-Parties and Alternative Trust Models

So far we have presented and argued for, a model of smart contracts with clear
black-and-white privacy: Users have their own perfectly private local state and
access to a perfectly public shared state. While we believe this to be the best
starting point for approaching the issue of privacy in smart contracts, reality is
not so simple: Often users have more complex relations with each other.

To consider this more carefully, we can consider that any piece of datain a
smart contract must have a set of owners O, who can interact with it. Further-
more, in any real system, there are parties which can, together, decipher the
actual data itself and break the privacy of it. Let us refer to the set of all combi-
nations of parties able to decipher the data as T. While not strictly necessary, in
general it is reasonable to assume that the owners are also the users able to break
privacy, that is T < 2°. While clearly there are many possible combinations
here, a few stand out as interesting, and we observe that they all relate to some

interpretation of privacy-preserving smart contracts:

- O = P, T = 2% This is the setting of Ethereum and of the ¢ used in this
work. Data is public, but can be interacted with by all.

« O = {§}, T = {¢}: This is the setting of p used in this work. Data is private,

but cannot be interacted with by anyone else.

- O = P, Tis all subsets of P with a resource majority (regardless of work,
stake, or what other honest majority assumption is being made): This set-
ting is feasible by running MPC across the honest majority of the underly-

ing consensus protocol.

« Oisafixed-sizeset, T = {m}: This s the setting of Hawk [KMS*16], in which

a single party is trusted with privacy.

 Oisafixed-sizeset, T = {O}: This is the setting of privacy-preserving state-

channels, in which parties run MPC out-of-band to agree on updates.

. Ois a fixed-size set, T = 20: This is the setting of public state-channels,
in which parties run Arbitrum-like protocols out-of-band to agree on up-

dates.
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In particular, this work only directly concerns itself with the first two of
these. It is clear, however that different problems call for different solutions,
and ideally a smart contract system would encode all of these trust systems, not
just one, or a few. Part of the reason for the choice of the first two is that they are
sufficient for constructing the rest, being the exteremes of the spectrum.

The case of Hawk, for instance, was already described in Subsection 6.6.2. We

will sketch how state channels might be modelled on top of KACHINA, although
we stress that a full formal treatment of this and other settings will be left for
future work.

A state channel between two users can be interpreted as the two users con-
stituting a “metaparty” - a single entity consisting of multiple parties. This is
subject to some access control for when the constituent parties can act on behalf
of both - commonly requiring agreement from all constituent parties. If Alice
and Bob open a new state channel, this can be seen as creating a new combined
party of (Alice, Bob).

In KACHINA, this party again hasits own private state, and for state channels,
this can track the most recent update of the channel. Updates are now oper-
ations that only affect the private state of this combined party and as argued

in Subsection 6.6.2 can be left off the ledger entirely. Interestingly, the access

structure for closing channels and reading the current state is more permissive
in most state or payment channels - requiring only one user to initiate it.

Given a state channel system, most of it can be implemented in a KACHINA
smart contract. It is not new for state or payment channels to use smart con-
tracts, however this is typically only for the opening and closing of the channel.
We observe that in KACHINA the update of the channel can also be modelled.

This approach of metaparties is useful, but not optimal. For instance, a con-
tract cannot interact with both Alice’s private state and the state channel be-
tween Alice and Bob at the same time, as presented here. Furthermore, how the
constituents of a metaparty reach consensus on whether an action is permitted
or not is unclear and varies from case to case. We leave as future work how to

give first-class treatment to data owned by multiple parties.
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6.7 Smart Contract Systems

To construct complex systems of multiple smart contracts, no additional ma-
chinery is required. In this section, we incrementally construct a complex sys-
tem with similar functionality to Ethereum [Woo14]. We begin by multiplexing
between a fixed set of transition functions, and expand this with the ability to
allow new transition functions to be registered, transition functions to call each
other, registered contracts to hold and transfer funds, and combine in a setting
where computation has an associated cost, which must be paid by the caller. We
finally show how access to the underlying ledger may be modelled.

It is worth noting that we concern ourselves only with the “real world” of
KACHINA core contracts. A reasonable question is how to transfer a proof such
as the one we presented in Section 6.5 into this setting. While we do not go
into the details here, we observe that (with one exception for the specific token
contract used), only the smart contract’s own transition function affects its
state. Running a multiplexed smart contract is equivalent to running many
small smart contracts independently — only interpreting the ledger differently.
This is no longer true once contracts may call each other - in which case it is
sufficient to reason about the closure of contracts able to call each other instead.

In this section we will assume that the (sub-)contracts do not make use of
COMMIT messages. While this mechanism can be accounted for, it is simpler to
present without it, and the primary purpose of COMMITs in the first place is to

enable gas payments — which this section does.

6.7.1 Multiplexing Contracts

The basic multiplexing contract takes n different sub-contracts as inputs. Each
party supplies not only the input, but the index i of the contract they wish to
call. The public and private states of the multiplexer consist of the product of the
corresponding sub-contract states and oracle queries are re-written to address
the correct part of the state. To do some, new oracles O; and O, are constructed,
which rewrite queries made to them. Then, the requested transition function is

run with these oracles, instead of the original ones.
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Transition Function ',
The multiplexing transition function I, is parameterised by n transition func-

tionsI'y,...,I', and allows a user to address any one of them.

Public state variables and initialisation values:

Variable ‘ Description

0;=0 ‘ Public states for each sub-contract

Private state variables and initialisation values:

Variable ‘ Description

pi=2 ‘ Private states for each sub-contract

When receiving an input (i, w):
assertic Z,
let O «— Ag: Oy(muxPubOracle(i, q))
let O) < Ag: O,(muxPrivOracle(i, q))

returnT; o, o (w)

Helper procedures:

function muxPubOracle(i, g, o, 2)
let o’ « o.0;
let (0”,y) < q(0’,2)
if 0’ = L then return (1, y)
else
leto.o; « o’
return (o,y)
function muxPrivOracle(i, q,p, (02, p°, 0™, p", 1))
letp” < p.p;
letz’ « (0°.04,p°p;,0™.0;,p".pi, 1)
let (p',y) < q(p’,2")
if p’ = | then return (1,y)
else
letpp; < p’
return (p,y)

We assume the existence of unmuxPubOracle and unmuxPrivOracle, which

take an oracle transcript to an Oracle produced by a multiplexed oracle and
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return the pair (i, 7”), where i is the address used in the original multiplexing
and 7" is the equivalent un-multiplexed transcript.
function unmuxZ,,,,((c?,p°, o™, p", 1),i)
return (¢°.0;,p°.p;, 0™.0;, p".pi, 1)
function unmuxX,.,(X, i)
let X' «¢
for (u,7,z,D)in X do
if A77: unmuxPrivOracle(7) = (i, 7’) then
let X' « X’ | (u, 7', unmuxZ,,.(z,1), D)
return X’
function desc,,,(t, X, 75, T,, (i, w), 2)
let (-, 7)) < unmuxPubOracle(7,)
let (-, 7;) < unmuxPrivOracle(7,)
let X! « unmuxX,,,,(X,0);2z" < unmuxZ,,,,(z,1)

return “Calling sub-contract i: "+desc(t, X", 7;,7,,w,2’)

function dep, (X, 7,,2)
if 7, = e then return o
else
let (i, 7,)) < unmuxPrivOracle(7,)
let X! « unmuxX,,,x(X,1);2z" < unmuxZ,,,,(z,1)

return dep;(X’,7,,2")

6.7.2 Multiplexing with Registration

To allow registering new contracts in the multiplexer, it is possible to include
the full contract’s description as part of its address A. In practice it may make
more sense to maintain a mapping from addresses to contract code, however this
is not required. The only other large change is that, since contracts are created
on the fly, we cannot rely on their states to have been initialised at any point.
Therefore, this initialisation takes place at any point where the multiplexed state
is accessed.
function forcelnitMaps(((My, ..., My),k, v))
forie{l,...,n}do
if k ¢ M; then let M;(k) < v
return (M, ..., M,)
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Transition Function I'¢gm,x
The multiplexing with registration transition function I',egm,« allows addressing
any pair of address and sub-transition function (A, T'). It uses the specified transi-
tion function on whatever state is associated with this pair, or a new, empty state

for the first use.

Public state variables and initialisation values:

Variable ‘ Description

2=0 ‘ Mapping from address pairs to public states

Private state variables and initialisation values:

Variable ‘ Description

P=o ‘ Mapping from address pairs to private states

When receiving an input (A = (i, T, desc, dep), w):
let O < Ag: O (muxPubOracle(4, q))
let O < Aq: O,(muxPrivOracle(4, q))

return FO(;,O[; (w)

Helper procedures:

function muxPubOracle(A, g, o, @)
if A¢ 0.2 thenleto.3(A) « @
leto’ < 0.2(A)
let (0’,y) < q(0’,2)
if 0’ = L then return (1,y)
else
let0.3(A) « ¢’
return (o,y)
function muxPrivOracle(4, g, p, (6°,p°, 0™, p", 1))
let (p.P,0°.2.p°.P, 0™.3, p".P) « forcelnitMaps(
(p.P,0°.2,p°.P,0".3,p".P), A, 2)
letp’ < p.P(A)
letz’ « (0°.0;,p°p;,0".0;,p".pi, 1)
let (p’,y) < q(p’,2")
if p’ = | then return (1,y)
else

letp.P(A) < p’
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return (p, y)

We assume the existence of unmuxPubOracle and unmuxPrivOracle, which
take an oracle transcript to an Oracle produced by a multiplexed oracle and re-
turn the pair (A, 7"), where A = (i, T, desc, dep) is the address used in the original
multiplexing and 7" is the equivalent un-multiplexed transcript.

function unmuxZgmux((0?,0°, 0™, ", 1), A)
let (0°.2,p°.P,0".%, p".P) « forcelnitMaps(
(0°.2,p°.P,0™.2,p".P), A, @)
return (0°.2(A), p°.P(A), 0™.2(A), p".P(A),n)

function unmuxX egmux(X, A)
let X' — ¢
for (u,7,z,D)in X do
if 77: unmuxPrivOracle(7) = (A, 7’) then
let X’ « X' || (u, T, unmuxZ egmux(2, A), D)
return X’
function desc egmux(t, X, T, 7, (A = (-, +, desc, ), w), 2)
let (-, 7,) < unmuxPubOracle(7,)
let (-, 7;) < unmuxPrivOracle(7,)
let X’ — unmuxXegmux(X, A); 2" < unmuxZ,eomux(z, A)

return “Calling sub-contract A: "+desc(t, X', 7, Ty, w, z')

function depregmux(X’ T, (0°,0%, 0™, p", 1))
if 7, = ethen return o
else
let (A = (...,dep),7,) < unmuxPrivOracle(7,)
let (0°.2.p°.P,0".%,p".P) «
forcelnitMaps((c°.2, p°.P,0™.%,p".P), A, @)
letz’ « (0°.2(A),p°.P(A),0".3(A),p".P(A),1n)
let X’ «¢
for (u, 7, (0°,p°,0",p", 1), D) in X do
if 47, unmuxPrivOracle(7,) = (A4,7,) then
let (0°.2.p°.P,0".%, p".P) « forcelnitMaps(
(0°.2,p°.P,0™.2,p".P), A, @)
let X! « X’ |
(uw,7,,(0%04,p°p;, 0™.04,p"-p;, 1), D)

return dep(X’,7,,2’)

Chapter 6. Privacy in Smart Contracts 286



6.7.3 Loopback Multiplexing

Smart contract systems truly become interesting when contracts are allowed to
call each other. This is not a technically difficult operation: Contracts simply need
tohave an additional exit and entry point to allow new queries to other contracts
to be made, and these queries to be responded to. Specifically, we require con-
tracts to either return (RETURN,y), or (CALL, A, M), with the latter invoking a
separate contract. We associate a special return value structure with indicating a
new contract address and input to call, and require contracts to process a specific
RESUME message.
As for the first time, it is possible for multiple separate contracts to get called,
we domain-separate the randomness source 7.
function unmuxZ,,0pmux((0?, p°, 0™, 7, 1), A)
let (0°.2,p°.P,0".2, p".P) « forcelnitMaps((c°.2, p°.P,0™.2,p".P), A, @)
Letn’ be arandomness source determinstically and collision-resistantally derived
from the pair (1, A).
return (¢°.2(A),p°.P(A), 0".2(A),p".P(A),n’)

Transition Function I'joqpmux
The multiplexing with registration and loopback transition function I'j,o,m,x allows
addressing any pair of address and sub-transition function (A,I'). These sub-
transition functions may return values of either (caLL, A, M), or (RETURN,y). In
the former case, a different sub-transition function is invoked and the value it even-

tually returns is fed back into the original one, by re-invoking it with (RESUME, y).

Public state variables and initialisation values:

Variable ‘ Description

2=0 ‘ Mapping from address pairs to public states

Private state variables and initialisation values:

Variable ‘ Description

P:=go ‘ Mapping from address pairs to private states

When receiving an input (A = (i, T, desc, dep), w):
let O/ « Ag: O (muxPubOracle(4, q))
let O, < Ag: O,(muxPrivOracle(A4, q))

repeat
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lety < I'o; o (W)
if HA’, M:y = (cALL, A’, M) then

letw « (RESUME, 1—‘Ioopmux,OU,(’)p((A/y M)))

until dy":y = (RETURN, y’)

return y’

Helper procedures:
function muxPubOracle(A, q, o, 2)
if A¢ 0.2 thenleto.3(A) « @
leto’ < 0.3(A)
let (0/,y) « q(0’,2)
if 0’ = L then return (1, y)
else
leto.2(A) < o’
return (o,y)
function muxPrivOracle(4, g, p, z)
let 2’ < unmuxZopmux(z, A)
if A ¢ p.P thenletp.P(A) « 2
letp’ < p.P(A)
let (p’,y) < q(p’,2")
if p’ = | then return (1, y)
else
letp.P(A) < p’
return (p, y)

Unlike before, we cannot invert the multiplexing on an entire transcript, as
the transcript may consist of multiple separate sub-contract calls. Instead, we
can invert multiplexing each query/response pair in the transcript itself. We
assume the existence of unmuxOracle, which takes a query-response pair (g,r),
where the query is muxPubOracle(A, q”) or muxPrivOracle(4, g"), and maps it to
(A, (4, 7):

As far as descriptions go, it is crucial to note that the leakage description of a
contract is no longer in isolation: what the contract may leak, depends on what
this contract calls. We will assume instead that each sub-contract’s leakage de-
scriptor is aware that it is being run in a loopback system — and therefore we give

it the full transcripts, even of sub-contracts being called. The assumption here
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is that the contract directly called by the user is also trusted by this user - the de-
scriptor it gives should be trusted, not necessarily that of any further contracts it
invoked. It is worth noting that this change of setting for the descriptor function
does not preclude using contracts designed without loopback systems in mind:
As this cannot invoke other contracts, their old descriptor function can be easily
lifted to this setting (a slight caveat is that either the old descriptor needs to be
capable of tolerating unconfirmed transaction transcripts over multiple calls to
the underlying function, or there should exist a function which splits transcripts
into these individual calls).
function liftDesc(A, desc)(t, X, 75, T,, W, 2)

let 7, < map(proj, e unmuxOracle, 7;)

let 7, < map(proj,  unmuxOracle, 7,)

let X’ « unmuxXegmux(X, A); 2" < unmuxZ,eomux(z, A)

return desc(t, X", 7;,7,,w,2)

function unmuxT(7, A)
return map(proj,, filter(A(A’,-): A = A,
map(unmuxOracle, 7)))

function unmuxXsopmux( X, A)
let X’ «¢
for (u,7,z,D)in X do
let 77 « unmuxT(7, A); 2" < unmuxZopmux(z, A)
let X! « X' | (u,7",2’,D")
return X’
function desciyopmux(t, X, 7o, Ty, (A = (-, desc, -), w), 2)

return “Calling sub-contract A: "+desc(t, X, 75, 7,, w, 2)

function dep;oq (X, 7, 2)

letS « o

for(q,r)in7,do
let (A,-) < unmuxOracle((g,r))
letS « SU{A}

letD « o

for A =(,-,-,dep)in Sdo
let 7) < unmuxT(7,, A)
letz’ « unmuxZoopmux(z, A)

let X” < unmuxXoopmux(X; A)
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let D < Dudep(X’,7,,2")

return map(proj,, X) n D

6.7.4 Integrated Payments Systems

Smart contract systems typically have an associated, native “asset”, which can
be traded not only by users, but by contracts as well. This asset is typically tied
to a public key, which can be used as an identity of end users, providing a means
to authenticate to contracts. We demonstrate a simple means of achieving this:
We construct a “simple payments” contract, which allows payments by end
users through demonstrating knowledge of secret keys, and arbitrary payments
which will be restricted to system usage. It is worth noting that this could be
done in a privacy-preserving manner, as presented in Section 6.5, although
significant changes would have to be made, as there would be situations where
a contract should publicly own funds and be able to transfer them, and the

simplified single-denomination design is not ideal.

Transition Function [,
The state transition function for a simple payments system. Parties have associated
public/private keys and balances. The payments system allows for parties without a
key pair to generate one, and for parties to transfer and mint coins, as well as query

their own balance.

Public state variables and initialisation values:

Variable ‘ Description

B = Apk:0 ‘ Mapping of public keys to their spendable coins

Private state variables and initialisation values:

Variable ‘ Description

sk =2 ‘ The party’s secret key

When receiving an input INIT:

send INIT to O, and receive the reply sk
k

let pk « prfsk(l)

return pk

When receiving an input (SEND, recv, v):
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send SECRETKEY to O, and receive the reply sk
let pk < prfs::(l)
send (SEND, pk, recv,v) to O,
return pk

When receiving an input (SYSTEM-SEND, snd, recv, v):
send (SEND, snd, recv, v) to O,

When receiving an input (MINT, v):
send SECRETKEY to O, and receive the reply sk
let pk < prfS::(l)
send (MINT, pk,v) to O,

When receiving an input BALANCE:

send BALANCE to Op

When receiving a private oracle query INIT:
assertp”.sk = o
let p.sk <— {0, 1}
return p.sk

When receiving a private oracle query SECRETKEY:
return p.sk

When receiving a private oracle query BALANCE:

return o‘”.B(prfE,‘fnSk(l))

When receiving a public oracle query (SEND, pk, recv, v):
assert 0.B(pk) > v
let 0.B(pk) < 0.B(pk) — v
let 0.B(recv) <« o.B(recv) + v

When receiving a public oracle query (MINT, pk, v):

let 0.B(pk) < 0.B(pk) + v

function desc,(t, X, 75, 7,, W, 2)
if 7, = (IN1T, pk) then
return (INIT, pk)
elseif 7, = ((SEND, snd, recv,v),-) then
return (SEND, snd, recv, v)
elseif 7, = (MINT, pk,v),-) then

return (MINT, pk, v)
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else return L
function dep, (X, T, 2)
return¢
Once given such a payments system, the multiplexing system can ensure that
for each call, a transfer to the called contract is initiated first, with the value of
the transfer and the source address being passed into the contract being called.
Likewise, if this calls another contract, this call may transfer funds from one

contract to another.

Transition Function I';,ymux
The multiplexing with registration, loopback, and payments transition function
Ipaymux allows addressing any pair of address and sub-transition function (a, I').
These sub-transition functions may return values of either (CALL, A, M), or (RETURN,
y). In the former case, a different sub-transition function is invoked and the
value it eventually returns is fed back into the original one, by re-invoking it with

(RESUME,Y).

Public state variables and initialisation values:

Variable ‘ Description

=0 ‘ Mapping from address pairs to public states

Private state variables and initialisation values:

Variable ‘ Description

P=g ‘ Mapping from address pairs to private states

When receiving an input (TOKEN, w):
assert w # (SYSTEM-SEND,...)
let O, « Ag: O,(muxPubOracle(TOKEN, q))
let O, < Ag: O,(muxPrivOracle(TOKEN, q))
return rsp,og,,(');, (w)
When receiving an input (CALL, v, A = (i, T, desc, dep), w):
let pk « L paymux,0,,0, (TOKEN, (SEND, A, V))

return caIIOmOp(V, pk, A, w)

Helper procedures:
function subCaIl@mOp(v, A, A" = (i, T, desc, dep), w)

assert A’ # TOKEN
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let O, — Ag: Oy(muxPubOracle(TOKEN, q))
let O, < Ag: O,(muxPrivOracle(TOKEN, q))
run Fsp,og,,o;, (SYSTEM-SEND, A, A’,v)

return caIlOmOp(V, A A, w)

function caIIOm@p(v,A, A =(,T,),w)
let O, — Ag: Oy(muxPubOracle(A’, q))
let O) < Ag: O,(muxPrivOracle(A’, q))
repeat
lety « FO{,,O,’, (cALL,A,v,w)
if dv’, A” , w’:y = (caLL,v’, A”,w’) then

letw « (RESUME, subCalIOmOp(V’, A A, W)

until dy’:y = (RETURN, y’)
return y’

function muxPubOracle(A, q, o, 2)
if A¢ 0.2 thenleto.3(A) « @
leto’ < 0.2(A)
let (0/,y) « q(0’,2)
if 0’ = L then return (1, y)
else

let 0.3(A) « ¢’

return (o,y)

function muxPrivOracle(4, q,p, (6°,p°, 0™, p", 1))
let (p.P,0°.3.p°.P,0".3, p".P) « forcelnitMaps((p.P, 0°.2, p°.P, 0.2, p".P), A, @)
letp’ < p.P(A)
letz’ « (0°.04,p°p;,0™.0:,p".pi, 1)
let (p’,y) < q(p’,2")
if p’ = | then return (1, y)
else
letp.P(A) < p’

return (p,y)

function descp,ymu(t, X, 7o, 75, M, 2)
if Hw: M = (TOKEN, w) then
return “Calling token contract:"+desc,,(t, X, map(proj, e unmuxOracle, 7;),
map(proj, o unmuxOracle, 7,), w, z)

elseif v, A = (;,-,desc,-),w: M = (CALL,v, A,w) then
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return “Calling sub-contract A with pay-inv: "+desc(t, X, 75, 7,, (1, v, w), 2)

else return |

deppaymux = deploopmux

6.7.5 Fees and Cost Models

In order to prevent denial-of-service attacks, the computations performed by
the network in verifying a transaction must be paid for in some way. In public
currencies, there is typically a cost model, which maps each step of computation
to a cost, often referred to as gas. Each transaction declares a limit on how much
gas it is willing to pay and what each unit’s value should be. It then pays the
corresponding amount into a fee pool and, while executing the transaction, the
gasusageis counted. Ifthe limitis reached, the transactionis rejected, otherwise
any spare gas is refunded.

We do not explicitly specify how miners are awarded these fees — a simple
approach is to not enable withdrawals from the fee pot within the transition
function, relying on miners to do so themselves, and not include in their block
other transactions which take from the pot.

In KACHINA the computation done in public state oracles occupies a similar
space: A modelling of fees must include estimating their likely cost, pay this
estimationin advance, and then use up the gas during the actual oracle execution.
In addition to this, the NIZK proof verification must be paid for. We will assume
that this has a flat cost, dependant on the size of its inputs, that is, the size of the
transcript.

Specifically, we assume two cost models: $,, and $;4, as well as a cost esti-
mator Eg4. $,; is simply a function from a public state transcript to the gas cost
of verifying a NIZK proof against it. A transaction will publicly declare what
it believes the cost of its transcript is and will use E4 (as well as a user input
dictating the cost per unit of gas) to estimate the cost of the remaining transac-
tion. The transaction declares this total fee, which part of the fee is for the NIZK
verification, and what the cost per unit of gas is. Transactions which pay too little
for NIZK verification, or set the cost per unit of gas too low, may not be picked up
by miners, although modelling miner incentives is not within the scope of this
thesis.

Formally, g « $,.(7)is a function from a public state transcript to a gas cost,
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(07,9",y) v L « $44(q,0,9) is a function taking an oracle query, initial state, and
gas limit, either returning the result and remaining gas, or returning 1 if the
supplied gas ran out. Finally, (¢/,9’,y) < Es4(q, o) returns an estimate as to the
gas cost of running a query ¢, with the state o as a reference point. Eg4 and $4
should return (¢’, y) = q(0) if they succeed.

In attaching fees to our contract system, we operate as follows:

I. In the private state oracle, simulate the transaction creation process, con-
structing the public state transcript 7 and, for each public state interaction,

recording the estimated cost, totalling to the overall gas cost g.

2. For a given gas price gasPrice, make two separate, public transfers into the

fee pot: first $,, (7)) x gasPrice and second g x gasPrice
3. Commit this as a partial execution success.

4. Execute the transaction as normal, except making public state oracle
queries through a modified gas cost oracle instead, retaining a temporary

state of the remaining gas.

5. Finally, the public state oracle relinquishes the remaining gas and returns

it to the transaction creator.

We now give an example transition function that combines this gas model

with the integrated payment system of Subsection 6.7.4.

Transition Function I’y
The multiplexing with registration, loopback, payments, and fees transition
function I';, allows addressing any pair of address and sub-transition function
(a,T). These sub-transition functions may return values of either (CALL, A, M), or
(RETURN, y). In the former case, a different sub-transition function is invoked, and
the value it eventually returns is fed back into the original one, by re-invoking it
with (RESUME, y). The transition function first estimates the cost of this call, and
pays for it in advance. This payment is then deduced from for executions, until a

remainder is refunded at the end of a successful call.
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Public state variables and initialisation values:

Variable ‘ Description

2 =@ | Mapping from address pairs to public states

spare = 0 | Temporary book-keeping of the value to return

Private state variables and initialisation values:

Variable ‘ Description

P=o ‘ Mapping from address pairs to private states

When receiving an input (TOKEN, w):
assert w # (SYSTEM-SEND,...)
let O < Ag: Oy(muxPubOracle(TOKEN, ¢))
let O) < Ag: O,(muxPrivOracle(TOKEN, q))
return T, o/ o, (W)
When receiving an input (CALL, gasPrice, v, A = (i, T, desc, dep), w):
let pk < L'ses,0,,0, (TOKEN, (SEND, A, V))
send (ESTIMATE-COST, v, pk, A, w) to O, and
receive the reply (91, 90)
runl 0 0, (TOKEN, (SEND, FEE-POT, g7 X gasPrice))
runl 0 0, (TOKEN, (SEND, FEE-POT, g X gasPrice))
commit GAS-PAID
send (INIT-GAS, gp) to O,
lety < callomop(v, pk, A, w)
send (DEINIT, pk, gasPrice) to O,

returny

When receiving a public oracle query (INIT-GAS, o ):
let o.spare < gp
When receiving a public oracle query (DEINIT, pk, gasPrice):

run ['\,(FEE-POT, pk, 0.spare X gasPrice)

let o.spare < 0

When receiving a private oracle query (ESTIMATE-COST, v, pk, A, w):
let O, < O((0™,¢,0); Oy < O(p™)
let O < Ag: O, (muxEst(q))
run callogyo;](v, pk, A, w)
let (-, 7,g) < state(O,)
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return ($,.(7),9)

Helper procedures:
function subCaIlomOp(v, A, A" = (i, T, desc, dep), w)
assert A’ # TOKEN
let O, « Ag: O,(muxPubOracle(TOKEN, q))
let O, < Ag: O,(muxPrivOracle(TOKEN, q))
run Fsp,(’){,,@;, (SYSTEM-SEND, A, A’,v)
lety « callomop(v, A A, w)
returny
function callomop(v,A, A =T, ),w)
let O — Ag: Oy(muxPubOracle(A’, q))
let O) < Ag: O,(muxPrivOracle(A’, q))
repeat
lety « ro;,,o,; (cALL, A, y,w)
if dv’, A” ,w:y = (cALL, v, A”,w’) then
lety « subCaIlOm@p(v’, A A W)
letw — (RESUME, y)
until dy":y = (RETURN, ")
returny
function muxPubOracle(A, g, o, @)
if A¢ 0.2 thenleto.J(A) « @
leto’ < 0.3(A)
letr « $,4(q,0’, 0.spare)
if r = | then
o.spare « 0
return (L,y)
let(0’,9',y) < r;
if 0’ = | then
o.spare < 0
return (L, y)
else
0.2(A) « 0’;0.spare « ¢’
return (o,y)

function muxPrivOracle(4, q,p, (6°,p°, 0™, p", 1))

let (p.P,0°.3.p°.P, 0™.2, p".P) « forcelnitMaps((p.P, 0°.%, p°.P,0™.%,p".P), A, @)
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letp’” < p.P(A)
letz’ « (0°.0,,p°p;,0".0;,p".pi, 1)
let (p’,y) < q(p’,2")
if p’ = | then return (1,y)
else

letp.P(A) < p’

return (p,y)

function muxEst(q, o, @)

let(o’,7,9) <o
let(0’,9',y) < E4(q,07,2)
if 0’ = L then return (1,y)

else

return ((o/,7 || [(g,)],9+9),y)

= desc

descscs paymux

depscs = deppaymux

6.7.6 Exporting Ledger Data

Real-world smart contract systems often have some means to extract limited
information about the underlying consensus protocol, such as the hash of the
most recent block, the address of the block’s miner, or the length of the current
chain. These can be useful in applications — in particular the latter, as it provides
an imprecise clock for use in contracts.

Clearly, these rely on tighter integration with the underlying consensus
mechanism than KACHINA provides. We can still capture the core idea, by
having a sub-contract which manages such chain data and allows this to be
read and set arbitrarily®. We can then assume that the correct usage of this
sub-contract is enforced by the validation of the underlying consensus mecha-
nism - transactions which attempt to “incorrectly” set the chain data - for any

definition of “correct” will never reach the ledger.

Transition Function I' j,indata
The chain data transition function I} ,;,q4ata @allows arbitrary setting and reading of

state. An external assumption is that the setting of state is both enforced and re-

®This could be expanded to allow only certain types of setting — such as advancing the time,
but not rewinding it.
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stricted by the underlying ledger protocol, to give it meaning - for instance each
block may induce a phantom “chain-data” transaction which appears on the ledger

and sets the most recent block hash in the chain-data contract’s state.

When receiving an input (SET, 0”):
run O,(A(,): (0, T))
When receiving an input GET:

return O, (A(0,): (0, 0))

The contract we present here does have a further issue: Since the loopback
in our multiplexers occurs only in the main transition function, the transcripts
it generates will commit to specific values for the ledger data upon transaction
creation — something which is likely not reasonable. A more complex loopback
design, which we do not present here, would solve this: If calling into public
or private parts of other contracts were permitted from within the public and
private state oracles, respectively.

For both leakage descriptors and dependencies, we make use of our assump-
tion that users cannot directly call SET.

function desc paindata(t, X, 7o, 75, W, 2)

return “Reading the chain data”

function dep ,i,data(X, 7, (0°,0°, 07, ", 1))

return ¢
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CONCLUSION

HIS thesis has attempted to solidify the basis of privacy in decentralised
blockchain systems, both at the protocol level with privacy preserving proof
of stake and smart contracts, and answering questions about the underlying
primitive of zk-SNARKSs, questions of how they may be securely instantiated

and composed. The major results of this thesis are as follows:

- Chapter 3, Composition with Knowledge Assumptions, demonstrated how zk-
SNARKS can be used in wider composable security proofs, despite rely-
ing on knowledge assumptions for extraction. This directly confirms the
correctness of constructions which use zk-SNARKs as building blocks in

larger protocols, including other work in this thesis.

« Chapter 4, Secure Reference Strings from Consensus, addresses the question of
trusted setups for zk-SNARKSs, which are the weakest link in their security,
as they rely on an honest party erasing a secret exponent. To solve this is-
sue, updateable reference strings are used, which allow any user to perform
an update. This task is given to miners of a Nakamoto-style ledger and, by

the honesty assumptions governing these, an honest update is guaranteed.

« Chapter 5, Privacy in Proof-of-Stake, combines results in provably-secure
proof-of-stake protocols with results from privacy-preserving transac-
tion systems, constructing the first proof-of-stake system which oper-
ates over a privacy-preserving distribution of stake. It replaces some
of the key cryptography from non-privacy-preserving proof-of-stake
with non-interactive zero-knowledge, and relies on existing zk-SNARK
constructions for privacy-preserving payments. The result is adaptively
secure, ensuring that stake cannot be misused after-the-fact once it has

been spent.

« Chapter 6, Privacy in Smart Contracts, provides a platform for smart contract

authors to use arbitrary computation in zero-knowledge proofs, sepa-
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rating computation into three parts: the untrusted private, the trusted
private, and the trusted public, where only the latter operates on shared
state. This foundation permits smart contracts to be more expressive
with respect to the privacy they achieve and enables additional trust
assumptions and models to be layered on top of it. Smart contract systems
are constructed modularly, including privacy-preserving currency and

adjustable fees.

These results can be combined in a single distributed ledger — a proof-of-stake
system running privacy-preserving smart contracts, drawing its stake distri-
bution from a Zerocash-like private currency contract. Fully combining these
results is not quite immediate, as the setup would need to be with an initially
public proof-of-stake and the models used for privacy-preserving proof-of-stake
and smart contracts differ sufficiently that using a smart contract for the stake
of the former is non-trivial. These issues appear minor however - for the
former the public Ouroboros Genesis can be run during the setup-phase and
switched to CRYPSINOUS once the reference string has finalised. For the latter,
it is clear that a smart contract semantically identical to the transfer system of
CRYPSINOUS can be written in KACHINA - it is simply the matter of correctly
expressing the leakage CRYPSINOUS makes in the KACHINA model which is
non-trivial.

In ending this thesis, I would like to pause to note how grand the problem of
privacy in decentralised systems is. Any solution to it must be efficient — how-
ever, even the non-private solutions in use today are not efficient enough to be
sustainable. Furthermore, the setting is more strict than usual in cryptography:
No-one knows who is participating, let alone who is trustworthy. It has become
increasingly apparent to me during my study that it is unlikely that there is a
perfect solution for privacy, and that it is more important to broadcast that pri-
vacy is hard and that we should not expect it to come for free, or without a fight.
Too often people — developers, users, and even cryptographers alike — assume
privacy as automatic. It is not. In the course of this thesis, I tried to fight back a

little more of'it.
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